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Abstract. The commonly used incompressible phase field models for non-reactive, bi-
nary fluids, in which the Cahn-Hilliard equation is used for the transport of phase
variables (volume fractions), conserve the total volume of each phase as well as the ma-
terial volume, but do not conserve the mass of the fluid mixture when densities of two
components are different. In this paper, we formulate the phase field theory for mix-
tures of two incompressible fluids, consistent with the quasi-compressible theory [28],
to ensure conservation of mass and momentum for the fluid mixture in addition to
conservation of volume for each fluid phase. In this formulation, the mass-average ve-
locity is no longer divergence-free (solenoidal) when densities of two components in
the mixture are not equal, making it a compressible model subject to an internal con-
straint. In one formulation of the compressible models with internal constraints (model
2), energy dissipation can be clearly established. An efficient numerical method is then
devised to enforce this compressible internal constraint. Numerical simulations in con-
fined geometries for both compressible and the incompressible models are carried out
using spatially high order spectral methods to contrast the model predictions. Nu-
merical comparisons show that (a) predictions by the two models agree qualitatively
in the situation where the interfacial mixing layer is thin; and (b) predictions differ
significantly in binary fluid mixtures undergoing mixing with a large mixing zone.
The numerical study delineates the limitation of the commonly used incompressible
phase field model using volume fractions and thereby cautions its predictive value in
simulating well-mixed binary fluids.
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1 Introduction

Phase field models have been used successfully to study a variety of interfacial phenom-
ena like equilibrium shapes of vesicle membranes [12–16, 35], blends of polymeric liq-
uids [17, 36–38], multiphase fluid flows [19, 23–25, 28, 40–45], dentritic growth in solidifi-
cation, microstructure evolution [21,22,29], grain growth [8], crack propagation [9], mor-
phological pattern formation in thin films and on surfaces [26,30], self-assembly dynam-
ics of two-phase monolayer on an elastic substrate [27], a wide variety of diffusive and
diffusion-less solid-state phase transitions [10, 39], dislocation modeling in microstruc-
ture, electro-migration and multiscale modeling [34]. Multiple phase-field methods can
be devised to study multiphase materials [40]. Recently, phase field models are applied
to study liquid crystal drop deformation in another fluid, liquid films, polymer nanocom-
posites, and biofilms [5, 18, 19, 23–25, 28, 40–44, 46].

Comparing to other mathematical and computational technologies available for study-
ing multi-phase materials, the phase-field approach exhibits a clear advantage in its sim-
plicity in model formulation, ease of numerical implementation, and the ability to explore
essential interfacial physics at the interfacial regions etc. Computing the interface without
explicitly tracking the interface is the most attractive numerical feature of this modeling
and computational technology. Since the pioneering work of Cahn and Hilliard in the
50’s of the last century, the Cahn-Hilliard equation has been the foundation for various
phase field models [6, 7]. It arises naturally as a model for multiphase fluid mixtures
should the entropic and mixing energy of the mixture system be known. For immiscible
binary fluid mixtures, one commonly uses a labeling or a phase variable (also known as
a volume fraction or an order parameter) φ to distinguish between distinct fluid phases.
For instance φ=1 indicates one fluid phase while φ=0 denotes the other fluid phase in an
immiscible binary mixture. The interfacial region is tracked by 0<φ<1. Given the histor-
ical reason, most mixing energies are calculated in terms of the volume fraction instead
of the mass fraction in the literature [11,20]. Consequently, the system free energy includ-
ing the entropic and mixing contribution has been formulated in the volume fraction as
well, especially for polymeric systems [11, 20]. We acknowledge the existence of diffuse
interface models derived using mass fractions [28], which do not belong to the class of
phase field models we are addressing in this paper. We denote the system free energy for
the material system to be modeled by F(φ,∇φ,···). A transport equation for the volume
fraction φ along with the conservation equation of momentum and continuity equation
constitutes the essential part of the governing system of equations for the binary fluid
mixture. The volume fraction serves as an interval variable for the fluid mixture.

In the literature on immiscible binary mixtures of incompressible fluids, one uses the
concept of chemical potential to formulate the transport equation for the volume fractions
of the fluids φ1 and φ2. In this formulation, the material incompressibility is on the one
hand modeled by the continuity equation

∇·v=0, (1.1)
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while on the other hand, interpreted as the invariant property of the sum of the volume
fractions for the two fluid components, i.e., φ1+φ2=1 if we denote φ=φ1 and φ2=1−φ.
This assumption is plausible and indeed consistent with the fluid compressibility (1.1)
only if the two components are either completely separated by phase boundaries when
their densities are not equal or possibly mixed when the densities are identical. Oth-
erwise, there is a potential inconsistency with the usual conservation of mass. This in-
consistency has been identified in [28], but ignored by many practitioners using phase
field modeling technologies using volume fractions as phase variables. We note that this
inconsistency occurs only in the mixed region of the two incompressible fluids, where
the incompressible condition (1.1) is no longer valid, indicating the mixture is no longer
incompressible despite that each fluid component participating in mixing is incompress-
ible. This type of fluids is referred to as quasi-compressible in [28].

This paper aims at discussing the inconsistency in phase field models for binary mix-
tures of two incompressible fluids of unmatched densities and viscosities and providing
a quantitative assessment for the quasi-compressible phase field model that obeys the
conservation of both mass and volume against the incompressible one that only respects
the volume conservation. The paper is organized as follows. First we discuss the math-
ematical formulation of the phase field theory for binary viscous fluid mixtures and its
various approximations and their ramifications. Secondly, we develop a new set of nu-
merical algorithms, which enforce the mass conservation, to solve the governing system
of fluid flow equations. Thirdly, we implement the algorithms using spatially high or-
der spectral methods and discuss the discrepancies between the ad hoc incompressible
phase field model and the quasi-compressible phase field model in two representative
examples.

2 The mathematical model

We revisit the derivation of the governing system of equations for a binary mixture of
incompressible viscous fluids, which includes the transport equation for a phase vari-
able (the volume fraction) and the conservation equations for mass and linear momen-
tum. The conservation equations for a binary system can be formulated in two different
ways: either as a two fluid model or a one fluid two component model [1, 2, 4]. For
nontrivial fluid simulations, the one fluid multi-component formulation often yields a
convenient governing system of equations and easy-to-implement boundary conditions
for the model’s hydro-dynamical variables. The phase field theory for binary fluids falls
naturally into the one fluid two component formulation [6]. In the phase field formula-
tion, chemical reaction between the two distinct components can take place so that one
component can be turned into the other component. However, the overall mass must be
conserved. In this paper, we will not address the phase field formulation with chemical
reactions. This topic deserves a separate discussion of its own.
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2.1 Governing equations

In a phase field theory, the transport equation for the volume fraction of one fluid phase
is given by

φt+∇·(φv)=∇·(λ∇µp), (2.1)

where v is an average velocity to be clarified below, λ = λ(φ) is the mobility function,
and µp is an operator related to the chemical potential of the material system to be de-
termined. The mobility function λ is often taken as a constant λ0, but is preferably a
function of φ in the form:

λ=λ0φ(1−φ). (2.2)

The Cahn-Hilliard equation with the volume fraction dependent mobility is called singu-
lar or modified Cahn-Hilliard equation. Often, it is approximated simply by a constant
value λ=λ0 in studying phase separated, immiscible fluids. The resultant equation is the
well-known Cahn-Hilliard equation.

The free energy of the mixture system is normally a function of the labeling function
of phase function and its higher order derivatives (only the first order is included here
for brevity):

F=F(φ,∇φ). (2.3)

In this paper, we consider the mixture of two incompressible fluids with constant mass
density ρ1 and ρ2, respectively. The total density of the mixture is then given by

ρ=ρ1φ+ρ2(1−φ). (2.4)

We identify v as the mass-average velocity for the mixture. Then, the conservation equa-
tions for mass and momentum are given by

ρt+∇·(ρv)=0, (2.5a)

(ρv)t+∇·(ρvv)=∇·(τ)−φ∇µ+Fe, (2.5b)

where Fe is the external force and φ∇µ is the ”elastic force” or the ”surface force” due to
the interfacial energy f (φ) [?]. The surface force −φ∇µ can be replaced by µ∇φ modulo
a surface term which is normally zero. In light of the transport equation for the volume
fraction, we have

∇·v=
ρ2−ρ1

ρ2
[φt+∇·(φv)]=

ρ2−ρ1

ρ2
[∇·(λ∇µp)]. (2.6)

It is apparent that the divergence free condition for the mass-average velocity field is sat-
isfied only if ρ1=ρ2 or ∇·(λ∇µp)=0. Otherwise, the mass conservation equation serves
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as a constraint for the velocity field, which determines the undetermined pressure in the
constraint hydrodynamic theory for fluid mixtures. We note that ∇·(λ∇µp) is normally
not zero for a spatially inhomogeneous system. Hence, as long as ρ1 6=ρ2, Eq. (2.6) serves
as a constraint.

To close the system of equations, we must come up with a constitutive equation for
the stress tensor τ. We consider the mixture made up of viscous fluids. For viscous fluids,
the stress constitutive equation is

τ=τc+2ηD+νtr(D)I, (2.7)

where τc is the constraint stress responsible to maintain the constraint Eq. (2.6) without
any contribution to the entropy production, η is the shear viscosity, ν is the volumetric
viscosity, and D is the rate of strain tensor. The ratio between ν and η depends on the
property of the material and is roughly 4.3 for water for example. The viscosity coeffi-
cients for the fluid mixture are interpolated through the volume fraction and given by

η=η1φ+η2(1−φ), ν=ν1φ+ν2(1−φ), (2.8)

where η1,2,ν1,2 are constant shear and volumetric viscosities for fluid 1 and fluid 2, re-
spectively.

To deal with constraint (2.6), we augment the chemical potential µ with a term µ̄ called
the constraint response in the transport of the volume fraction:

µp=µ+µ̄. (2.9)

Based on the second law of thermodynamics in the form of the Clausius-Duhem inequal-
ity, the constraint response does not contribute to entropy production, i.e.,

τc : D−(µ−µp)φ̇=0, (2.10)

where φ̇= ∂φ
∂t +∇·(vφ) is the material derivative. We rewrite Eq. (2.6) as

I : D+
ρ1−ρ2

ρ2
φ̇=0. (2.11)

For Eq. (2.10) must be valid for all thermodynamic processes that obeys (2.11), we deduce
that

τc =−pI and µp=µ+
ρ2−ρ1

ρ2
p, (2.12)

where p is the hydrodynamic pressure.
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The governing system of equations for the binary fluid that respects the conservation
of mass and total volume are summarized as follows

φt+∇·(φv)=∇·(λ∇µp), (2.13a)

(ρv)t+∇·(ρvv)=ρ[vt+v·∇v]=∇·(2ηD+νtr(D)I)−∇p−φ∇µ+Fe

=∇·(η∇v)+∇((η+ν)∇·v)−∇p−φ∇µ+Fe , (2.13b)

∇·v=
ρ2−ρ1

ρ2
[∇·(λ∇µp)], (2.13c)

µp=
δF

δφ
+

ρ2−ρ1

ρ2
p. (2.13d)

We refer (2.13) as the compressible model 2 in this paper. On the other hand, if we replace
µp by µ in (2.13a)-(2.13c), we obtain another set of equations, which we refer to as the
compressible model 1. With the help of (2.13c), the transport equation for φ can be recast
into

φt+∇·(φv)=
ρ2

ρ2−ρ1
∇·v (2.14)

provided ρ1 6=ρ2.
The above compressible models preserve the mass conservation and are compressible

inside the mixing/interfacial region. In particular, compressible model 1 is also incom-
pressible within pure fluid 1 or fluid 2 while compressible model 2 may be compressible
everywhere due to the role played by the hydrodynamic pressure in the transport of the
volume fraction. On the other hand, the incompressible model, in which the mass aver-
age velocity field is assumed solenoidal, consists of the following equations:

φt+∇·(φv)=∇·(λ∇µ), (2.15a)

ρ[vt+v·∇v]=∇·(η∇v))−∇p−φ∇µ+Fe , (2.15b)

∇·v=0, (2.15c)

µ=
δF

δφ
. (2.15d)

This model assumes that the flow is incompressible everywhere at the expense of local
mass conservation inside the interfacial/mixing region.

For the binary fluid models, we define the total energy as

E(t)=
∫

Ω

[

ρ‖v‖2

2
+F

]

dx, (2.16)

where x is the Eulerian coordinate. For compressible model 1 with Fe = 0, by taking the
inner product of (2.13a) (with µp replaced by µ) with µ and of (2.13b) with u, we find that
the rate of change in the total energy is given by

dE

dt
=−

∫

Ω

[λ‖∇µ‖2+(τ−τc) : D]dx−
∫

Ω

τc : Ddx. (2.17)
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To ensure positivity in the first integral, we need (2ηD+νtr(D)I) : D≥0, η≥0,ν+ 2η
3 ≥0.

Unfortunately, we have no control over the sign for the second integral. On the other
hand, for compressible model 2 with Fe = 0, by taking the inner product of (2.13a) with
µp and of (2.13b) with u, we can easily show that the rate of change in the energy for this
system of governing equations is given by

dE

dt
=−

∫

Ω

[λ‖∇µp‖
2+(τ−τc) : D]dx≤0. (2.18)

Hence, the total energy is dissipative! We note that Shen and Yang [32, 33] derived in-
compressible models which also satisfy an energy dissipation law. One of the possible
traded-offs in enforcing the mass conservation is losing the energy law if model 1 is used
or losing incompressibility everywhere if compressible model 2 is used. We note that an
analogous phase field equation (to model 2) was also derived using an energy argument
in [28] for mass fractions.

2.2 Choice of free energy

The free energy F can take different form depending on the applications. In this paper,
we consider the free energy density in the following form:

F(φ,∇φ)= kBTγ
[1

2
‖∇φ‖2+ f (φ)

]

, (2.19)

where kB is the Boltzmann constant, T is the absolute temperature, and γ is a parameter
with the unit of a number density per unit length. γ is in fact proportional to the product
of the number density per unit volume and the square of the persistent length.

We first look at the Ginzburg-Laudau free energy with

f (φ)=
1

ǫ2
φ2(1−φ)2 (2.20)

for two immiscible fluids, where ǫ>0 is a small parameter characterizing the hydropho-
bic property between the two fluids. Therefore,

δF

δφ
= kBTγ

[

−∇2φ+
1

ǫ2
φ(1−φ)(1−2φ)

]

. (2.21)

We also consider the Flory-Huggins mixing free energy for two immiscible fluids to
simulate the phase separation dynamics. The Flory-Huggins mixing free energy density
is given by (2.19) with

f (φ)=
1

ǫ2

[ φ

N1
lnφ+

1−φ

N2
ln(1−φ)+χφ(1−φ)

]

, (2.22)
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where N1 and N2 are the polymerization indices for fluid 1 and fluid 2 and χ is the mixing
parameter between 0 and 2. If both are viscous fluids, we assume N1 = N2 = 1. In this
case,

δF

δφ
= kBTγ

[

−∇2φ+
1

ǫ2

( lnφ

N1
+

ln(1−φ)

N2
+χ(1−2φ)

)

]

+const. (2.23)

2.3 Non-dimensionalization

We denote the characteristic time scale by t0 and length scale by L0. The dimensionless
variables are defined by

t̃=
t

t0
, x̃=

x

L0
, ṽ=

vt0

L0
, p̃=

pt2
0

ρ2L2
0

. (2.24)

We will drop the˜ on the dimensionless variables in the following. We choose L0 so that
the dimensionless length Ly = 1. We use Lx = 1 in the following calculations simply for
convenience. The dimensionless model parameters are defined by

Rei,s=
ρ2L0

t0ηi
, Rei,v=

ρ2L0

t0νi
(i=1,2), Λ=

λt0kBTγ

L4
0

, ǫ̃=
L0

ǫ
, (2.25a)

Bi=φ
ρ1

ρ2
+(1−φ),

1

Res
=

φ

Re1,s
+

1−φ

Re2,s
,

1

Rev
=

φ

Re1,v
+

1−φ

Re2,v
. (2.25b)

Here Res and Rev denotes the Reynolds number corresponding to the shear and volumet-
ric stress, and Λ is the dimensionless mobility parameter. We set

Ly=1, C=
kBTγt0

L4
0ρ2

=1 (2.26)

in this study yielding t0=
L4

0ρ2

kBTγ .

The dimensionless equations for the two compressible models are given by











































φt+∇·(φv)=∇·(Λ∇µp),

Bi[vt+v·∇v]=∇·
( 1

Res
∇v

)

+∇

(

( 1

Res
+

1

Rev

)

∇·v

)

−∇p−φ∇µ,

∇·v=
(

1−
ρ1

ρ2

)

[

∇·(Λ∇µp)
]

,

µ=−∆φ+ f̃ (φ) (Model 1), µp=−∆φ+ f̃ (φ)−
(ρ1

ρ2
−1

)

p (Model 2),

(2.27)

where f̃ (φ) are given by (2.20) or (2.22) with ǫ replaced by ǫ̃.



J. Shen, X. Yang and Q. Wang / Commun. Comput. Phys., 13 (2013), pp. 1045-1065 1053

The above system is subjected to a set of suitable initial and boundary conditions. For
example, if the mixture is confined in a domain Ω, the boundary conditions are

∂φ

∂n

∣

∣

∣

∂Ω

=
∂µ

∂n

∣

∣

∣

∂Ω

=0, v|∂Ω =0, (2.28)

where n is the outward normal.

3 Numerical schemes

In this section, we shall focus on constructing efficient and easy to implement numerical
schemes to accommodates the non-vanishing divergence velocity field so as to preserve
the mass conservation. How to construct energy stable schemes is much more involved
and will be addressed separately. To simplify the presentation, we shall only consider the
slightly more complicated model 2. One can obtain the scheme for model 1 by replacing
µ+p with µ.

3.1 Discretization in time

To simplify the presentation, we shall present only first-order schemes. In what follows,
the superscript n denotes the time level and ∆t is the time step size.

Scheme based on a modified projection:

1. Solve (φn+1,µn+1
p ) from:

φn+1−φn

∆t
+∇·(φnvn)=∇·(Λ∇µn+1

p ),
∂φn+1

∂n

∣

∣

∣

∂Ω

=0, (3.1a)

µn+1
p =−∆φn+1+ f̃ (φn)+

S

ǫ̃2
(φn+1−φn)+

ρ2−ρ1

ρ2
pn,

∂µn+1
p

∂n

∣

∣

∣

∂Ω

=0, (3.1b)

where S is a computational parameter and ǫ is the parameter in the free energy. The last term

is added to stabilize the scheme to allow larger step sizes. Its role is to damp the high frequency

or short waves in the numerical simulation.

2. Denote

Bin+1=φn+1 ρ1

ρ2
+(1−φn+1), Ren+1

s =φn+1Re1,s+(1−φn+1)Re2,s, (3.2a)

Ren+1
ν =φn+1Re1,ν+(1−φn+1)Re2,ν; (3.2b)

Solve ṽn+1 from:

Bin+1

(

ṽn+1−vn

∆t
+vn ·∇vn

)

−∇·(Ren+1
s ∇ṽn+1)

−∇
(

(Ren+1
s +Ren+1

ν )∇·vn
)

+∇pn=−φn+1∇µn+1, (3.3a)

ṽn+1|∂Ω=0. (3.3b)
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3. Set c0=1 and solve pn+1−pn from:

−∇·
1

Bin+1
∇(pn+1−pn)=

1

∆t

{

c0
ρ2−ρ1

ρ2
[∇·(Λ∇µn+1

p )]−∇· ṽn+1

}

, (3.4a)

∂(pn+1−pn)

∂n

∣

∣

∣

∂Ω

=0, (3.4b)

where Ω is the domain occupies by the fluid mixture.

4. Finally, update

vn+1= ṽn+1−
∆t

Bin+1
∇(pn+1−pn), (3.5)

and then goto the next step.

Remarks:

• S=O(1) is a stabilizing computational parameter. We use S=2 in all the simulations
presented in this paper.

• Setting c0=0 in (3.4), we get the scheme for divergence-free velocity field (∇·v=0).

• η = φη1+(1−φ)η2 and ν = φν1+(1−φ)ν2 are the interpolated effective viscosity
coefficients.

• A second-order scheme can be constructed as well.

Notice that (3.4)-(3.5) represents a modified pressure-correction projection method.
One can easily verify from (3.4)-(3.5) that vn+1 and µn+1

p satisfy

∇·vn+1=
(

1−
ρ1

ρ2

)

[

∇·(Λ∇µn+1
p )

]

, (3.6)

which ensures the mass conservation. However, the step (3.4) in the above involves solv-
ing an elliptic equation with 1

Bin+1 as the variable coefficient. When
ρ2

ρ1
is large, this step

may become very costly. So we propose the following scheme based on the pressure-
stabilization technique which only requires solving a pressure Poisson equation. The
price we pay for this simplicity is that (3.6) will only be satisfied approximately. This
strategy has been proven effective in the numerical solution of the incompressible field
phase model [32, 33].

Scheme based on a pressure-stabilization method:

1. Solve (φn+1,µn+1
p ) from:

φn+1−φn

∆t
+∇·(φnvn)=∇·(Λ∇µn+1

p ),
∂φn+1

∂n

∣

∣

∣

∂Ω

=0, (3.7a)

µn+1
p =−∆φn+1+ f̃ (φn)+

S

ǫ̃2
(φn+1−φn),

∂µn+1
p

∂n

∣

∣

∣

∂Ω

=0. (3.7b)
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2. Denote

Bin+1=φn+1 ρ1

ρ2
+(1−φn+1), Ren+1

s =φn+1Re1,s+(1−φn+1)Re2,s, (3.8a)

Ren+1
ν =φn+1Re1,ν+(1−φn+1)ℜ2,ν; (3.8b)

Solve ṽn+1 from:

Bin+1

(

vn+1−vn

∆t
+vn ·∇vn

)

−∇·(Ren+1
s ∇vn+1)

−∇
(

(Ren+1
s +Ren+1

ν )∇·vn
)

+∇pn=−φn+1∇µn+1, (3.9a)

ṽn+1|∂Ω=0. (3.9b)

3. Set c0=1 and solve pn+1−pn:

−∆(pn+1−pn)=
ρmin

∆t

{

c0
ρ2−ρ1

ρ2
[∇·(Λ∇µn+1

p )]−∇·vn+1

}

, (3.10a)

∂(pn+1−pn)

∂n

∣

∣

∣

∂Ω

=0, (3.10b)

where ρmin=min(ρ1,ρ2). Go to the next step.

We observe that the step (3.7) is a system of two second-order equations with constant
coefficients, the step (3.9) is an elliptic equation with variable coefficients and the step
(3.10) is just a Poisson equation. Hence, the above scheme is easy to implement and very
efficient.

As in an usual pressure-stabilization method [33] where the divergence-free condition
is satisfied approximately, it is clear from (3.10) that vn+1 and µn+1

p from the above scheme

only satisfy the internal constraint (2.6) approximately with a residue of order O(∆t2).
Therefore, the mass is conserved up to a controllable error of order O(∆t2), independent
of the interfacial width ǫ.

3.2 Discretization in space

The spatial discretization can be done in either a spectral method or a finite element
method or a finite difference method. However, the spatial resolution needs to be fine
enough to resolve the interfacial layer. We shall use the high resolution spectral method
which requires a significantly less number of unknowns inside the interface as compared
with a lower-order method.

We focus in this paper on two-dimensional fluid flows in both drop dynamics as well
as mixing dynamics of immiscible binary fluids, and define the computational domain
as Ω= [0,Lx]×[0,Ly] with the periodic boundary condition in the x-direction. In the y-
direction, the boundary conditions are:
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v(x,y,t)=v(x+Lx,y,t), φ(x,y,t)=φ(x+Lx,y,t), (3.11a)

v(x,0,t)=v0, v(x,Ly,t)=v1, (3.11b)

φy(x,0,t)=φy(x,Ly,t)=φyyy(x,0,t)=φyyy(x,Ly,t)=0. (3.11c)

The boundary conditions of φ at y=0,Ly are interpreted as the flux boundary conditions.

We shall use the Fourier expansion in the x-direction and the Legendre-Galerkin
method in the y-direction.

4 Numerical results and discussions

We investigate predictive drop dynamics and phase separation dynamics computed us-
ing the two distinct classes of models with a focus on the comparison between the phases
and the phase boundaries of the mixture. We tabulate the dimensionless parameters used
in the simulations in Table 1, where N and M denote the number of grid points in x and
y direction, respectively. These are chosen based on our previous experience with the
two-phase fluid [32, 33].

Table 1: Parameter values.

Parameter N M g Re1,s Re2,s ǫ Re1,v Re2,v
ρ1
ρ2

Λ

Value 256 256 0 1 1×10−2 0.02 4.3×Re1,s 4.3×Re2,v
1

50 1×10−6

We first consider the drop dynamics of fluid 1 immersed in fluid 2 and denote the
volume fraction of fluid 1 as φ. For presentation purposes, we relabel the models as
follows in the figures: Model 1: incompressible model, Model 2: compressible model 1,
Model 3: compressible model 2.

4.1 Drop dynamics

We first simulate a lighter fluid (fluid 1, φ=1) drop immersed in a heavier fluid (fluid 2,
φ=0). The density ratio we choose for this numerical example is ρ1 :ρ2=1:50 and viscosity
ratio 1 : 100. In this setting, the lighter drop will rise in the fluid channel (computational
domain). The simulated results using the compressible models and the incompressible
model for mixtures agree with each other qualitatively. The velocity components, pres-
sure and the drop profiles obtained using the three phase field models are shown in
Figs. 1-3, respectively. In the simulations, the lighter fluid drop rises; the rising drop
pushes the fluid in the front aside and pushes the fluid downward on the side of the
fluid domain. The horizontal and the vertical velocity component are plotted in Figs. 1
and 2, respectively. The pressure around the drop remains low, which is shown in Fig. 3.
The drop shapes obtained using the three distinct models are contrasted at a selected time
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���

���

���

Figure 1: The horizontal velocity component in the case of a lighter drop immersed in a heavier fluid with
density ratio ρ1 :ρ2=1:50 at time t=0.6,1.2,1.8,2.4,3,3.6. (a) M1 (Model 1); (b) M2 (Model 2); (c) M3 (Model
3). Each figure is superimposed by the shape of the drop, i.e. the zero contour curve of the phase-field function
φ, at the corresponding time.

���

���

���

Figure 2: The vertical velocity component in the case of a lighter drop immersed in a heavier fluid with density
ratio ρ1 : ρ2 = 1 : 50 at t= 0.6,1.2,1.8,2.4,3,3.6. (a) M1, (b) M2, (c) M3. Each figure is superimposed by the
shape of the drop, i.e. the zero contour curve of the phase-field function φ, at the corresponding time.

t= 3.6 in Fig. 4 along with the deviations between the velocity components of each pair
of models. The predictions from model 1 and 2 are close relative to that from model 3.
The deviations in general fall into the range of O(10−2). The velocity field superimposed
by the drop profile is shown in Fig. 5, where a pair of vortices are shown explicitly.

We then repeat the simulation with a heavier fluid drop sediments in a lighter fluid.
The density ratio is reversed to ρ1 : ρ2 =50 : 1 and the viscosity ratio is reversed to 100 : 1.
The behavior described above for the rising drop reverses. This time, the predictions
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���

���

���

Figure 3: The pressure field in the case of a lighter drop immersed in a heavier fluid with density ratio ρ1 :ρ2=1:50
at t=0.6,1.2,1.8,2.4,3,3.6. (a) M1, (b) M2, (c) M3. Each figure is superimposed by the shape of the drop, i.e.
the zero contour curve of the phase-field function φ, at the corresponding time.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 4: The velocity difference between pairs of the phase field models investigated. (a) u(M1)−u(M2),
(b) u(M1)−u(M3), (c) u(M2)−u(M3), (d) v(M1)−v(M2), (e) v(M1)−v(M3), (f) v(M2)−v(M3), (g)
Comparisons of the zero contour curves of φ for all three models. The results are based on the solutions at
t=3.6.

between model 1 and model 2 and those between model 2 and model 3 are qualitatively
the same; model 3 predicts the fastest drop sedimentation among all three. To save space,
we suppress the demonstration of the numerical results pertinent to this simulation.
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(a) (b) (c)

Figure 5: The velocity field superimposed by the shape of the drop at t=3.6 for the three models. (a) M1, (b)
M2, (c) M3.

In summary, the model predictions in both drop rising and drop sedimentation agree
qualitatively. In these cases, the interfacial layer between the two immiscible fluids are
thin and the volume fraction of the fluid involved in the mixing/interfacial zone is small.
Consequently, the deviation among the model predictions are small. We anticipate this
scenario will change as the mixing/interfacial layer gets larger and the volume fraction
of the fluid involved in mixing becomes significant. We next examine an example of fluid
mixing/demixing where the mixing zone is significantly larger.

4.2 Phase separation dynamics of immiscible binary fluids

Figs. 6-9 depict the phase portrait of the mixture during phase separation and the cor-
responding velocity components as well as the pressure field at selected time. In Figure
6, the value of the volume fraction φ is plotted as a color map. The compressible mod-
els (model 2 and model 3) give well separated islands while the incompressible model
(model 1) predicts only slightly modified phase landscape. Figs. 7 and 8 supports this
with a much elevated velocity field in the compressible models than in the incompress-
ible model. Moreover, the flow pattern is drastically different between the predictions
obtained from different classes of models. Fig. 9 portraits the pressure field, which cor-
relates well with the phase portrait of the mixture given by the level sets of the volume
fraction φ. The difference between the two classes of models are significant in this numer-
ical example. The drastic difference between the model predictions is an amplification of
the difference in the fundamental physical mechanism on mass conservation in a much
larger mixing zone in contrast to the previous drop dynamics.

If these examples show the behavior of the transient solution, the next set of figures
(Figs. 10-13) portrait the solutions up to nearly quasi-static states. The phase behavior
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(a)(a)

(b)(b)

(c)( )

Figure 6: The phase portrait of the binary fluid mixing with the Flory-Huggins energy for all three models at
t=0.1,0.2,0.3,0.4,0.5. (a) M1, (b) M2, (c) M3.

(a)

(b)(b)

(c)

Figure 7: The velocity component u at t= 0.1,0.2,0.3,0.4,0.5 in the case of binary fluid mixing for all three
models. (a) M1, (b) M2, (c) M3.

(a)

(b)(b)

(c)

Figure 8: The velocity component v at t = 0.1,0.2,0.3,0.4,0.5 in the case of binary fluid mixing for all three
models. (a) M1, (b) M2, (c) M3.
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(a)

(b)

(c)

Figure 9: The hydrodynamic pressure p at t=0.1,0.2,0.3,0.4,0.5 in the case of binary fluid mixing for all three
models. (a) M1, (b) M2, (c) M3.

���

���

���

Figure 10: The phase portrait of the binary fluid mixing with the Flory-Huggins energy for all three models at
t=0.1,0.2,0.3,0.4,15. (a) M1, (b) M2, (c) M3.

���

���

���

Figure 11: The velocity component u at t= 0.1,0.2,0.3,0.4,15 in the case of binary fluid mixing for all three
models. (a) M1, (b) M2, (c) M3. The solutions nearly reach quasi-steady state at t=15.
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���
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Figure 12: The velocity component v at t= 0.1,0.2,0.3,0.4,15 in the case of binary fluid mixing for all three
models. (a) M1, (b) M2, (c) M3. The solutions nearly reach quasi-steady state at t=15.

���

���

���

Figure 13: The hydrodynamic pressure p at t=0.1,0.2,0.3,0.4,15 in the case of binary fluid mixing for all three
models. (a) M1, (b) M2, (c) M3. The solutions nearly reach quasi-steady state at t=15.

predicted by the incompressible model (Model 1) is distinct quantitatively from those by
the compressible models (Fig. 10). The prediction on the velocity field and the pressure
field made by the incompressible model and by the compressible ones are completely dif-
ferent. Whereas, the difference between the compressible model predictions is minimal.

If we were to impose the constraint on the conservation of the total volume of each
separate phase, the predictions from the compressible models should be more credible
since they also conserves the mass, which is fundamentally important.

5 Conclusion

A pair of phase field models that conserve mass, momentum and total volume for each
individual phase of immiscible binary fluid mixtures are formulated. In particular, unlike
previously proposed quasi-compressible models, model 2 satisfies an energy dissipation
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law. The mass-average velocity becomes non-solenoidal when the density ratio between
the two fluids is not unity. Consequentially, the new phase field theories are compressible
although a global volume conservation for each phase can be maintained over the entire
material volume. On the other hand, in the commonly used phase field model for binary
fluid mixtures, which we refer to as the incompressible model in this paper, the continuity
equation is approximated by a divergence free condition; the resulting theory preserves
material volume but not mass.

The deviation between the predictions by the compressible models and the incom-
pressible one depends on the size of the mixing zone. When the size of the mixing zone
is small compared to the entire fluid domain, both model predictions agree qualitatively.
However, when the mixing zone is large, the two classes of models describe two quite
different dynamics (in both the transient and quasi-steady state). One numerical example
on a drop dynamics of one fluid drop immersed in another immiscible fluid matrix and
the other on the phase separation of immiscible binary fluid mixtures are carried out to
illustrate this point. From the hydrodynamics point of view, it is apparent that the fun-
damental conservation laws of fluids must be obeyed. Therefore, the mass conservation
should be respected in any faithful simulations employing the phase field formulation
when the mixing zone is large. The predictions made by the two compressible mod-
els are consistent in the two numerical examples presented, and therefore are credible
regardless of the size of the mixing zone.
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