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Abstract. We formulate a one-dimensional time-dependent non-linear mathematical
model for some types of physiological fluid flow in collapsible tubes with discontin-
uous material properties. The resulting 6×6 hyperbolic system is analysed and the
associated Riemann problem is solved exactly. Although the solution algorithm deals
with idealised cases, it is nonetheless uniquely well-suited for assessing the perfor-
mance of numerical methods intended for simulating more general situations. More-
over, our model may be a useful starting point for numerical calculations of realistic
flows involving rapid and discontinuous material property variations. One important
example in mind is the simulation of blood flow in medium-to-large veins in humans.
Finally, we also discuss some peculiarities of the model regarding the loss of strict hy-
perbolicity and uniqueness. In particular we show an example in which the solution
of the Riemann problem is non unique.

AMS subject classifications: 76Z05
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1 Introduction

The theoretical study of flow phenomena in humans through mathematical models is
closely related to the study of flow of an incompressible liquid in thin-walled collapsible
tubes. In fact the applicability of theoretical models for thin-walled collapsible tubes
covers a wider variety of physiological phenomena as well the design of clinical devises
for practical medical applications. Fluid flow through compliant tubes is usually used
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to represent physiological flows such as blood flow in arteries and veins, air flow in the
airways and urine flow in the ureter. In this paper we are interested in theoretical models
for determining flow patterns and the geometry of the tube by the interaction between the
flexible wall of the tube and internal flow. We centre our attention on one-dimensional,
time-dependent non-linear models. Classical works on this subject are, for example, [21],
[28], and the many references therein. For more recent works see [2, 7, 10, 12, 13, 29, 31].

This paper is motivated by physical situations of medical interest in which certain
properties that characterize compliant vessels, external pressures and body forces change
rapidly, or even discontinuously. Physical quantities of interest are vessel wall thickness,
equilibrium cross sectional area and Young’s modulus. Prominent examples arise in the
surgical treatment of Abdominal Aortic Aneurysms [35] that includes the insertion of
stents. Stents are also implanted in veins [1] and in the ureter [6] in different circum-
stances. These devises do not always match the compliance properties of natural vessels
and discontinuous jumps of physical properties may arise, influencing significantly the
wave propagation phenomena associated with the fluid dynamics. External pressures
and body forces are another source of potentially rapid or even discontinuous variations,
which again will influence the wave phenomenon [21]. Here we formulate a mathemat-
ical model that allows for the discontinuous variations of certain vessel properties, all
in the context of simplified one-dimensional flow. In spite of the very strong assump-
tions, we still expect the one-dimensional model to provide by itself useful information
for practical purposes. Moreover, one-dimensional models are an integral part of large
models in multiscale approaches [29] and thus the present work may also be useful in the
construction of more realistic models.

In current models used for numerical simulation of blood flow phenomena the effect
of the variation of the above mentioned quantities enters the equations in the form of
source terms; see [31], for example. In particular, for external forces such as muscle forces,
the corresponding source term involves a pressure gradient source term, analogous to
the geometric source term given by bottom variation in shallow water models [32]. In
the numerical analysis literature it is well known that such source terms are likely to
cause serious numerical difficulties. An important issue is the construction well balanced
schemes that achieve equilibrium between advective and source terms in the equations
near the steady state [18, 23, 27]. The severity of the numerical difficulties increases as
spatial gradients of the physical quantities of interest increase.

In this paper we formulate and study a simplified model in which discontinuities
of three parameters are permitted, namely wall thickness, Young’s modulus and cross
sectional area at rest. Moreover we add two extra equations, one for the time variation
of the external pressure pe and one for the transport of a passive scalar. We study the
mathematical properties of the resulting 6×6 hyperbolic system and obtain the exact so-
lution of the associated Riemann problem. Exact solutions constitute reference solutions
for assessing the performance of numerical methods intended for general use. Some pre-
liminary results, obtained using a simpler model with one extra equation, have already
been published [34]. Potentially, the proposed formulation would facilitate the numeri-
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cal treatment of source terms due to spatial variation of material properties and external
forces. There are, however, two major difficulties with our formulation, namely the po-
tential occurrence of resonance [19,24] and the loss of uniqueness, see [4]. These issues are
currently the subject of further studies by the authors and collaborators; results will be
published elsewhere.

In summary, this paper presents a mathematical model for blood flow in medium to
large arteries and veins in which rapid or even discontinuous variations of vessel proper-
ties are permitted. Exact solutions of the equations are presented for special cases, which
may turn to be useful for assessing numerical solutions to the more general initial bound-
ary value problem. Both the model and the solution to the Riemann problem presented
constitute a building block for realistic computations of practical value, which will be the
subject of future communications.

The rest of the paper is structured as follows. In Section 2 we review the governing
equations and the tube law to be used. In Section 3 we introduce and study a 6×6 hy-
perbolic model with discontinuous property variations. In Section 4 we formulate and
solve exactly the Riemann problem. In Section 5 we show sample exact solutions. In Sec-
tion 6 we discuss the problem related to non-uniqueness and show one example where it
occurs. Conclusions are drawn in Section 7.

2 Mathematical model

Consider the geometric situation described in Fig. 1, which depicts a model for a blood
vessel. The mathematical model will assume one-dimensional flow in the axial direction
x.

Figure 1: Assumed axially symmetric vessel configuration in three space dimensions at time t. Cross sectional
area A(x,t) and wall thickness h0(x) are illustrated.

2.1 Basic relations and quantities

The basic equations for the flow of blood in medium-size to large arteries and veins are
obtained from the principles of conservation of mass

∂t A+∂x(uA)=0 (2.1)
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and momentum

∂t(uA)+∂x(α̂Au2)+
A

ρ
∂x p=−Ru. (2.2)

A(x,t) is the cross-sectional area of the vessel or tube at position x and time t, u(x,t) is the
averaged velocity of blood at a cross section, p(x,t) is pressure, ρ is the density of blood,
assumed constant, and R> 0 is the viscous resistance of the flow per unit length of the
tube, assumed to be a known function. We assume α̂=1 in the momentum equation (2.2).

There are two governing partial differential equations (2.1)-(2.2), and three unknowns,
namely A(x,t), u(x,t) and p(x,t). An extra relation is required to close the system. This
is provided by the tube law, which relates the pressure p(x,t) to the wall displacement via
the cross-sectional area A(x,t). The tube law couples the elastic properties of the vessel
to the fluid dynamics and is analogous to the equation of state in gas dynamics [33].

2.2 Tube law

Here we adopt a tube law of the form

p= pe(x,t)+ψ(A;A0,K), (2.3)

where

ψ(A;A0,K)= p−pe ≡ ptrans (2.4)

is the transmural pressure, the difference between the pressure in the vessel, the internal
pressure, and the external pressure. Here we choose [14]

ψ(A;A0,K)=K(x)[αm−αn], with α=
A

A0
, (2.5)

where

K(x)=
E(x)

12(1−ν2)

(

h0(x)

R0(x)

)3

. (2.6)

Here h0(x) is the vessel thickness; A0(x) and R0(x) are the cross-sectional area of the
vessel and the radius at equilibrium; ptrans = 0; E(x) is the Young’s modulus; ν is the
Poisson ratio and m≥0 and n≤0 are real numbers. The external pressure pe, assumed to
be known, may be decomposed as follows

pe(x,t)= patm+pmusc(x,t), (2.7)

where patm is the atmospheric pressure, assumed constant here, and pmusc(x,t) is the
pressure exerted by the surrounding tissue, assumed to be a prescribed function of both
position and time. See [36] for a discussion on pmusc(x,t) in the context of chronic venous
disease and see [25] for a discussion on external tissue forces when studying a portion of
the arterial tree. For a fuller discussion on tube laws see, for example, [7, 13, 14, 28, 29].



E. F. Toro and A. Siviglia / Commun. Comput. Phys., 13 (2013), pp. 361-385 365

3 Model for discontinuous properties

In this section we reformulate the mathematical model (2.1)-(2.6) so as to accommodate
discontinuous variations of material properties such as Young’s modulus, equilibrium
cross-sectional area and wall thickness.

3.1 Equations

We consider a mathematical model consisting of the partial differential equations (2.1)-
(2.2), along with the tube law (2.3)-(2.5). We assume wall thickness h0(x), equilibrium
cross-sectional area A0(x) and Young’s modulus E(x) to be functions of axial distance x.
Then the pressure gradient in (2.2) is

∂x p=ψA∂x A+ψK∂xK+ψA0
∂x A0+∂x pe(x,t), (3.1)

with

ψA =
∂ψ

∂A
=

K

A
[mαm−nαn], (3.2)

ψK =
∂ψ

∂K
=αm−αn, (3.3)

ψA0
=

∂ψ

∂A0
=−

K

A0
[mαm−nαn]. (3.4)

The complete system reads







∂t A+∂x(uA)=0,

∂t(uA)+∂x(Au2)+
A

ρ
ψA∂x A=−

A

ρ
ψK∂xK−

A

ρ
ψA0

∂x A0−
A

ρ
∂x pe(x,t)−Ru.

(3.5)

We note that the principal part of the equations (left-hand side) does not have conservation-
law form. Note also that there are source terms on the right hand side which depend on
gradients of the vessel properties E(x), A0(x), and h0(x) and the external pressure. The
external pressure pe(x,t) is analogous to bottom variation in shallow water flows [32],
both giving rise to a source term involving a spatial gradient. In the rest of this paper we
assume

∂t(pe)=F(x,t), (3.6)

where F(x,t) is a prescribed function of space and time. In the numerical literature it
is well known that the treatment of such source terms, sometimes known as geometric
source terms, is notoriously difficult. Common difficulties include the generation of spuri-
ous oscillations and the lack of balance between convective terms and source terms in the
steady state. For a discussion on these issues see, for example, [18, 23, 27] and references
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therein. In principle, for slowly-varying vessel properties one can still proceed with for-
mulation (3.5). However, for significant vessel property variations, or even in the case of
discontinuous properties, formulation (3.5) is not suitable.

In this paper we present an alternative formulation of the model by considering the
variable vessel properties A0(x), h0(x) and E(x) as additional unknowns of the problem
[16–18, 22]. We then add the following obvious partial differential equations

∂tK(x)=0, ∂t A0(x)=0. (3.7)

It is worth noting that the first equation also includes spatial variations of h0. A possible
extension to this basic model could be obtained by considering one additional equation to
account for the concentration φ(x,t) of one quantity passively transported with the fluid
speed u(x,t). For real applications this variable (or many of them) may be very useful
in the modelling of transport of chemicals in the flow. From the mathematical point of
view it is sufficient to consider one concentration variable here. We then combine the
advection equation for φ with the continuity equation to obtain the following advection
equation in conservative form:

∂t(Aφ)+∂x(Auφ)=0. (3.8)

The enlarged system from (3.5) and (3.8) in quasi-linear form reads

∂tQ+A(Q)∂xQ=S(Q), (3.9)

where

Q=

















q1

q2

q3

q4

q5

q6

















≡

















A
Au
K
A0

pe

Aφ

















, S(Q)=

















s1

s2

s3

s4

s5

s6

















≡

















0
−Ru

0
0

F(x,t)
0

















, (3.10)

A(Q)=



















0 1 0 0 0 0
A
ρ ψA−u2 2u A

ρ ψK
A
ρ ψA0

A
ρ 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−uφ φ 0 0 0 u



















. (3.11)

Next we study some mathematical properties of the equations.

3.2 Eigenstructure and characteristic fields

The eigenstructure of the first-order system (3.9)-(3.11) is that of the principal part of
the system (source terms ignored) and is given by the eigenvalues and corresponding
eigenvectors.
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Proposition 3.1. The eigenvalues of the homogeneous version of (3.9) are all real and
given by

λ1=u−c, λ2≡λ3≡λ4=0, λ5=u λ6=u+c, (3.12)

where

c=

√

A

ρ
ψA =

√

K

ρ
[mαm−nαn] (3.13)

is the wave speed.

Note that the wave speed c is analogous to the sound speed in gas dynamics [33] and to
the celerity in shallow water flows [32]. Note also that the choice m≥0 and n≤0 for the
coefficients of the tube law, make the wave speed c always real.

Proof. By definition the eigenvalues of system (3.9)-(3.10) are the eigenvalues of the ma-
trix A, which in turn are the roots of the characteristic polynomial

P(λ)=Det(A−λI)=0, (3.14)

where I is the identity matrix and λ is a parameter. Simple calculations give

P(λ)=λ3
(

λ2−2uλ+u2−c2
)

(u−λ)=0,

from which the result (3.12) follows.

Proposition 3.2. The right eigenvectors of A corresponding to the eigenvalues (3.12) are

R1=γ1

















1
u−c

0
0
0
φ

















, R2=γ2

















0
0
1
0

−ψK

0

















, R3=γ3

















0
0
0
1

−ψA0

0

















, (3.15)

R4=γ4

















1
0
0
0

ρ
A (u

2−c2)
φ

















, R5=γ5

















0
0
0
0
0
1

















, R6=γ6

















1
u+c

0
0
0
φ

















, (3.16)

where γi, for i=1,··· ,6, are arbitrary scaling factors.

Proof. For an arbitrary right eigenvector R=[r1,r2,r3,r4,r5,r6]T we have

AR=λR, (3.17)
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which gives the algebraic system















































r2=λr1,

(c2−u2)r1+2ur2+
A

ρ
ψKr3+

A

ρ
ψA0

r4+
A

ρ
r5=λr2,

0=λr3,

0=λr4,

0=λr5,

−uφr1+φr2+ur6=λr6.

(3.18)

By substituting λ in (3.18) by the appropriate eigenvalues in (3.12) in turn we arrive at
the sought result.

Proposition 3.3. The λ1 and λ6 characteristic fields are genuinely non-linear outside the
locus

G
(

m,n,
A

A0

)

=m(m+2)αm−n(n+2)αn

in the m−n−α space, and the λi-characteristic fields, for i=2,··· ,5, are linearly degener-
ate.

Proof. Since λi = 0 for i = 2,3,4 it follows that ∇λi = 0 and thus ∇λi·Ri = 0. Therefore
the λi-characteristic fields, for i= 2,3,4, are linearly degenerate as claimed. For the fifth
characteristic field λ5=u, ∇λ5·R5=0 and thus the field is linearly degenerate as claimed.

For the other two characteristic fields, some algebraic manipulations give

∇λ1·R1=−∇λ6·R6=
K [m(m+2)αm−n(n+2)αn]

2A
√

ρK [mαm−nαn]
.

Therefore the λ1(Q) and λ6(Q) characteristic fields are genuinely non-linear provided
m(m+2)αm 6= n(n+2)αn. For the usual cases in which m≥ 0 and n≥−2 (see [7, 10]) the
two characteristic fields are genuinely non-linear, and the proof is complete.

3.3 Generalized Riemann invariants

The generalized Riemann invariants are relations that are valid across simple waves.
These are most conveniently expressed as a set of ordinary differential equations in phase
space, see [20] for details.

Proposition 3.4. For a given hyperbolic system of s unknowns [w1,w2,. . .,ws]T , for any
λi-characteristic field with right eigenvector Ri=[r1i,r2i,··· ,rsi]

T the generalized Riemann
invariants are solutions of the following s−1 ordinary differential equations in phase
space

dw1

r1i
=

dw2

r2i
= ···=

dws

rsi
. (3.19)
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Proof. Omitted, see [20].

Proposition 3.5. The generalized Riemann invariants for λ1=u−c are

A0= const, K= const, pe = const, φ= const,
∫

c(A)

A
dA+u= const. (3.20)

Proof. Application of Eq. (3.19) from Proposition 3.4 to λ = λ1 = u−c with R1 =
γ1[1,u−c,0,0,0,0]T , with γ1=1 give

dA

1
=

d(Au)

u−c
=

dK

0
=

dA0

0
=

dpe

0
=

dAφ

φ
. (3.21)

The third, fourth and fifth members of the 5 equalities in (3.21) give the first sought results
A0 = constant, K = constant, pe = constant, as desired, while equating the first and last
members in (3.21) we obtain that dφ=0, which gives φ=constant across the λ1 wave. The
second result is obtained from manipulating the first equality, leading to

c(A)

A
dA+du=0.

Integration in phase space gives

∫

c(A)

A
dA+u= constant.

The proof is completed.

Proposition 3.6. The generalized Riemann invariants for λ6=u+c are

A0= const, K= const, pe = const, φ= const,
∫

c(A)

A
dA−u= const. (3.22)

Proof. The proof is entirely analogous to the previous case and is thus omitted.

Proposition 3.7. The generalized Riemann invariants for λ5=u are

A0= const, K= const, pe = const, φ 6= const, A= const, Au= const. (3.23)

Proof. The proof is entirely analogous to the previous cases and is thus omitted.
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4 The Riemann problem

Here we pose and solve exactly the Riemann problem for the homogeneous version of
system (3.9), that is the special Cauchy problem with piece-wise constant initial condi-
tion, namely











∂tQ+A(Q)∂xQ=0, x∈R, t>0,

Q(x,0)=

{

QL, if x<0,

QR, if x>0.

(4.1)

We seek the solution of the Riemann problem under the following constraints:

• fluid velocity u is smaller than the wave propagation speed c, so that for any Q,

λ1(Q)<0 and λ6(Q)>0; (4.2)

• the cross sectional area of the vessel is bounded above and below, i.e.

0<Amin≤A≤Amax<∞. (4.3)

Within the subsonic regime there are two possible wave configurations in the entire x-t
half plane: configurations A and B which are depicted in Fig. 2.

Figure 2: Structure of the solution of the Riemann problem (4.1) for the simplified 6×6 blood flow model of
this paper: configuration A (left), configuration B (right).

Each configuration is composed by six wave families. The left family is associated
with the eigenvalue λ1, the middle families are superimposed onto the t-axis, and are
associated with λ2, λ3, and λ4. The other two families are associated respectively with
λ5 and λ6. Waves associated with the genuinely non-linear characteristic fields λ1 and λ6

are either shocks (discontinuous solutions) or rarefactions (smooth solutions), while the
wave associated with the linearly degenerate characteristic fields λi (i=2,··· ,5) are contact
discontinuities, the last one being a moving contact.
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The entire solution consists of five constant states, namely QL (data), Q∗L, Q∗R, Q∗0

and QR (data), separated by four distinct waves. The unknown states to be found are
Q∗L (left of x= 0), Q∗R (right of x= 0) and Q∗0. The state Q∗0 lies between the moving
contact and the nearest non-linear wave. See Fig. 2. If any of the λ1 and λ6 waves is a
rarefaction then there will be a smooth transition between two adjacent constant states.
In order to solve exactly the initial-value problem we need to establish appropriate jump
conditions across each characteristic field to connect the unknown states Q∗L, Q∗R and
Q∗0 to the initial conditions QL (left) and QR (right). In what follows we establish such
jump conditions across each characteristic field.

4.1 Jump across shocks: Rankine-Hugoniot conditions

An important feature of the proposed model for variable vessel properties is that the sys-
tem cannot be expressed in conservation-law form. However, for the case of the Riemann
problem the vessel properties h0, A0, E, (contained in K), and thus pe are constant across
the non-linear waves. Hence, across the genuinely non-linear characteristic fields (rar-
efactions and shocks) it is possible to express the equations in conservation-law form. In
fact it is sufficient to consider the reduced 3×3 conservative system, excluding the equa-
tions for K, A0 and pe in (3.9). The homogeneous part of the equations in conservation-
law form is

∂tQ+∂xF(Q)=0, (4.4)

in terms of the redefined vector of conserved variables

Q=





q1

q2

q3



≡





A
Au
Aφ



 (4.5)

and flux vector

F(Q)=





f1

f2

f3



≡





Au

Au2+ KA
ρ

(

m
m+1αm− n

n+1αn
)

φAu



. (4.6)

Proposition 4.1. If the left λ1-wave is a left-facing shock wave of speed SL then

u∗L=uL− fL, fL =

√

BL(A∗L−AL)

AL A∗L
, (4.7a)

BL=
KL

ρ

[

m

m+1

Am+1
∗L −Am+1

L

Am
0

−
n

n+1

An+1
∗L −An+1

L

An
0

]

, (4.7b)

with

φ∗L=φL (4.8)



372 E. F. Toro and A. Siviglia / Commun. Comput. Phys., 13 (2013), pp. 361-385

and the shock speed is given as

SL =uL−
ML

AL
, ML =

√

BL
A∗L AL

A∗L−AL
. (4.9)

Proof. In Fig. 2 we illustrate the function fL that connects the velocity u∗L to the left data
state and the unknown A∗L. Let us assume that the left λ1-wave is a left-facing shock
wave of speed SL. We need to establish relations across the shock, for which one uses
standard techniques, see [32, 33]. We first transform the equations to a stationary frame
via

ûL =uL−SL, û∗L=u∗L−SL. (4.10)

Then the jump conditions become























A∗Lû∗L=ALûL,

A∗Lû2
∗L+

KL A∗L

ρ

( m

m+1
αm
∗L−

n

n+1
αn
∗L

)

=ALû2
L+

KL AL

ρ

( m

m+1
αm

L −
n

n+1
αn

L

)

,

A∗Lû∗Lφ∗L=ALûLφL.

(4.11)

Now from the first equation in (4.11) define ML =−A∗Lû∗L =−ALûL. In fact this is the
mass flux through the wave, which is constant. Use of ML into the second equation in
(4.11) followed by suitable manipulations leads to the sought relations (4.7). Details of the
calculation of the shock speed SL are omitted. From the first relation in (4.11) it follows
that

φ∗L=φ∗R. (4.12)

That is, the concentration is constant across the shock.

Proposition 4.2. If the right λ6-wave is a right-facing shock wave of speed SR then

u∗R=uR+ fR, fR =

√

BR(A∗R−AR)

AR A∗R
, (4.13a)

BR=
KR

ρ

[

m

m+1

Am+1
∗R −Am+1

R

Am
0

−
n

n+1

An+1
∗R −An+1

R

An
0

]

(4.13b)

and the shock speed is given as

SR=uR+
MR

AR
, MR=

√

BR
A∗RAR

A∗R−AR
. (4.14)

Proof. The proof follows the same methodology as for a left shock and details are thus
omitted.
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4.2 Jump conditions across rarefactions

It is possible to establish jump relations across rarefactions waves by means of general-
ized Riemann invariants introduced in Section 3.3.

Proposition 4.3. Across a left rarefaction wave associated with the characteristic field
λ1=u−c the following relations hold

u∗L=uL− fL, fL =
∫ A∗L

AL

c(A)

A
dA. (4.15)

Proof. From the left generalized Riemann invariants (3.20) we can write

∫ A∗L

AL

c(A)

A
dA+u∗L=uL,

from which we have (4.15).

Proposition 4.4. Across a right rarefaction wave associated with the characteristic field
λ3=u+c the following relations hold

u∗R=uR+ fR, fR =
∫ A∗R

AR

c(A)

A
dA. (4.16)

Proof. The proof uses the right generalized Riemann invariants (3.22) and is entirely anal-
ogous to the previous case.

4.3 Solution inside rarefactions

Proposition 4.5. The solution at a point P=(x̂, t̂) inside a left rarefaction is given by:

QL f an≡























u=
x̂

t̂
+c,

c=

√

KL

ρ

[

m

(

Arar

A0L

)m

−n

(

Arar

A0L

)n]

,

(4.17)

where Arar is obtained by solving the following non-linear equation:

x̂

t̂
+
∫ Arar

AL

c(A)

A
dA=uL. (4.18)



374 E. F. Toro and A. Siviglia / Commun. Comput. Phys., 13 (2013), pp. 361-385

Proof. To find the solution inside a left rarefaction we consider a point P= (x̂, t̂) inside
the wave and a characteristic joining the origin (0,0) and P = (x̂, t̂). The speed of the
characteristic is:

u−c=
dx

dt
=

x̂

t̂
, (4.19)

where u and c are unknown values at P of the particle velocity and celerity, respectively.
Also, we can connect P to the left data state via the generalised Riemann invariant:

u+
∫ Arar

AL

c(A)

A
dA=uL. (4.20)

The simultaneous solution of (4.19) and (4.20) gives the sought result.

Proposition 4.6. The solution at a point P=(x̂, t̂) inside a right rarefaction is given by:

QR f an ≡



















u=
x̂

t̂
−c,

c=

√

KR

ρ

[

m

(

Arar

A0R

)m

−n

(

Arar

A0R

)n]

,

(4.21)

where Arar is obtained solving the following non-linear equation:

x̂

t̂
−

∫ Arar

AR

c(A)

A
dA=uR. (4.22)

Proof. The proof is completely analogous to the previous case.

4.4 Jump conditions across the stationary contacts

We wish to establish jump conditions across the stationary contact discontinuity associ-
ated with the eigenvalues λ2=λ3=λ4=0. As stated earlier, for variable material proper-
ties it is not possible to express the equations in conservation-law form and therefore it is
not possible to apply the classical Rankine-Hugoniot conditions. Thus to establish jump
conditions we follow two alternative approaches, leading to identical results.

Proposition 4.7. Across the contact discontinuity the following relations hold

Au= constant,
1

2
ρu2+ψ+pe = constant, φ= constant (4.23)

leading to

A∗Lu∗L=A∗Ru∗R, A∗Lφ∗L=A∗Rφ∗R,
1

2
ρu2

∗L+ψ∗L=
1

2
ρu2

∗R+ψ∗R. (4.24)
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Proof. We first apply generalized Riemann invariants across the linearly degenerate fields.
This approach was advocated by [11] to analyse the Baer-Nunziato equations for two-
phase compressible flow, a well-known non-conservative system. We obtain

dA

0
=

d(Au)

0
=

dK

1
=

dA0

0
=

dpe

−ψK
=

dAφ

0
, (4.25)

dA

0
=

d(Au)

0
=

dK

0
=

dA0

1
=

dpe

−ψA0

=
dAφ

0
, (4.26)

dA

1
=

d(Au)

0
=

dK

0
=

dA0

0
=

dpe
ρ
A (u

2−c2)
=

dAφ

φ
. (4.27)

The second member of the above equations states immediately that across the contact
discontinuity d(Au) = 0 and thus Au = constant, while equating the first with the last
member in Eq. (4.27) gives that φ= constant, proving two results in (4.23).

Relations (4.25) also state that across the stationary contact (see Fig. 2), K and pe do
change. Equating the third and fifth members in (4.25) gives

ψKdK+dpe =0. (4.28)

Equating the fourth and fifth members in (4.26), we obtain

ψA0
dA0+dpe =0 (4.29)

and equating the first and fifth members in Eq. (4.27), we get

ρ

A
(u2−c2)dA−dpe =0. (4.30)

Using d(Au)=0 just proved and c2= A
ρ ψA from the definition of wave speed we may

write

ρudu+ψAdA+ψKdK=0, ρudu+ψAdA+ψA0
dA0=0, ρudu+ψAdA+dpe =0. (4.31)

But ψ = ψ(A;A0,K) and thus dψ = ψAdA+ψKdK+ψA0
dA0. Therefore combining all re-

lations in (4.31) we obtain ρudu+dψ+dpe = 0, which after integration gives the second
sought result in (4.23).

Now we adopt the thin-layer approach advocated by [30], also used to analyse the
Baer-Nunziato equations [5]. It is assumed that the transition layer containing the con-
tact discontinuity is vanishingly thin and that the solution is smooth within the layer.
Assuming the layer travels with constant speed S we define the independent variable

ξ= x−St, S= constant, (4.32)

which measures distance across the layer. We now study the governing equations locally.
For any function G(x,t) we have

∂G

∂x
=

∂G

∂ξ

∂ξ

∂x
,

∂G

∂t
=

∂G

∂ξ

∂ξ

∂t
. (4.33)
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Then the continuity equation (2.1) gives

∂A

∂ξ

∂ξ

∂t
+

∂Au

∂ξ

∂ξ

∂x
=0, (4.34)

or
d((u−S)A)=0 (4.35)

and thus with S=0 we obtain d(Au)=0, which is the first sought result in (4.23). Anal-
ogous manipulations for the momentum equation give 1

2 ρu2+ψ+pe = constant, which is
the second sought result in (4.23) and the result is thus proved.

4.5 Solution of Riemann problem

In Section 4 we have put in place all the necessary relations to obtain the Riemann prob-
lem solution in the Star Region (the constant region straddling the contact discontinuity
path) and the procedure is embodied in the following proposition.

Proposition 4.8. The solution of the Riemann problem in the Star Region is given by the
solution of the following non-linear system















































f1(x1,x2)= x2−uL+ fL(x1)=0,

f2(x1,x2,x3,x4)= x2x1−x4x3=0,

f3(x1,x2,x3,x4)=
1

2
ρ(x2

2−x2
4)+KL

[(

x1

A0L

)m

−

(

x1

A0L

)n]

−KR

[(

x3

A0R

)m

−

(

x3

A0R

)n]

+(peL−peR)=0,

f4(x3,x4)= x4−uR− fR(x3)=0,

(4.36)

where the four unknowns of the problem are

X=[x1,x2,x3,x4]≡ [A∗L,u∗L,A∗R,u∗R], (4.37)

with

fL(x1)=



















√

BL(x1−AL)

ALx1
, if A∗L>AL,

∫ x1

AL

c(A)

A
dA, if A∗L≤AL,

(4.38)

fR(x3)=



















√

BR(x3−AR)

ARx3
, if A∗R>AR,

∫ x3

AR

c(A)

A
dA, if A∗R≤AR.

(4.39)

The wave speeds cL and cR are evaluated on the data according to (3.13). The constants
KL and KR are evaluated on the data from (2.6).
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Proof. The proof involves putting together the results stated previously. Details are omit-
ted.

Remark 4.1 (The complete solution). The numerical solution of the non-linear system
(4.36) gives the six unknowns in the Star Region. The rest of the solution follows by
applying the wave relations studied in Section 4. At this point we remark that the non-
linear system (4.36) is solved numerically using a standard Newton method. It may well
be advisable to study this system in more detail, in order perhaps to identify potential
multiple solutions at this stage.

5 Sample solutions

In this section we consider test problems for a straight tube characterised by constant ex-
ternal pressure pe. We select four test problems that can be solved exactly using the exact
solver presented in Section 4. The physiological parameters are chosen to correspond to
physiological situations. In all cases we take a tube of length 0.5 m, tube wall thickness
h0=3.0·10−4 m, radius and cross section area at rest R0re f =3.0·10−3 m and A0re f =πR2

0re f ,

Young’s modulus Ere f =3.0·105 N/m2, exponents for the tube law m=10 and n=− 3
2 and

Poisson ratio ν= 1
2 . The coefficient K is taken as

Kre f =
Ere f

12(1−ν2)

(

h0re f

R0re f

)3

, (5.1)

while blood density is ρ= 1050kg/m3 . Initial data is that for the Riemann problem and
are given in Tables 1 and 2.

Table 3 shows the values of the exact solution in the Star Region for Tests 1, 2, 3 and 4,
for the area A∗L, A∗R and the particle velocity u∗L, u∗R. These numbers can also be useful
to test numerical methods.

Figs. 3 to 6 show the results obtained for the test cases considered. In each figure
we display the profiles of vessel diameter, particle velocity, concentration φ, pressure,
speed index S=u/c and the resulting wave configuration in the space-time plane. Fig. 3
displays the solution for Test 1 at time t=0.02s. The structure of the solution is composed

Table 1: Left initial conditions for Test 1, 2, 3, 4 and 5.

test AL[m
2] uL[m/s] φL KL A0L[m

2]

1 3.2 10−5 0.1 1.0 60 ×Kre f A0re f

2 2.9 10−5 0.2 1.0 Kre f A0re f

3 3.42 10−5 0.5 1.0 Kre f A0re f

4 3.1 10−5 -0.2 1.0 Kre f A0re f

5 3.2 10−4 4.0 0.0 Kre f A0re f
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Figure 3: Exact solution of Test 1 at the output time 0.02 s.

by 6 waves: a left rarefaction associated to the wave family λ1 = u−c; three coincident
contact discontinuities located at x= 0 associated with the eigenvalues λ2 =λ3 =λ4 = 0;
one contact discontinuity associated with λ5 =u (see dashed line on the right-hand side
of Fig. 3); a right shock wave associated with the wave family λ6=u+c.

Table 2: Right initial conditions for Test 1, 2, 3, 4 and 5.

test AR[m
2] uR[m/s] φR KR A0R[m

2]

1 3.2 10−5 0.2 0.5 Kre f 1.1×A0re f

2 3.2 10−5 0.1 0.5 100 ×Kre f 1.05×A0re f

3 3.34 10−5 -0.1 0.5 40 ×Kre f 1.15×A0re f

4 3.1 10−5 0.1 0.5 30 ×Kre f 1.05×A0re f

5 1.1641 10−4 0.4548 0.0 Kre f A0re f
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Figure 4: Exact solution of Test 2 at the output time 0.025 s.

Test 2 is the mirror image of Test 1 above. Fig. 4 shows the results at the output time
t=0.025s.

Fig. 5 shows results for Test 3 at time t=0.05s. The solution includes two shock waves
associated with the eigenvalues λ1 (left) and λ6 (right); three stationary contact waves
associated with λ2 = λ3 = λ4 = 0, located at x= 0 and a right propagating contact wave

Table 3: Exact solution in the Star Region for Test 1, 2, 3, 4.

test A∗L[m
2] u∗L[m/s] A∗R[m

2] u∗R[m/s]

1 2.8686 10−5 0.8055 4.1170 10−5 0.5612

2 3.8611 10−5 -0.2577 3.0202 10−5 -0.3295

3 4.0863 10−5 0.0608 3.4649 10−5 0.0717

4 2.5288 10−5 -0.0767 2.9616 10−5 -0.0655
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Figure 5: Exact solution of Test 3 at the output time 0.05 s.

associated with λ5=u.

Finally, Fig. 6 displays results for Test 4 at time t= 0.05s. The solution contains two
rarefaction waves travelling in opposite directions associated with λ1 and λ6. The rest
of the wave pattern is composed by three stationary contact waves located at x= 0 and
associated with λ2=λ3=λ4=0 and a left propagating contact wave associated with λ5.

6 Resonance and non-uniqueness

A drawback of our mathematical model for discontinuous material properties is the oc-
currence of resonance and the loss of uniqueness. Resonance happens when two or more
eigenvalues coaelesce, coupled with coincidence of eigenvectors and therefore loosing
hyperbolicity (weak hyperbolicity). Theoretical issues regarding resonance are found in
the classical papers [19, 24] and references there in. For the hyperbolic system of this
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Figure 6: Exact solution of Test 4 at the output time 0.05 s.

paper, resonance takes place for critical flow associated with the λ1-characteristic field,
leading to λ1=λ2=λ3=λ4=0. For critical flow associated with the λ6-characteristic field
we have λ6=λ2=λ3=λ4=0. For other hyperbolic non-conservative systems there are at
present a number of works worth mentioning. For example, for the augmented shallow
water equations see [8, 26]. For a general hyperbolic system see the work [15]. To our
knowledge, for our system (3.9) there is no published study available so far.

Just to illustrate the issue of non-uniqueness here we show a simple example. We
consider the Riemann problem with initial condition as given in Tables 1 and 2 for Test 5.
For this example we assume m=1/2, n=0 in the tube law (2.3)-(2.5).

Table 4 gives two solutions in the Star Region for the stated Riemann problem. Fig. 7
shows the complete wave pattern for one of the possible solutions; this is characterised by
a left rarefaction associated with the eigenvalue λ1. The rarefaction reaches the interface
x = 0 and from the interaction between the smooth wave and the stationary contacts a
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Table 4: Test 5: two distinct solutions in the Star Region for the same initial conditions.

test A∗L[m
2] u∗L[m/s] A∗R[m

2] u∗R[m/s] A∗[m2] u∗

Test 5: Solution 1 3.8530 10−4 3.0775 2.1889 10−4 5.4174 - -

Test 5: Solution 2 2.7776 10−4 4.6735 2.0229 10−4 6.4171 4.9899 10−4 14.64

Figure 7: Structure of the solution of the Riemann problem in the resonant case for the 6×6 blood flow model
of this paper: configuration C.

new wave associated with the λ1-characteristic field arises. This wave is followed by the
λ5- and λ6-waves respectively.

The configuration given in Fig. 7 is typical of resonant hyperbolic systems as shown
in [3, 8, 9, 15].

The wave patterns depicted in Fig. 7 are found by solving the following non-linear
system:























































































f1(x1,x2)= x2−

√

KL

ρ

[

m

(

x1

A0L

)m

−n

(

x1

A0L

)n]

=0,

f2(x1,x2)= x2+
∫ x1

AL

c(A)

A
dA−uL =0,

f3(x1,x2,x3,x4)= x2x1−x4x3=0,

f4(x1,x2,x3,x4)=
1

2
ρ(x2

2−x2
4)+KL

[(

x1

A0L

)m

−

(

x1

A0L

)n]

−KR

[(

x3

A0R

)m

−

(

x3

A0R

)n]

=0,

f5(x3,x4,x5,x6)= x4−x6− fR(x4,x5)=0,

f6(x5,x6)= x6−uR− fR(x5)=0,

(6.1)

where the unknowns of the problem are

X=[x1,x2,x3,x4,x5,x6]≡ [A∗L,u∗L,A∗R,u∗R,A∗,u∗]. (6.2)
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The issue of admissibility criteria and identification of acceptable physical solutions
is currently the subject of further studies by the authors and results will be published
elsewhere.

7 Concluding remarks

A mathematical model for physiological flows in compliant vessels with discontinuous
material properties has been presented. In particular, the equations could be used to
model blood flow in veins. The equations have been thoroughly analysed and exact so-
lutions have been constructed. These exact solutions can be useful for assessing the per-
formance of numerical methods intended for practical applications by solving the gen-
eral initial-boundary value problem. The given solutions, or approximations, can also
be used locally to construct Godunov-type methods in the frameworks of finite volume
methods and discontinuous Galerkin finite element methods. Work in progress includes
a detailed study of the resonance and non-uniqueness phenomena and the implementa-
tion of suitable numerical methods for practical applications.
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