
Commun. Comput. Phys.
doi: 10.4208/cicp.351011.260112s

Vol. 13, No. 3, pp. 867-879
March 2013

Developing Extensible Lattice-Boltzmann Simulators for

General-Purpose Graphics-Processing Units

Stuart D. C. Walsh1,∗ and Martin O. Saar2

1 Lawrence Livermore National Laboratory, Livermore, California, USA.†
2 Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota, USA.

Received 31 October 2011; Accepted (in revised version) 26 January 2012

Available online 29 August 2012

Abstract. Lattice-Boltzmann methods are versatile numerical modeling techniques ca-
pable of reproducing a wide variety of fluid-mechanical behavior. These methods are
well suited to parallel implementation, particularly on the single-instruction multiple
data (SIMD) parallel processing environments found in computer graphics processing
units (GPUs).
Although recent programming tools dramatically improve the ease with which GPU-
based applications can be written, the programming environment still lacks the flexi-
bility available to more traditional CPU programs. In particular, it may be difficult to
develop modular and extensible programs that require variable on-device functional-
ity with current GPU architectures.
This paper describes a process of automatic code generation that overcomes these dif-
ficulties for lattice-Boltzmann simulations. It details the development of GPU-based
modules for an extensible lattice-Boltzmann simulation package – LBHydra. The per-
formance of the automatically generated code is compared to equivalent purpose writ-
ten codes for both single-phase, multiphase, and multicomponent flows. The flexibility
of the new method is demonstrated by simulating a rising, dissolving droplet moving
through a porous medium with user generated lattice-Boltzmann models and subrou-
tines.

PACS: 47.11.-j, 07.05.Bx

Key words: Lattice-Boltzmann methods, graphics processing units, computational fluid dynam-
ics.

1 Introduction

Lattice-Boltzmann simulations are a “bottom-up” numerical method capable of modeling
a variety of complex fluid mechanical problems (for example, complex boundary condi-

∗Corresponding author. Email addresses: walsh24@llnl.gov (S. D. C. Walsh), saar@umn.edu (M. O. Saar)
†This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344.

http://www.global-sci.com/ 867 c©2013 Global-Science Press



868 S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879

tions, immiscible fluids, and heat and solute transport) that are difficult or impossible to
handle with other modeling methods [1–3]‡. Their versatility and relative ease of imple-
mentation makes lattice-Boltzmann methods particularly attractive for a wide range of
applications in both science and engineering [2–4].

In addition, lattice-Boltzmann methods are readily parallelizable and are particularly
suited to implementation on single-instruction multiple data (SIMD) parallel processing
environments. In recent years, substantial performance increases have been achieved
with lattice-Boltzmann methods by exploiting the SIMD environment in modern com-
puter graphics processing units (GPUs) [5–8]. Possibly the first such model proposed
by Li et al. [9] in the early 2000’s achieved an impressive 50× speedup over single core
implementations at the time with 9.87 million lattice-node updates per second (MLUPs).
Early on, significant drawbacks in the GPU programming model (reduced precision and
the requirement that the algorithm be cast in terms of graphics operations), hindered the
programmer’s ability to develop more complex lattice-Boltzmann models, such as mul-
tiphase and multicomponent fluid flow simulations, and presented a significant barrier
to widespread use of GPU-based programs [10]. In the years since, however, these bar-
riers have been largely removed with the release of several general purpose GPU-based
programming tools, such as BrookGPU [11], the ATI CTM platform [12], the Compute
Unified Device Architecture (CUDA) programming model released by NVIDIA [13], and
the closely related cross-platform OpenCL standard [14]. In this paper we use NVIDIA’s
CUDA – a C-like language for general purpose graphics card programming [13]. CUDA
provides new functionality that distinguishes it from the early GPU programming mod-
els (e.g. random access byte-addressable memory and support for coordination and
communication among processes through thread synchronization and shared memory),
thereby allowing more efficient processing of complex data dependencies. CUDA also
supports single and double precision, and IEEE-compliant arithmetic [13]. In addition,
higher-level libraries have been created to simplify CUDA code development, such as the
Thrust library, a collection of parallel algorithms modeled on the C++ Standard Template
Library [15]. These advances have extended the applicability of GPU computation to a
much broader range of computational problems in science and engineering [8].

Nevertheless, while these new GPU programming tools dramatically improve on ear-
lier generations, GPU implementations continue to lack some of the flexibility of CPU
based programs. In part this lack of flexibility arises from differences in GPU and CPU ar-
chitectures. Increased GPU performance is achieved by distributing computational tasks
across several multiprocessors. Together these multiprocessors are able to achieve sub-
stantial processing throughput, however, the individual GPU processing threads lack the
performance, independence and resources (e.g. registers) found in their CPU counter-
parts. These hardware differences restrict the complexity of the operations available to

‡In contrast with traditional “top-down” numerical methods where the material behavior is modeled di-
rectly, lattice-Boltzmann methods may be viewed as “bottom-up” numerical methods in which the behav-
ior emerges from underlying smaller-scale processes – namely the interactions of discrete analogues to the
single-body particle distribution functions described by the classical Boltzmann equation.



S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879 869

the more “lightweight” or simpler GPU threads. In addition, because the multiprocessors
operate most efficiently when their constituent processing threads act in concert, condi-
tional statements can severely adversely affect code performance. Finally, while CUDA
and other programming platforms support object-oriented programming on the CPU
host, object-oriented features such as inheritance and function pointers are not supported
within GPU kernels (discussed in greater detail in Section 2). A direct consequence of
these restrictions is that, under the GPU programming model, it may be difficult to de-
velop modular and extensible programs with variable on-device functionality.

This paper describes a process of automatic code generation to circumvent these diffi-
culties for lattice-Boltzmann methods. It details the development of GPU-based modules
for LBHydra (www.lbhydra.umn.edu), an extensible lattice-Boltzmann simulation pack-
age capable of modeling a wide array of fluid mechanical behavior. Section 2 discusses
lattice-Boltzmann simulations and the automatic code generation process used to add
GPU capabilities to LBHydra. In Section 3, we compare the performance of the auto-
matically created code with purpose written codes specifically developed for particular
applications as described in previous publications [7, 16]. The flexibility of the method
is also demonstrated by employing user generated models to simulate the dissolution of
CO2 droplets in a porous medium. Conclusions are summarized in Section 4.

2 A GPU module for lattice-Boltzmann methods

In this section, we describe how the LBHydra lattice-Boltzmann simulation package has
been extended to include GPU based models. LBHydra offers numerous areas for user in-
put and modification, including user-defined material models, lattice-types, and subrou-
tines. It has been employed in simulations of multiple-phase and multiple-component
fluids, heat and solute transport, dissolution, dispersion, and detailed pore-scale and
macroscopic scale simulations [16–20]. The GPU-based module described in this paper
allows the user to retain much of the flexibility of the main LBHydra program, while
accelerating the simulations with CUDA-compliant NVIDIA graphics processing units.

Lattice-Boltzmann methods represent fluid mechanical behavior via a collection of
fluid packets – discrete analogues to the particle density distribution functions in the
classical Boltzmann equation [21]. The fluid packets move about the lattice with fixed
velocities, with positions that are updated in discrete time steps. Each fluid packet has
an associated density represented by a real number. Through a series of collision and
streaming steps, summarized by the following equation, the density distribution is re-
laxed towards a local equilibrium determined from the macroscopic properties of the
fluid at the node:

fi(x+ci∆t,t+∆t)=(1−λ) fi(x,t)+λ f
eq
i (x,t)+Fi(x,t), (2.1)

where f
eq
i is the equilibrium fluid packet density along lattice direction i, λ is the col-

lision frequency, ci is the lattice velocity (Table 2), and Fi represents additional forcing



870 S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879

or source/sink terms. The right of Eq. (2.1) is the collision step – the relaxation of the
fluid packet densities toward the equilibrium densities, while the left side of the equa-
tion represents the streaming step – the propagation of the fluid packets to neighboring
nodes in the lattice. The popular D3Q19 (three-dimensional, 19-velocity) lattice is dis-
cussed in this paper [22], although the same equation is also applicable to other lattice
types. In addition, for the sake of simplicity this paper concentrates on single-relaxation
lattice-Boltzmann models, in which the collision frequency λ is a scalar, although the ap-
proach presented is equally valid for GPU implementations of multiple relaxation lattice-
Boltzmann models (e.g. [5, 6]).

The expression for the equilibrium fluid packet densities, f
eq
i , depends on the consti-

tutive behavior of the fluid being modeled and the type of lattice employed. For example,
to simulate the Navier Stokes equations using the D3Q19 lattice, the equilibrium packet
densities, f

eq
i , are a function of the net fluid-packet density, ρ=∑i fi, and the net velocity

of the fluid packets, u=∑i fici/ρ:

f
eq
i =ρωi

[

1+3u·ci (1+3u·ci/2)−3u·u/2
]

, (2.2)

where ωi are lattice weights (Table 2). Different boundary conditions and constitutive
behaviors are invoked by modifying the collision step. Typically, several different colli-
sion rules are required in a simulation, with the simulation geometry dictating how rules
are distributed across nodes. If the definition for f

eq
i in Eq. (2.2) is adopted, the terms

on the right of Eq. (2.1) are local to individual nodes. However, in more complex lattice-
Boltzmann methods (e.g. multiple-phase and multiple-component methods [24, 25]), the
equilibrium density distribution f

eq
i , the forcing terms Fi, and even the collision frequency

λ, may be functions of additional state (or internal) variables – properties of the node and
its neighbors.

Nevertheless, the relative simplicity of the fluid-packet interactions and the strong
locality of the method, make lattice-Boltzmann models excellent candidates for parallel
implementation on the SIMD environments found in GPUs, as they permit large numbers
of lightweight processing threads to act simultaneously.

NVIDIA’s CUDA programming environment provides a set of minimal extensions to
the C programming language that enables programs to direct the large-numbers of GPU
threads efficiently. The CUDA programming environment organizes individual GPU
kernels into groups of threads or “thread blocks”, themselves arranged into an array
or “block grid” [13]. These thread blocks are additionally segmented on a multiprocessor
at execution time into contiguous 32-thread groups known as “warps.” Each kernel call
specifies the number and arrangement of thread blocks (i.e. regular arrays of one or two
dimensions) to be executed, as well as the number and arrangement of threads within
each block (in one, two, or three dimensional arrays). While there are relatively few re-
strictions on the dimensions of the block grid, the dimensions of the individual thread
blocks and the number of blocks that can be executed simultaneously are strongly in-
fluenced by underlying hardware constraints (Table 1). Instructions exist to synchronize
execution of threads within each block, and inter-thread communication is supported



S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879 871

Table 1: Maximum thread block and block grid dimensions for the Tesla C1060 GPU.

Thread Block

Maximum number of Threads per Block 512

Maximum X and Y Dimension 512

Maximum Z Dimension 64

Block Grid

Maximum X and Y Dimension 65535

Maximum Z Dimension 1

Table 2: Lattice velocities, ci, and respective weights, ωi, for D3Q19 lattices. Curly braces, {}, indicate lattice
velocities comprising the distinct permutations terms within the braces.

ci (∆x/∆t) ωi

(0,0,0) 1/3

{0,0,±1} 1/18

{0,±1,±1} 1/36

within blocks through shared memory (Fig. 1). Communication between separate blocks
is more difficult as the order in which individual blocks are executed is not predeter-
mined.

CPU

Host
Memory

GPU

Global Memory

Shared
Memory

Host Code Kernel

Block 1

Block 2

Block X

Thread 1

Thread 2

Thread Y

Figure 1: GPU kernel execution is based on groups of threads known as thread blocks. Inter-thread communi-
cation is made possible through shared memory, accessible to all threads within the same block. In addition,
threads have access to the GPU’s global memory, a larger data storage space which is available on the device,
distinct from the CPU host’s memory.

The different types of memory dictate the basic pattern of implementation of lattice-
Boltzmann methods on the GPU. To maximize the relative amount of time spent on GPU
computation and reduce data transfer, we adopt a decelerator model [23], in which cal-
culation is confined to the GPU devices and the CPU host is reserved for subsidiary tasks
such as data initialization, data transfer between devices, and data output. In addition,



872 S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879

because CPU and GPU tasks are separated under the decelerator model, multiple-GPU
versions of the code (either with single or multiple CPUs) can be implemented with rela-
tive ease, and communication time can be reduced by using asynchronous operations on
the CPU and GPU.

After the fluid packet data is transferred from the CPU to the GPU, the thread blocks
iterate over the lattice with each thread acting on distinct nodes. The threads copy the
fluid packet data associated with the node from the global memory of the GPU to the
thread registers, where the collision step is performed, after which the updated fluid
packet densities are written back to the global memory. The streaming step is either
conducted explicitly in this process (by moving the fluid packet data to different locations
in the GPU’s global memory) or implicitly (by storing the fluid packets in fixed locations
and altering the manner in which fluid packets are read from local to global memory) [7,
16].

A particular feature of the GPU architecture is the high cost of data transfer between
global memory and thread registers – a result of the slow rate of transfer and the over-
head required to access global memory. The overhead is reduced in part with so-called
“coalesced” reads and writes from global memory, in which the threads act on contigu-
ous blocks of memory. Nevertheless, the slower memory access means that such memory
operations should be kept to a minimum to achieve good performance.

Rather than invoke separate GPU kernels for each collision rule, the fluid packets at
each node are copied into the thread registers and different node types are distinguished
by a conditional statement within a single kernel to reduce the number of global mem-
ory operations. The presence of the conditional statement results in so-called “divergent
warps”. Divergent warps occur when threads within a warp (a group of 32 threads exe-
cuted simultaneously by the GPU) follow separate execution paths. This reduces perfor-
mance as the conditional branches in these divergent warps are executed in series. How-
ever, this is not a significant concern for lattice-Boltzmann simulations: it is uncommon
that more than two different collision rules are applied within a warp, and often only
one rule will be encountered. More importantly, increasing the number of collision rules
within a kernel increases register pressure, as the most complex collision rule dictates
the number of registers required, and hence the number of warps that can be executed
simultaneously. Thus for good performance it is important the number of collision rules
within the kernel be kept to a minimum.

A drawback of this approach is that it does not readily lend itself to extensible applica-
tions that permit user-defined lattice-Boltzmann models. Although CUDA fully supports
the C++ programming language for host (CPU) code, only a subset of C++ is supported
on the GPU [13]. Specifically, CUDA provides GPU support for polymorphism, default
parameters, operator overloading, namespaces, function templates and classes. How-
ever, function pointers and virtual class functions are not currently supported for the
GPU. This prevents, for example, inheritance and upcasting within GPU kernels. These
restrictions also apply to higher-level programming tools based on CUDA, such as the
Thrust library.



S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879 873

Preprocessor 1

LB-GPU
Parser/Compiler

3

Simulation
Input

2

LB-GPU
Library

4 LBHydra 5
Simulation

Output

Figure 2: LBHydra GPU simulation pipeline. The preprocessor generates an input file (1) which is first read
(2) by the Parser/Compiler to generate (3) a dynamic library linked to the main LBHydra program. The input
file is then read (4) by LBHydra which uses the newly-created library to run the GPU simulation (5).

To overcome these limitations, the GPU module for LBHydra introduces a
parser/compiler step into the simulation pipeline (Fig. 2). The parser is an object-
oriented Python code containing objects representing the collision rules and state vari-
ables. Collision rule objects record the physical properties of the component (e.g. fluid
viscosity) and the state variables the method requires, and contain routines to generate
the CUDA code for the collision rule. The parser reads the simulation’s input files and
determines the minimal set of collision rules and state variables. This ensures that state
variables are not duplicated and reduces register pressure by eliminating unnecessary
conditionals. The parser then generates CUDA kernels to calculate both the state vari-
ables and collision rules, and control communication between CPU and GPU. From this
information, the compiler creates a customized library, dynamically linked to the LBHy-
dra application, that enables the simulation to run on the GPU. Pseudo-code outlining
the code generated by the LBHydra GPU module is given in Appendix A.

The parser and compiler steps reintroduce some of the missing C++ functionality, be-
cause they are implemented on the CPU. This includes the ability to extend the parser and
compiler with dynamic libraries to introduce user-defined collision rules and state vari-
ables. The parser also allows additional user-defined subroutines and CUDA kernels to
control data initialization and functions to query and modify the simulation within each
time step. Separating the GPU-specific functions from the lattice-Boltzmann simulation
in this way enhances code reuse, and lets the user concentrate on the lattice-Boltzmann
simulation, rather than the details of the underlying CUDA implementation. This lat-
ter point is particularly important given the rate at which GPU architectures have been
developing and the impact that subsequent changes to coalesced memory operations,
the relative amounts of GPU memory, and other hardware changes have on the overall
simulation performance.

3 Results and discussion

The performance of LBHydra’s automatically generated code is compared to that of
hand-written single-purpose codes from our previous publications [7,16] in Table 4 for a



874 S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879

Table 3: GPU Specifications.

Device Tesla C1060

Clock 1.296 GHz

Global Memory 4096 MiB

Mem. Clock 1600 MHz

Bus Width 512 bits

Processing Elements 240

Table 4: Comparison between peak performances obtained with LBHydra’s automatically generated code and
equivalent purpose written codes on a single GPU. Speeds are measured in Millions of Lattice-node Updates
Per second (MLUPs). Lattice dimensions: 160×160×160.

Model GPU codes Difference

Single-purpose Generated by LBHydra

Single phase 444 MLUPs 436 MLUPs -1.8%

Multiphase 218 MLUPs 219 MLUPs +0.4%

Multicomponent 218 MLUPs 198 MLUPs -10.1%

Table 5: Performances of single-phase LBHydra simulations for multiple GPUs on a single CPU. Problem size
is scaled with the number of processors. Speeds are measured in Millions of Lattice-node Updates Per second
(MLUPs).

GPUs Lattice-Size GPU codes Difference

Single-purpose Generated by LBHydra

1 160x160x160 444 MLUPs 436 MLUPs -1.8%

2 160x160x320 494 MLUPs 556 MLUPs +11.1%

3 160x160x480 714 MLUPs 827 MLUPs +13.7%

4 160x160x640 938 MLUPs 1067 MLUPs +12.1%

single GPU and in Table 5 for multiple GPUs. The programs are tested on NVIDIA Tesla
C1060 GPUs of compute capacity 1.3 (complete GPU specification found in Table 3). The
host code is compiled using the GNU g++ compiler 4.3.3 with the compiler flag “-O3”
for compiler optimizations and the CUDA kernel code using NVIDIA compiler NVCC
release 2.3, V0.2.1221 with the compiler flag “–use fast math.”

The overhead due to the parser and compiler is minimal (less than a minute) com-
pared to the time required to run a typical simulation (which may be several hours or
more depending on the application). In addition, the parser and compiler step is not re-
quired every time – the same dynamic library can be used in multiple simulations that
employ the same combination of lattice-Boltzmann methods. This latter feature is partic-
ularly useful, for example, when conducting parameter space analysis and optimization
studies.

However, there is some loss of performance in the automatically generated code for
certain applications. To demonstrate this, three different simulations are considered: a



S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879 875

single-phase pressure driven flow; a multiphase simulation of phase separation; and a
multicomponent simulation of two immiscible fluids. The multiphase and multicom-
ponent lattice-Boltzmann simulations are based on well-known models by Shan and
Chen [24], and He and Doolen [25]. These models introduce an interaction potential to
each node that is a function of either the fluid density (in single-component multiphase
simulations) or the component concentration (in multicomponent simulations). The au-
tomatically generated code’s speed is roughly equivalent to our previous implementa-
tions for both the single-phase and multiple-phase lattice-Boltzmann methods. How-
ever, the multiple-component simulation is slower than the equivalent purpose written
code. In the later case, the automatically generated code makes less efficient use of shared
memory and global memory operations, as we have chosen to isolate state variable cal-
culations per-component. This choice was adopted to reduce register pressure in simu-
lations with many state variables per node, rather than a few state variables calculated
across multiple components. Nevertheless, the loss of performance is not very large –
approximately 10% in this example. Due to changes in the GPU-CPU communication
subroutine, the automatically generated code outperforms our previous purpose written
code [16] when implemented on multiple GPUs (Table 5). However, the increase in per-
formance is similar in both cases. Due to the additional communication overhead at each
timestep, the codes’ performances show only marginal improvement when increasing
from one to two GPUs, but then scale approximately linearly as the number of GPUs is
increased.

It should also be noted that, the problem of optimizing GPU codes is highly non-
linear, and subtle changes in the calculation may adversely impact the code’s perfor-
mance [26]. No effort is currently made to optimize the code’s performance for specific
models or GPU architectures in the parser/compiler step. However, it may be possi-
ble in the future to combine the present approach with an optimization algorithm (e.g.
[16, 26–28]).

In Fig. 3, the GPU module for LBHydra is used to simulate the dissolution of a rising
droplet of carbon dioxide into ambient water within a porous medium. The simulation
combines models representing the two immiscible fluids with a third component rep-
resenting the dissolved concentration of carbon-dioxide. A detailed description of the
lattice-Boltzmann methods used in this simulation is provided in Walsh and Saar [19].
Briefly stated, in this model, particular care is taken to ensure that the correct bound-
ary conditions are applied at the moving surface of the droplet. To achieve this, a more
complex two component model [29] is employed in place of the multiphase models de-
scribed earlier to reduce “parasitic” or “spurious” interface velocities [30, 31]. The first-
order boundary condition at the droplet surface is imposed at lattice-edges rather than at
the nodes themselves [19]. This boundary condition is enforced in a separate calculation
step, after the collision step has been applied to each node. To demonstrate the flexibility
of the method, the simulation is implemented with user-defined lattice-Boltzmann meth-
ods, rather than the native methods supplied with the code, and employs user-generated
functions to control the boundary condition.



876 S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879

a) b) c)

Figure 3: LBHydra’s GPU module models a buoyant droplet of CO2 dissolving in ambient water within a
regular array of spheres. Contour surfaces indicate concentrations of dissolved CO2 between 5% and 95% of
the saturation concentration. The innermost contour denotes the surface of the pure CO2 droplet. Lattice
dimensions: 100×100×300.

4 Conclusion

Lattice-Boltzmann methods are versatile fluid mechanical modeling techniques, well
suited to parallel implementation on Graphics Processing Units (GPUs). While recent ad-
vances in GPU programming environments and architectures have improved the process
of developing GPU programs, these tools currently lack the full functionality of their CPU
equivalents. In particular, the absence of function pointers and true class inheritance on
the GPU, can make writing flexible and extensible codes difficult while simultaneously
maintaining high performance.

This paper discussed a means for lattice-Boltzmann simulations to avoid these limita-
tions by automatically generating the code required for specific simulations. This process
overcomes the lack of function pointers and inheritance on the GPU by generating a min-
imal library of collision rules based on the simulation’s input files. In certain cases, the
current approach does not make as efficient use of shared memory as codes that have
been purpose written for specific applications. Nevertheless, the resultant reduction in
performance is not extreme (approximately 10% or less for the codes considered here),
and may be further mitigated in the future with the introduction of automatic code op-
timization routines. The automatically generated code is particularly flexible, allowing
the addition of user defined models and subroutines. This feature was demonstrated by
using the method to implement a complex simulation of dissolution from a rising droplet
in a porous medium. By separating the lattice-Boltzmann methods from the CUDA im-
plementation, the approach presented here allows the user to concentrate on the details
of the lattice-Boltzmann simulation rather than the vagaries of the GPU programming
environment.



S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879 877

Acknowledgments

MOS thanks the George and Orpha Gibson endowment for its generous support of the
Hydrogeology and Geofluids research group. In addition, this material is based upon
support by the National Science Foundation (NSF) under Grant No. DMS-0724560, Grant
No. EAR-0838541, and Grant No. EAR-0941666, and the Department of Energy (DOE)
under Grant No. DE-EE0002764. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily reflect
the views of the NSF or the DOE. We would also like to thank both anonymous reviewers
for their helpful comments.

This manuscript was approved for release by LLNL with release number LLNL-
CONF-521460. This document was prepared as an account of work sponsored by an
agency of the United States government. Neither the United States government nor
Lawrence Livermore National Security, LLC, nor any of their employees makes any war-
ranty, expressed or implied, or assumes any legal liability or responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, rec-
ommendation, or favoring by the United States government or Lawrence Livermore Na-
tional Security, LLC. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

A Pseudo-code for the LBHydra GPU module

The following pseudo-code outlines the principle steps in an automatically generated
LBHydra program. We include directives generated for the OpenMP version of the code,
which is designed for systems with multiple GPUs on a single CPU. The MPI version
for clusters of multiple CPUs and GPUs contains additional subroutines to copy data
between CPUs in Steps (3.3.1.ii) and (3.3.1.v).

1. Allocate memory on CPU for GPU-GPU transfer.

2. Create one thread per GPU: #pragma omp parallel num_threads(numGPUs)

3. Within the #pragma omp parallel num_threads(numGPUs) directive:

3.1. Assign thread to GPU: cudaSetDevice(th_id);

3.2. Copy initial conditions and problem geometry from CPU to GPU

3.3. for(ts = 0; ts < maxTimesteps; ts += outputFrequency):

3.3.1. for(t = 0; t < outputFrequency; t++):

State variables:



878 S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879

i. Calculate state variables for outer nodes

ii. Copy outer boundary state variables from GPU to CPU
Copy neighboring state variables from CPU to GPU

iii. Calculate state variable values (simultaneous with ii) on the GPU.

Collision and streaming:

iv. Perform fi streaming/collision steps for outer nodes

v. Copy outgoing outer boundary fi from GPU to CPU
Copy incoming outer boundary fi from CPU to GPU

vi. Perform inner fi streaming/collision (simultaneous with v) on the GPU.

3.3.2. Rearrange fi so location in memory is the spatial position.

3.3.3. Copy fi data from GPU to CPU and save result to file.

3.4. Free GPU memory

4. Free CPU memory. End.

References

[1] S. Chen, G. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech 30 (1)
(1998) 329–364.

[2] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford Univ.
Press, Oxford, 2001.

[3] C. K. Aidun, J. R. Clausen, Lattice-Boltzmann method for complex flows, Annual Review of
Fluid Mechanics 42 (1) (2010) 439–472.

[4] M. Sukop, D. Thorne, Lattice Boltzmann Modeling: An introduction for geoscientists and
engineers, Springer, Heidelberg, Berlin, New York, 2006.

[5] J. Tölke, M. Krafczyk, Teraflop computing on a desktop PC with GPUs for 3D CFD, Interna-
tional Journal of Computational Fluid Dynamics 22 (2008) 443–456.

[6] J. Tölke, Implementation of a Lattice Boltzmann kernel using the Compute Unified Device
Architecture developed by nVIDIA, Computing and Visualisation in Science (2008) 11 pages.

[7] P. Bailey, J. Myre, S. D. C. Walsh, M. O. Saar, D. J. Lilja, Accelerating lattice Boltzmann fluid
flow simulations using graphics processors, International Conference on Parallel Processing:
Vienna, Austria (ICPP 2009).

[8] S. D. C. Walsh, M. O. Saar, P. Bailey, D. J. Lilja, Accelerating Geoscience and Engineering
System Simulations on Graphics Hardware, Computers and Geosciences 35 (12) (2009) 2353–
2364.

[9] W. Li, X. Wei, A. Kaufman, Implementing lattice Boltzmann computation on graphics hard-
ware. The Visual Computer 2003; 19:444–456.

[10] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kr uger, A. E. Lefohn, T. J. Purcell. A
survey of general-purpose computation on graphics hardware. Computer Graphics Forum
2007; 26(1):p80 – 113.

[11] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, P. Hanrahan, Brook for
GPUs: stream computing on graphics hardware. SIGGRAPH ’04: ACM SIGGRAPH 2004
Papers, ACM: New York, NY, USA, 2004; 777–786.

[12] AMD. ATI CTM Guide: Technical Reference Manual. AMD, 1.01 edn. 2006.
[13] NVIDIA CUDA C Programming Guide 3.3.1, nVIDIA, (2010).



S. D. C. Walsh and M. O. Saar / Commun. Comput. Phys., 13 (2013), pp. 867-879 879

[14] Khronos OpenCL Working Group. The OpenCL specification version 1.0. Technical Report
2009.

[15] N. Bell, J. Hoberok, Thrust: A Productivity-Oriented Library for CUDA, in GPU Computing
Gems, Jade Edition, Edited by Wen-mei W. Hwu, 2011: pp. 359–371.

[16] J. Myre, S. D. C. Walsh, D. Lilja, M. O. Saar, Performance analysis of single-phase, multi-
phase, and multicomponent lattice-Boltzmann fluid flow simulations on GPU clusters, Con-
currency Computat.: Pract. Exper., 23 (4) (2011) 332–350.

[17] S. D. C. Walsh, M. O. Saar, Macroscale lattice-Boltzmann methods for low-Peclet-number
solute and heat transport in heterogeneous porous media., Water Resour. Res. 46 (2010)
W07517.

[18] M. A. Davis, S. D. C. Walsh, M. O. Saar, Statistically reconstructing continuous isotropic and
anisotropic two-phase media while preserving macroscopic material properties, Phys. Rev.
E 83 (2011) 026706.

[19] S. D. C. Walsh, M. O. Saar, Interpolated lattice boltzmann boundary conditions for surface
reaction kinetics, Phys. Rev. E 82 (6) (2010) 066703.

[20] S. D. C. Walsh, H. Burwinkle, M. O. Saar, A new partial-bounceback lattice-Boltzmann
method for fluid flow through heterogeneous media, Computers and Geoscience 35 (6)
(2009) 1186–1193.

[21] L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen [Further
studies on the heat equilibrium of gas molecules], Wiener Berichte 66 (1872) 275370.

[22] Y. H. Qian, D. D’Humières, P. Lallemand, Lattice BGK models for Navier-Stokes equation,
Europhys. Lett. 17 (6) (1992) 479–484.

[23] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, J. C. Sancho, Entering
the petaflop era: the architecture and performance of roadrunner. Proceedings of the 2008
ACM/IEEE conference on Supercomputing, IEEE Press: Piscataway, NJ, USA, 2008; 1–11.

[24] X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and
components, Phys. Rev. E 47 (3) (1993) 1815–1819.

[25] X. He, G. D. Doolen, Thermodynamic foundations of kinetic theory and lattice Boltzmann
models for multiphase flows, Journal of Statistical Physics 107 (1) (2002) 309–328.

[26] S. Ryoo, C. I. Rodrigues, S. S. Stone, S.-Z. U. Sara S. Baghsorkhi, J. A. Stratton, W. mei
W. Hwu, Program optimization space pruning for a multithreaded GPU, in: Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, IEEE Press, Piscataway, NJ, USA,
2008, pp. 1–11.

[27] B. Jang, S. Do, H. Pien, D. Kaeli, Architecture-aware optimization targeting multithreaded
stream computing, in: GPGPU-2: Proceedings of 2nd Workshop on General Purpose Pro-
cessing on Graphics Processing Units, ACM, New York, NY, USA, 2009, pp. 62–70.

[28] E. Z. Zhang, Y. Jiang, Z. Guo, X. Shen, Streamlining gpu applications on the fly: thread
divergence elimination through runtime thread-data remapping, in: Proceedings of the 24th
ACM International Conference on Supercomputing, ICS ’10, ACM, New York, NY, USA,
2010, pp. 115–126.

[29] L. Wu, M. Tsutahara, L. Kim, M. Ha, Three-dimensional lattice boltzmann simulations of
droplet formation in a cross-junction microchannel, Int. J. Multiphas. Flow 34 (9) (2008) 852
– 864.

[30] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow,
Annu. Rev. Fluid Mech 31 (1) (1999) 567–603.

[31] A. J. Wagner, The Origin of Spurious Velocities in Lattice Boltzmann, Int. J. Modern Phys. B
17 (2003) 193–196.


