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Abstract. Numerical aspects of a pore scale model are investigated for the simulation
of catalyst layers of polymer electrolyte membrane fuel cells. Coupled heat, mass and
charged species transport together with reaction kinetics are taken into account using
parallelized finite volume simulations for a range of nanostructured, computationally
reconstructed catalyst layer samples. The effectiveness of implementing deflation as a
second stage preconditioner generally improves convergence and results in better con-
vergence behavior than more sophisticated first stage pre-conditioners. This behavior
is attributed to the fact that the two stage preconditioner updates the precondition-
ing matrix at every GMRES restart, reducing the stalling effects that are commonly
observed in restarted GMRES when a single stage preconditioner is used. In addi-
tion, the effectiveness of the deflation preconditioner is independent of the number of
processors, whereas the localized block ILU preconditioner deteriorates in quality as
the number of processors is increased. The total number of GMRES search directions
required for convergence varies considerably depending on the preconditioner, but
also depends on the catalyst layer microstructure, with low porosity microstructures
requiring a smaller number of iterations. The improved model and numerical solu-
tion strategy should allow simulations for larger computational domains and improve
the reliability of the predicted transport parameters. The preconditioning strategies
presented in the paper are scalable and should prove effective for massively parallel
simulations of other problems involving nonlinear equations.
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1 Introduction

Polymer Electrolyte Membrane (PEM) fuel cells have been the focus of intense research
and development in the last decade due to their high energy conversion efficiency, low
to zero emissions, and suitability for a broad range of applications from transportation to
portable electronic devices. A PEM fuel cell is composed of a number of different layers as
shown in Fig. 1. On each side of the fuel cell are flow channels, through which oxygen and
hydrogen flow. The hydrogen and oxygen diffuse through a diffusion layer to the anode
and cathode catalyst layers respectively. At the anode catalyst layer, hydrogen reacts to
produce protons and electrons. The protons travel through the polymer membrane to
the cathode catalyst layer, while the electrons go through an external circuit to do useful
work. The electrons, protons and oxygen electrochemically react in the cathode catalyst
layer to produce water.
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Figure 1: Simplified Schematic of PEM fuel cell operation and components: A. Anode flow channel. B. Anode
gas diffusion layer. C. Anode catalyst layer. D. Polymer electrolyte membrane. E. Cathode catalyst layer. F.
Cathode gas diffusion layer. G. Cathode flow channel

The operation of a PEM fuel cell relies on an array of coupled transport phenom-
ena, including the supply of reactants, reaction kinetics, transport of ions and electrons,
and removal of by-product heat and water [1]. The transport and rate limitations associ-
ated with these processes result in irreversibilities that appear as voltage losses. Many of
these losses occur at the cathode catalyst layer, where the energy needed to initiate elec-
trochemical reactions (activation polarization) is quite high [2]. A PEM fuel cell catalyst
layer is a nanostructured medium composed of four distinct phases: pores which allow
for reactant gas diffusion, an ionomer membrane which allows for proton conduction,
carbon-black particles which allow for electron conduction, and platinum nanoparticles
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Figure 2: Schematic of species transport and heat transfer/production in the cathode catalyst layer of a PEM
fuel cell. Electron transport is shown in maroon, proton transport is shown in green, oxygen diffusion is shown
in orange and water vapor diffusion is shown in blue. Heat diffusion is represented by the red line. Joule heating
is represented by red circles while heat generated from electrochemical reactions is shown by red squares.

which serve as catalysts for electrochemical reaction. A diagram of heat and species
transport is shown in Fig. 2.

The catalyst layer is one of the most critical component of a PEM fuel cell as it strongly
impacts performance, cost and durability. It is also one of the most challenging com-
ponents because its complex structures, size and location make experimental observa-
tions of in-situ processes difficult to observe and measure. Computational modelling
has therefore been of great interest for providing fundamental insights and guiding en-
gineering efforts in yet characterization of the transport properties and optimization of
composition and fabrication processes. Due to the small dimensions of PEM fuel cell
catalyst layers (10-20 microns thick), macroscopic PEM fuel cell models do not fully re-
solve the microstructure of catalyst layers. Sometimes these models treat catalyst layers
as infinitely thin interfaces that are described by an effective oxygen diffusivity and a
bulk exchange current density [3–5]. Other models use porous electrode theory to ac-
count for the catalyst layer [2, 6–12]. More recently, macroscopic fuel cell models have
assumed that catalyst layers are composed of agglomerates of carbon-black black parti-
cles which are covered by an ionomer or water layer [13–19]. Each of these approaches
uses a number of simplifying assumptions to account for coupled transport phenomena
and electrochemistry in catalyst layers. Some of these assumptions have been shown to
be invalid (e.g. using the Bruggeman correction for the effective oxygen diffusivity in the
catalyst layer [20–24]).

There is therefore a need to develop constitutive relationships for the catalyst layer
which are based on fundamental physics and chemistry and which can be used in macro-
scopic PEM fuel cell models. These relationships must be obtained from high reso-
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lution simulations which account for the complex morphology and coupled transport
phenomena in this region. These include: multicomponent species diffusion, proton
conduction, electron conduction, electrochemical reactions, heat transfer, ohmic heating,
heat from electrochemical reactions, sorption, desorption, condensation, evaporation and
two-phase flow. As might be imagined, this is quite a challenging task to account for all
the relevant transport phenomena in a computational model and some assumptions are
required. Most high resolution catalyst layer models that have been developed account
for proton conduction, electron conduction and oxygen diffusion in a small section of
the catalyst layer [21] and sometimes include electrochemical reactions [23, 25]. A recent
work included water vapor transport and production along with heat transfer and heat
production [26].

One of the difficulties with catalyst layer models is that there is a wide range of values
for transport parameters in different phases of the catalyst layer. The thermal conductiv-
ity of air is an order of magnitude less than that of carbon black, while the diffusivity
in the ionomer phase is several orders of magnitude lower than in the gas phase. Sim-
ulations involving highly contrasting values for transport coefficients, have been shown
to be ill-conditioned with extremal eigenvalues that lead to poor convergence [27–30].
This issue is commonly encountered in the simulation of flow in porous media, but few
papers describe preconditioning strategies that scale effectively for massively parallel
simulations. One preconditioning approach used in multiphase reservoir simulations is
to separate regions of the computational domain into high and low permeability regions,
and solve the decoupled matrix blocks [31–34]. Domain decomposition methods have
also been used for preconditioning these problems [35–37]. Another preconditioner that
is often used is eigenvalue deflation [27–30,38,39]. Often, one of these preconditioners is
used in conjunction with a standard preconditioning approach for a multi-stage precon-
ditioner.

In a previous work [26], a numerical method was presented and used to simulate
oxygen transport, water vapor transport, proton conduction, electron conduction and
electrochemical reactions in a PEM fuel cell catalyst layer. While charting the path for
physically based prediction of transport parameters, computational efficiency limited
these simulations to small samples (200 nm x 200 nm x 200 nm), about two orders of
magnitude smaller than typical catalyst layers which have a thickness of 10 microns.
Larger domain simulations as well as increased resolution are for example required to
account for the likely varying distributions and thickness of the ionomer. The purpose of
the current work is to describe new developments to the computational model and nu-
merical method that significantly enhance the capabilities and reliability of simulations
for porous media, particularly those used in fuel cells [40]. Additional effects accounted
for in the computational model are heat transfer and heat production, Stefan-Maxwell
diffusion and electrochemical reactions at platinum particle sites. The numerical method
is improved by using both ILU and deflation in a two-stage preconditioner, adopting a
better approach to non-dimensionalizing the equations and reducing the size of the ma-
trix.
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Section 2 presents the governing equations and boundary conditions used in the
model and Section 3 presents the details of the numerical method. Numerical results
comparing convergence of simulations on different computational domains with differ-
ent preconditioners and deflation criteria are presented in Section 4. A discussion of the
results is given in Section 5 while the paper is concluded in Section 6.

2 Governing equations and boundary conditions

PEM fuel cell catalyst layers are often formed by mixing a slurry of carbon-black particles
embedded with platinum with an ionomer solution and spraying the mixture onto a
polymer membrane. This process results in a porous medium that is electrically and
ionically conductive, but still allows for transport of reactant and product gases. A high
resolution SEM image of a catalyst layer is shown in Fig. 3.

Figure 3: SEM image of the surface of a catalyst layer that has been sprayed onto a membrane.

The computational model for PEMFC catalyst layers accounts for proton conduction
in the ionomer phase, electron conduction through the carbon-black particles, oxygen re-
duction at electrochemically active platinum particles, electro-osmotic drag of water, dif-
fusion of oxygen and water vapor, heat conduction, ohmic heating, and heat produced
by the electrochemical reactions. The model considers steady-state, isobaric, single-phase
conditions in the catalyst layer. Due to small pore sizes and the fact that a gas diffusion
layer is placed between the catalyst layer and the gas flow channel, convective effects
are negligible. Since single phase conditions that typically prevail under low humidifi-
cation conditions are considered, the evaporation, condensation, and the sorption and
desorption of liquid water are not considered in the model. A uniform air pressure of 2
atmospheres representing typical operations [41–43] is assumed.



542 K. J. Lange et al. / Commun. Comput. Phys., 14 (2013), pp. 537-573

2.1 Charged particle transport and consumption

Protons conduct through the ionomer while electrons conduct through the carbon-black
spheres. The conductive fluxes are computed as

Γp,cond=−σm∇φm, (2.1)

Γe,cond=σs∇φs. (2.2)

The conductivity of the carbon-black particles is taken to be 10 S/cm [44], while the
conductivity of the membrane is taken from a curve-fit of experimental data for recast
Nafion [45] and is computed as

σm

(

S cm−1
)

= c1exp
([

c2T−c3T2+c4T3−c5T4
]

a
)

+c6, (2.3)

where the curve-fitting parameters are given in Table 1.

Table 1: Curve-fit coefficients for membrane conductivity and saturation pressure expressions.

Coefficient Value Coefficient Value

c1 2.8133×10−4 p1 −2846.4

c2 1.328355 p2 411.24

c3 −1.1642×10−2 p3 −10.554

c4 3.442175×10−5 p4 0.16636

c5 −3.33815×10−8

c6 −7.2939×10−4

The relative humidity is computed as

a=(cH2ORuT)/psat, (2.4)

while the saturation pressure is computed as

psat (Pa)= p1+p2(T−273)−p3(T−273)2+p4(T−273)3, (2.5)

where the curve-fitting parameters are given in Table 1.

Protons and electrons are consumed in the oxygen reduction reaction and the reactive
flux is expressed as

Γe,r=Γp,r =1Pt

[

i0 exp

(

−αcF

RuT
η

)]

. (2.6)

The exchange current density is computed according to experimental data [46] as

i0 = i∗0

(

pO2

p∗O2

)γ

exp

[

−Erev
c

RuT

(

1−
T

T∗

)]

. (2.7)
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Table 2: Reaction parameters used in the model. Each parameter is taken from reference [46].

Reaction Parameter Expression

i∗0 2.47×10−8 A/cm2
Pt

p∗O2
101,300 Pa

γ 0.54

Erev
c 33 kJ/mol

T∗ 353 K

αc 1.0

c∗O2

p∗O2
RuT∗

η φs−φm−1.3 V

The parameters for the exchange current density and the reaction rate are given in Table 2.
Thus, the governing equations for the proton and electron potential can be expressed

as the divergence of conductive and reactive fluxes:

∇·
(

Γp,cond+Γp,r

)

=0, (2.8)

∇·(Γe,cond+Γe,r)=0. (2.9)

2.2 Mass transport and production/consumption

In the pores, the Stefan-Maxwell equations are solved to compute the oxygen and wa-
ter vapor diffusive fluxes. In the presence of oxygen, nitrogen, and water vapor and
accounting for Knudsen diffusion, these equations take the following form in

∇yi =
RuT

p

(

j 6=i

∑
j

yiΓj−yjΓi

Di−j
−

Γi

Di.Kn

)

, (2.10)

where i represents a given gas species and j represents the other gas species. The binary
gas diffusivities depend on the temperature and are computed from reference values
taken from experiments. The governing equation for nitrogen is not solved in this model
since the nitrogen mole fraction can be easily calculated by computing the nitrogen con-
centration and its gradient as

cN2
=

p

RuT
−cO2

−cH2O, (2.11)

∇cN2
=−∇cO2

−∇cH2O−
p

RuT2
∇T. (2.12)

In the ionomer region, binary diffusion is assumed and thus the water vapor and oxygen
diffusive fluxes in the ionomer region are computed as

ΓH2O,d=−DH2O,m∇cH2O, (2.13)

ΓO2,d=−DO2,m∇cO2
, (2.14)
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Table 3: Diffusivities used in the model.

Diffusion Coefficient Expression

DO2−H2O

(

0.282
p

)

(T/298.2)1.5 cm2/sec [47]

DO2−N2

(

0.220
p

)

(T/293.2)1.5 cm2/sec [47]

DH2O−N2

(

0.293
p

)

(T/308.1)1.5 cm2/sec [47]

DO2,Kn (4850d)(T/32)0.5 cm2/sec [48]

DH2O,Kn (4850d)(T/18)0.5 cm2/sec [48]

DN2,Kn (4850d)(T/28)0.5 cm2/sec [48]

DO2,m (0.1543(T−273)−1.65) cm2/sec [49]

DH2O,m 0.265a2exp(−3343/T) cm2/sec [50]

where the diffusivities in the ionomer phase are dependent on the temperature and rel-
ative humidity. The pore and ionomer diffusivities used in this model are computed
according the expressions in Table 3.

Oxygen reacts with protons and electrons at the platinum reaction sites to produce
water. The oxygen and water vapor reaction fluxes are computed using Tafel kinetics as

ΓO2,r =1Pt

[

1

4F
i0

cO2

c∗O2

exp

(

−αcF

RuT
η

)

]

, (2.15)

ΓH2O,r =−1Pt

[

1

2F
i0

cO2

c∗O2

exp

(

−αcF

RuT
η

)

]

. (2.16)

Water molecules are dragged by protons due to electro-osmotic drag, producing a flux
which is expressed as:

ΓH2O,eod=−
ndσm∇φm

F
, (2.17)

where the drag coefficient is taken to be 1 [51].

Thus, the governing equations for the concentrations of oxygen and water vapor can
be expressed as the divergence of a combination of different fluxes as:

∇·(ΓO2,d+ΓO2,r)=0, (2.18)

∇·(ΓH2O,d+ΓH2O,eod+ΓH2O,r)=0. (2.19)

2.3 Heat transfer and production

Heat transfer occurs in the catalyst layer through conduction, and this flux is expressed
as

ΓT,cond=−k∇T, (2.20)
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Table 4: Temperature parameters used in the model.

Parameter Expression

ks W/cm-K 3.75×10−3 [52]

km W/cm-K exp(0.6373a)(−.00035694(T−273)+.00165199) [53]

kair W/cm-K (−.099489a+2.0)×(.022423(T−273)+13.27)×10−5 [54]

Π kJ/mol T ∆Sh
4F [55]

Sh J/(mol-K) 326.6 [56]

where the thermal conductivities for each material are given in Table 4. The thermal
conductivities for ionomer and air as a function of relative humidity and temperature are
computed using curve fits of data.

Ohmic heating takes place due to proton and electron conduction and is computed as

ST,ohm=
(∇φs)

2

σs
+
(∇φm)

2

σm
. (2.21)

Finally, heat is produced via the exothermic oxygen reduction reaction and this is com-
puted as

ST,r=−1Pt∇·

[

i0
cO2

c∗O2

exp

(

−αcF

RuT
η

)

]

(η+Π) , (2.22)

where the Peltier coefficient is listed in Table 4.

Thus, the governing equation for heat transfer can be described as the divergence of
the heat flux with source terms corresponding to ohmic heating and heat produced from
the electrochemical reaction. This is given as

∇·(ΓT,cond)=ST,ohm+ST,r. (2.23)

2.4 Boundary conditions

For the two in-plane boundaries of the cubic computational domain, Dirichlet bound-
ary conditions are used for each variable. The other four through-plane boundaries are
specified to be periodic boundaries, so that species and heat transported through one
boundary will come through on the opposite boundary. Because one of the primary
purposes of small scale simulations such as these is to compute the effective transport
properties, gradients in species concentrations, potentials and temperature are imposed
in the through-plane direction across the domain. The model considers conditions of
high current densities, and thus the overpotential for the electrochemical reactions are
set to be approximately 0.4 Volts at each boundary. The membrane and solid potential
drops across the domain are specified to make the proton and electron currents approx-
imately equal through the domain. A temperature difference of 0.1 K is imposed, while
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Table 5: Dirichlet boundary conditions for simulations.

Parameter Boundary 1 Boundary 2

cO2
(mol/m3) 10.1 10.0

cH2O (mol/m3) 15.9 16.0

φm (V) 1.7 1.708

φs (V) 1.3 1.3018

T (K) 353.0 353.1

the oxygen and water vapor concentrations change by 0.1 mol/m3 across the domain.
The boundary conditions are listed in Table 5.

3 Numerical method

The governing equations are discretized and solved over a computational domain that is
400 nm×400 nm×400 nm. This represents a small piece of a PEM fuel cell catalyst layer
which is normally 10-20 microns thick with an area ranging from 1-500 cm2. In order to
perform simulations, the different phases in the computational domain must be specified.
It is necessary to computationally reconstruct a catalyst layer section consisting of pores,
ionomer, carbon-black particles and platinum reaction sites.

3.1 Catalyst layer reconstruction

In order to numerically represent the morphology of the catalyst layer, a stochastic recon-
struction algorithm based on previous works [23, 25] is used. Carbon-black spheres are
randomly placed in the computational domain with a certain percentage required to be
connected to other carbon-black spheres for electron conduction. Carbon-black spheres
are allowed to overlap, but only by a specified tolerance. Once all of the carbon-black
spheres have been placed in the domain, all cells whose cell centers fall within the radius
of the carbon-black spheres are tagged as carbon-black cells. The number of ionomer cells
in the domain is determined by the number of total cells in the computational domain
and the specified ionomer volume fraction. The sites for the ionomer cells are stochas-
tically chosen from available sites which are next to carbon cells and next to ionomer
cells. The sites next to carbon cells are counted once, while sites next to ionomer cells can
be counted multiple times to represent the increased likelihood for ionomer particles to
agglomerate together. The remaining cells are tagged as pore cells.

Some examples of computationally reconstructed catalyst layer samples are shown in
Figs. 4 and 5, where the computational domain is visualized by showing the carbon-black
cells in grey, the ionomer cells in orange, and the pore cells in red.

In order to allocate the platinum particles, it is assumed that they are embedded on
the surface of the carbon-black particles. Because exchange current densities are given
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(a) Carbon black morphology for HPM 2

(b) Ionomer morphology for HPM 2

(c) Pore morphology for HPM 2

Figure 4: Morphology of HPM2.

(a) Carbon black morphology for LPM 4

(b) Ionomer morphology for LPM 4

(c) Pore morphology for LPM 4

Figure 5: Morphology of LPM4.
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as current per unit area, the platinum particles are assumed to exist at the interface of a
carbon cell and a non-carbon cell. The platinum loading µPt is provided as an input to the
reconstruction algorithm. Thus, the total platinum mass in the domain can be computed
as:

mPt=
µPtl

3
dom

lcath
, (3.1)

where mPt is the total platinum mass in the domain, µPt is the platinum loading, l is the
size of the computational domain, and lcath is the thickness of the catalyst layer.

Each platinum particle is assumed to be spherical. Thus, the mass of each individual
platinum particle is computed as

mPt,part=
4

3
π(rPt)

3ρPt, (3.2)

where mPt,part is the mass of each platinum particle, rPt is the platinum particle radius,
and ρPt is the density of platinum. The total number of platinum particles is computed
as

nPt=
mPt

mPt,part
, (3.3)

where nPt is the total number of platinum particles. Because the exchange current density
is given as current per unit area, the platinum particles are assumed to exist as faces on
the exterior of the carbon-black spheres. The platinum particles are randomly placed at
these locations.

After the cells have been tagged as carbon-black, ionomer, or pores and the platinum
particles have been placed, the mesh is analyzed to determine which cells are active,
and which cells are dead. The carbon-black cells are analyzed to determine which cells
are connected parts of a continuous percolating path across the computational domain.
These cells are classified as active cells, which are capable of transporting electron cur-
rents and participating in electrochemical reactions. The remaining carbon-black cells are
classified as dead cells, which do not transport current or participate in electrochemical
reactions. A similar procedure is used to classify the ionomer cells as dead or active cells.
Platinum particles which exist at the interface of an active carbon-black cell and an active
ionomer cell are deemed to be active reaction sites. The remaining platinum particles are
deemed to be dead platinum particles and are not electrochemically active.

3.2 Non-dimensionalization of governing equations

Because the computational domain is small relative to the size of the catalyst layer, the
changes between dependant variables across the solution domain are quite small, often
less than one percent of the values of the solution variables. If the equations were non-
dimensionalized according to the solution values, this could lead to an ill-conditioned
system due to improper scaling and could also result in significant cancellation error.
In order to obtain a solution that is scaled well, the physical variables in the simulation
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(oxygen concentration, water vapor concentration, membrane potential, solid potential,
and temperature) are all taken to be the sum of a constant baseline value and a small
perturbation. The fundamental solution variables that are computed with the simulation
are the small perturbations, which can be scaled much better. Thus the fundamental
nondimensionalized solution variables for each cell i are defined as

QO2,i=
cO2,i−cO2,b

cO2,re f
, QH2O,i=

cH2O,i−cH2O,b

cH2O,re f
, (3.4)

Qφm,i=
φm,i−φm,b

φm,re f
, Qφs,i=

φs,i−φs,b

φs,re f
, QT,i=

Ti−Tb

Tre f
, (3.5)

where the subscript b refers to baseline values and the subscript re f refers to non-dimensional
parameters. A list of the baseline values and non-dimensional parameters are given in
Tables 6 and 7.

Table 6: Baseline values used in discretizing and non-dimensionalizing equations.

Parameter Baseline Value

cO2,b (mol/m3) 10.0

cH2O,b (mol/m3) 16.0

φm,b (V) 1.7

φs,b (V) 1.3

Tb (K) 353.0

Table 7: Reference parameters used to non-dimensionalize equations.

Parameter Reference Value

cO2,re f (mol/m3) 0.0005

cH2O,re f (mol/m3) 0.0005

φm,re f (V) 0.00004

φs,re f (V) 0.000009

Tre f (K) 0.0005

lre f (nm) 400

DO2,re f cm2/sec 0.220

DH2O,re f cm2/sec 0.220

σm,re f S/cm 0.1

σs,re f S/cm 10.0

kre f (W/cm-K) 0.003

The nondimensionalized governing equations can be expressed as

∇·
(

Γ̂p,cond+Γ̂p,r

)

=
lre f

σm,re f φm,re f
∇·
(

Γp,cond+Γp,r

)

=0, (3.6)
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∇·
(

Γ̂e,cond+Γ̂e,r

)

=
lre f

σs,re f φs,re f
∇·(Γe,cond+Γe,r)=0, (3.7)

∇·
(

Γ̂O2,d+Γ̂O2,r

)

=
lre f

DO2,re f cO2,re f
∇·(ΓO2,d+ΓO2,r)=0, (3.8)

∇·
(

Γ̂H2O,d+Γ̂H2O,eod+Γ̂H2O,r

)

=
lre f

DH2O,re f cH2O,re f
∇·(ΓH2O,d+ΓH2O,eod+ΓH2O,r)=0, (3.9)

∇·
(

Γ̂T,cond

)

=
lre f

kre f Tre f
(ST,ohm+ST,r). (3.10)

Henceforth, the flux terms in the equations will be assumed to be in nondimensional
form and the nondimensional symbol will be dropped from the equations.

3.3 Discretization

The governing equations are discretized using the finite volume method for a cell-centered
structured mesh. The governing equations are integrated over each control volume for
equation i as

∫ ∫ ∫

∇·ΓidΩ=
∫ ∫ ∫

SidΩ. (3.11)

Green’s theorem can be used to transform the left hand side of Eq. (3.11) into

∫ ∫ ∫

∇·ΓidΩ=
∫ ∫

Γi · ~AdΓ. (3.12)

For each cubic cell with six faces, Eq. (3.12) results in

n=6

∑
n=1

Γi,n · ~An =SiΩ, (3.13)

where Ω is the cell volume, and ~An is the outward pointing normal area vector for each
face of the computational cell. Note that aside from the energy equation, the right hand
side of Eq. (3.13) is equal to zero.

The conductive fluxes for charged particles, diffusive fluxes for gas species and heat
conduction flux are all similar in that they are the product of a transport parameter and
a gradient of a solution variable. For two adjacent cells in the z-direction k and k+1, a
standard finite-difference formula is used to compute the gradient of solution variable i
at the cell face:

∂Qi

∂z
=

Qk+1
i −Qk

i

zk+1−zk
. (3.14)

Similar relationships are used to compute gradients in the x- and y-directions. For trans-
port parameters that are dependent on the temperature, the temperature at the face is
computed as the average temperature of the two adjacent cells. The relative humidity is
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computed by using the average water vapor concentration and average temperature at
the cell face. In the case where there is an interface between two different phases (e.g.
carbon-black/pore, ionomer/pore), it is assumed that the transport is limited by the cell
with the smaller transport parameter. For instance, at the interface of a pore cell and an
ionomer cell, the ionomer oxygen diffusivity is used, since it is much smaller than the
pore oxygen diffusivity. For cases where an ionomer cell is adjacent to a carbon-black
cell, the thermal conductivity of the ionomer is used at the interface since it is lower than
the thermal conductivity of carbon-black. For this case, since the water vapor concen-
tration in carbon-black cells is zero, the water vapor concentration in the ionomer cell is
used to compute the thermal conductivity at the cell interface.

For interfaces between ionomer and carbon-black cells where platinum particles are
located and assumed to be electrochemically active, oxygen, protons and electrons are
consumed to produce water vapor. For this case, the overpotential is computed using the
solid and membrane potentials in the carbon-black and ionomer cells, respectively. The
oxygen concentration in the ionomer cell is used to compute the electrochemical reaction
rate. The temperature is computed as the average temperature of the two-cells.

The temperature source term due to ohmic heating is discretized by assuming that
the heat produced at each face is evenly distributed to the neighboring cells. Thus, for
each cell k,

Sk
T,ohmΩk =

6

∑
n=1

(

(∇φs,n)
2

σs,n
+
(∇φm,n)

2

σm,n

)

Ωk

2
, (3.15)

where the factor of 1
2 indicates that the ohmic heating at each face is evenly distributed

between cell k and its neighbor.
The electrochemical reaction temperature source term is converted to a surface inte-

gral using Green’s theorem as

∫ ∫ ∫

−1Pt∇·

[

i0
cO2

c∗O2

exp

(

−αcF

RuT
η

)

]

(η+Π)dΩ

=−
∫ ∫

1Pt

[

i0
cO2

c∗O2

exp

(

−αcF

RuT
η

)

]

· ~A(η+Π)dΓ. (3.16)

Thus,

Sk
T,rΩ

k=−∑
Pt

1Pt

[

i0
cO2

c∗O2

exp

(

−αcF

RuT
η

)

]

· ~A(η+Π) . (3.17)

The residual functions for each discretized governing equation in cell k can be expressed
as a sum of fluxes through the six exterior faces of the cell with a source term contribution
for the heat transfer equation:

Rk
φm

=
6

∑
n=1

Γp,cond,n · ~An+∑
Pt

Γp,r,n · ~An, (3.18)
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Rk
φs
=

6

∑
n=1

Γe,cond,n · ~An+∑
Pt

Γe,r,n · ~An, (3.19)

Rk
O2

=
6

∑
n=1

ΓO2,d,n · ~An+∑
Pt

ΓO2,r,n · ~An, (3.20)

Rk
H2O =

[

6

∑
n=1

(ΓH2O,d,n+ΓH2O,eod,n)+∑
Pt

ΓH2O,r,n

]

· ~An, (3.21)

Rk
T =

6

∑
n=1

ΓT,cond,n · ~An−
Ωk

2

6

∑
n=1

(

(∇φs,n)
2

σs,n
+
(∇φm,n)

2

σm,n

)

+∑
Pt

[

i0
cO2

c∗O2

exp

(

−αcF

RT
η

)

]

· ~A(η+Π). (3.22)

3.4 Solving the linearized system of equations

The nonlinear system of discretized governing equations can be implicitly solved using
Newton’s Method. This entails finding a solution where the residuals for each variable
in each cell are zero with successive Newton iterations by solving the linearized system
of equations:

[

∂R

∂Q

]

∆Q=−R(Q). (3.23)

The disadvantage to this approach is that the computation of ∆Q is expensive. For
this reason, an inexact Newton method is used [57], where an approximate solution to
Eq. (3.23) is computed for each Newton iteration. This takes much less computational
work, and as the numerical solution approaches the exact solution, the convergence of
Newton’s method is enhanced.

Because there are five governing equations for each cell, each matrix ”element” ∂Ri

∂Qj is

a five by five submatrix block as
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∂Qj
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. (3.24)

For certain types of cells, some of the residual equations are not solved due to the cell
material. For instance, there is no proton or electron conduction in the pores. Thus,
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these matrix rows are zeroed out for rows corresponding to pore cells with a one as the
diagonal entry and a zero on the right hand side. Similarly, there is no proton conduction
in the carbon-black phase, and no electron conduction in the ionomer phase. One can
take advantage of the fact that the equations for proton and electron transport are never
both solved in the same cell. Thus, the submatrix blocks can be converted to four by
four blocks, with one of the rows representing either the proton residual or the electron
residual, depending on the cell tag. This results in a 36 percent savings in matrix storage.
The matrix entries are computed analytically by differentiating the discretized governing
equations in the code. They are verified for their accuracy using finite differences.

Additional computational savings are achieved by determining a priori which ionomer
and carbon-black cells are ”active”, in the sense that there exists percolating paths in the
material from one side of the domain to the other. Inactive cells are not able to pass
current through them, and thus, the off-diagonal entries in the matrix corresponding to
the proton or electron potential for these cells can be zeroed out with a ”1” put on the
diagonal and a ”0” on the right hand side.

In order to solve the linear system of equations for each Newton iteration, the pre-
conditioned restarted Generalized Minimal Residual (GMRES) method [58] is used. The
code is parallelized using the Message Passing Interface (MPI) library [59] and it is run
on 64 processors.

3.5 Preconditioning approaches

In order to accelerate the convergence of GMRES for a matrix-vector problem of the form
Ax=b, a preconditioner must be implemented. For this problem, a right preconditioning
approach is used [60], where one first solves

AMy=b, (3.25)

and the solution vector is obtained as

x=My. (3.26)

In this case the matrix M is a matrix that converts the original matrix vector problem
into a problem that is easier to solve. A number of different preconditioners were im-
plemented and tested for their efficiency in solving the discretized system of governing
equations. Block-diagonal and ILU preconditioners seek to obtain an efficient solution
to the linearized system of equations by approximating the inverse of the matrix

[

∂R
∂Q

]

.
Deflation preconditioners seek to shift the smallest eigenvalues of the matrix away from
zero so as to obtain a better-conditioned problem that is more easily solved.

3.5.1 Block-diagonal preconditioners

A block diagonal diagonal preconditioner approximates the inverse of the original matrix
A as

Mbd=[diag(A)]−1 , (3.27)
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where the inverse of the diagonal blocks is used for this case. This preconditioner is
simple to implement, requires very little additional storage, and can be easily applied in
a parallel computing environment. However, for large matrices, this preconditioner does
not provide an adequate approximation for A−1, resulting in poor convergence.

3.5.2 Localized block ILU preconditioners

A localized block ILU preconditioner is implemented in the matrix [61]. In this case, the
localized block ILU preconditioner was only implemented on the matrix entries owned
by a given processor. ILU preconditioners are often defined by their level of fill, and vari-
ants of this approach exist where the process of computing the full LU decomposition
is implemented but only the largest elements (ILUp) or the elements whose magnitudes
are below a certain tolerance (ILUT) are kept [62]. For this simulation, the block ILU(0),
ILU(1) and ILUp preconditioners are implemented. The main difference between the
ILUp and ILU preconditioners is that an additional computational expense is incurred in
defining the sparsity pattern for the block ILUp preconditioner. Since the matrix changes
at every Newton iteration, this could result in a considerable amount of computational
expense in the solution process. Thus, to make the process more efficient, the sparsity
pattern is computed for the first Newton iteration and is reused for subsequent Newton
iterations. The algorithm for a localized block ILU algorithm can be found in the litera-
ture and is not repeated here [63]. Localized block ILU preconditioners usually outper-
form block-diagonal preconditioners, but require significantly more storage. In addition,
as the number of processors increases, the performance of localized block-ILU precondi-
tioners becomes worse. In the limit of a large number of processors, a localized block ILU
preconditioner is equivalent to a block-diagonal preconditioner.

3.5.3 Deflation preconditioner

It is well known that the convergence of GMRES is related to the ratio of the magni-
tudes of the minimum and maximum eigenvalues of a matrix. A wide spread in these
values can result in poor convergence while a clustered set of eigenvalues will result in
better convergence. The purpose of a deflation preconditioner is to shift the smallest
eigenvalues of the matrix to a value of one, and in so doing, improve the convergence of
GMRES [60]. Unfortunately, the computation of exact eigenvalues and eigenvectors for
large matrices on parallel processors is unfeasible. However, approximate eigenvalues
and eigenvectors can be computed by solving the eigenvalue problem from the oblique
projection [38]

Hmu= θu, U=Vmu, (3.28)

where Hm is the upper Hessenberg matrix constructed during the Arnoldi process in
GMRES, θ is an eigenvalue of Hm (an approximate eigenvalue of A), u is the eigenvector
of the upper hessenberg matrix, Vm is the orthogonal set of m basis vectors generated by
the Arnoldi process, and U is the set of approximate eigenvectors of the matrix A.
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An alternative method is to use the harmonic projection to solve the following gener-
alized eigenvalue problem [39]:

Rmu= θ [QmV∗
m+1MVm]u U=MVmu, (3.29)

where

QmH̄=

(

Rm

0

)

, (3.30)

and M is the preconditioner corresponding to the existing set of eigenvalues as

M= In+UT−1UT, AMU=UT. (3.31)

Note that in Eq. (3.29), the square brackets indicate that the last row of the matrix product
is ignored. The harmonic projection has been shown to do a better job of preconditioning
than the oblique projection [64], and thus is implemented in the code using the QZ algo-
rithm. For every iteration of restarted GMRES, n deflation vectors are constructed, up to a
maximum of p deflation vectors, which are stored in the set U. Once the maximum num-
ber of deflation vectors has been reached, the following generalized eigenvalue problem
is solved to determine the eigenvectors corresponding to the minimum eigenvalues

(AU1)
∗AU1u= θ(AU1)

∗U1u, U2=U1u, (3.32)

where U1 is the basis of previously computed eigenvectors and new eigenvectors, and
U2 is the new basis of eigenvectors. More details about this approach can be found in the
literature [39].

Deflation preconditioners have been shown to work well in improving the conver-
gence of linear solvers for problems involving flow in porous media where extremal
eigenvalues exist [30, 65]. Deflation preconditioners are easy to implement in a paral-
lel environment and the amount of required memory is quite small compared to ILU
preconditioners. The additional work required in implementing the preconditioner con-
sists of a series of dot products and computation on small matrices. In many cases, they
have been used as part of a two-stage preconditioner [34, 65].

3.5.4 Two-stage preconditioning implementation

A two-stage right preconditioner involves the implementation of two preconditioners M1

and M2 such that
AM1M2z=b. (3.33)

The solution vector is then obtained as

y=M2z, x=M1y. (3.34)

For this problem, the two stage preconditioner is constructed by using a block-diagonal
or localized block ILU preconditioner as the first preconditioner and the deflation pre-
conditioner as the second preconditioner. This makes logical sense because the precondi-
tioners complement one another in their purpose and construction. ILU preconditioners
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provide an approximate inverse to the matrix A, but require significant amounts of stor-
age. The quality of the preconditioner deteriorates with increasing numbers of proces-
sors. On the other hand, deflation preconditioners are not designed to be an approximate
inverse to the matrix A, but to shift the extremal eigenvalues towards one. They are easily
parallelizable, and the performance is independent of the number of processors.

3.5.5 Restarted GMRES implementation

One of the challenges of using a deflation preconditioner is designing a strategy for ob-
taining optimum convergence. If the simulation is converging quickly without the de-
flation preconditioner, it may not be necessary to implement the deflation stage of the
two-stage preconditioner. Another possibility is that a particular set of deflation vectors
is effective in converging the simulation, and thus it is desirable in that case not to have
any additional deflation vectors. There may be a case where deflation is not working
well, and the existing deflation vectors need to be thrown out and the deflation process
needs to be restarted from scratch. In addition, one must account for the fact that with
Newton’s method, the matrix changes throughout the solution process, and the deflation
vectors computed for one matrix may not work effectively for another matrix.

Taking into account all of these possibilities, an adaptive deflation algorithm is devel-
oped to enhance the convergence of restarted GMRES. The rms ratio δ is defined for a
given GMRES restart as

δ=
‖rs‖

‖re‖
, (3.35)

where the subscripts s and e represent the starting and ending residual vectors. The rms
ratio when deflation is not implemented is denoted as δnoD. Several other parameters are
defined as the absolute lower threshold δmin, the relative lower threshold γ, the absolute
higher threshold δmax, and the cycling restart number nc. The following algorithm is then
used to obtain good convergence for restarted GMRES using a two-stage preconditioner
with deflation:

1. For the first instance of restarted GMRES, do not use deflation, but compute δnoD.

2. If δ<δmin, make no changes to the second stage preconditioner.

3. If δ<γδnoD, make no changes to the second stage preconditioner.

4. If δ>δmax and the maximum number of deflation vectors has been reached, throw out all existing

deflation vectors and restart without deflation vectors.

5. If δ>δnoD and m mod nc =0, throw out all existing deflation vectors and start over.

6. If none of the above apply, add n new deflation vectors up to a maximum of p deflation vectors.
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4 Results and discussion

Five different low porosity microstructures (LPM) and five different high porosity mi-
crostructures (HPM) were generated for this study and a number of different parametric
studies were performed for different preconditioners, GMRES search directions and de-
flation parameters (n, p, nc, δmax, δmin, γ). The convergence behavior for each case was
analyzed. In order to provide a measure for comparison, the total number of iterations
and total runtime in each case is determined by the total number of search directions re-

(a) Oxygen concentration for HPM 2 (b) Water vapor concentration for HPM 2

(c) Proton potential for HPM 2 (d) Electron potential for HPM 2

(e) Temperature for HPM 2 Figure 6: Solution profiles for HPM 2.
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(a) Oxygen concentration for LPM 4 (b) Water vapor concentration for LPM 4

(c) Proton potential for LPM 4 (d) Electron potential for LPM 4

(e) Temperature for LPM 4 Figure 7: Solution profiles for LPM 4.

quired to obtain a linear residual that is less than 8×10−7. For each case, the matrix had
approximately 350 million nonzero entries. Solution contours for several geometries are
shown in Figs. 6 and 7.

Each case was run for a maximum of 2 hours, with 3 restarted GMRES cycles for each
Newton iteration, and 100 GMRES search directions for each GMRES cycle. In the cases
where the number of GMRES search directions was changed, the number of Newton
iterations was changed accordingly so that there was still a maximum of 12,000 total
search directions. The baseline parameters are given in Table 8.

The convergence behavior for each case is compared as a function of computational
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Table 8: Baseline parameters used for each simulation. Each parametric study investigates the effect of changing
one of these parameters.

Parameter Value

Preconditioner ILUp-D

n 2

p 4

nc 5

δmax 0.9

δmin 0.3

γ 0.5

runtime and the number of search directions. Due to the computational expense of run-
ning each case, the runtimes were only computed from one simulation. In order to make
more definitive statements about the efficiency of each approach, multiple simulations
would have to be run to compute average runtimes.

4.1 Comparison of preconditioners

Four different preconditioners were used as the first level preconditioner: block-diagonal
(BD), localized block ILU(0) (LBILU(0)), localized block ILU(1) (LBILU(1)), and localized
block ILUp(18) (LBILUp(18)). Cases were run with and without deflation as a second
stage preconditioner (-D). The total number of iterations required for convergence in each
case is shown in Tables 9 and 10, while the total amount of runtime for each case is shown
in Tables 11 and 12.

Tables 9 and 10 show that the total number of GMRES search directions required for
convergence varies considerably depending on the preconditioner that is used, whether

Table 9: Number of total iterations for convergence to a linear residual of 8×10−7 for different preconditioners
on different low and high porosity (LPM and HPM) geometries. A value of N is given for the case of a
preconditioner that did not converge within 2 hours of runtime.

Preconditioner BD BD-D LBILU(0) LBILU(0)-D

HPM1 Iterations N N N 9986

HPM2 Iterations N N N 15823

HPM3 Iterations N 14561 14669 6767

HPM4 Iterations N N N 7791

HPM5 Iterations N N N 7754

LPM1 Iterations N 17346 14273 5600

LPM2 Iterations N N 15311 6780

LPM3 Iterations N N 10292 5447

LPM4 Iterations N 16434 10396 5149

LPM5 Iterations N 19672 8253 4467
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Table 10: Number of total iterations for convergence to a linear residual of 8×10−7 for different preconditioners
on different geometries. A value of N is given for the case of a preconditioner that did not converge within 2
hours of runtime.

Preconditioner LBILU(1) LBILU(1)-D LBILUp(18) LBILUp(18)-D

HPM1 Iterations 11481 6059 9328 6498

HPM2 Iterations N 9092 N 10126

HPM3 Iterations 6793 4632 6726 3691

HPM4 Iterations 9407 5758 7780 4059

HPM5 Iterations 9960 6169 6086 4872

LPM1 Iterations 6897 3289 2929 3326

LPM2 Iterations 6311 4569 8122 4062

LPM3 Iterations 5967 3477 4788 3079

LPM4 Iterations 6817 3834 6192 2556

LPM5 Iterations 6136 2989 4465 2968

or not a high porosity or low porosity microstructure is considered, and the specific de-
tails of each microstructure. Low porosity microstructures require a small number of it-
erations to reach convergence compared to high porosity microstructures. This has been
observed previously for a very similar numerical problem [63]. The three preconditioners
which obtained convergence within two hours for very case were LBILU(0)-D, LBILU(1)-
D, and LBILUp(18)-D. In general, as the complexity of the preconditioner is increased,
the total number of iterations required for convergence decreases as well. In most cases,
the implementation of deflation as a second stage preconditioner significantly reduces
the total number of search directions required for convergence.

In order to compare the computational efficiency of each algorithm, it is important to
consider the runtime required for convergence. Adding deflation as a second stage pre-
conditioner reduces the number of iterations required for convergence, but it also adds
additional computational overhead. Similarly, using LBILU(1) and LBILUp(18) as a first
stage preconditioner results in a smaller number of iterations required for convergence
compared to LBILU(0), but the additional memory requirements and the larger stencil
required for LBILU(1) and LBILUp(18) increase the computational runtime. Table 11 and
Table 12 show that as far as the total amount of runtime is concerned, LBILUp(18)-D
normally converges simulations in the shortest amount of time, while LBILU(0)-D and
LBILU(1)-D are not far behind.

HPM2 took the longest time to converge for the high porosity microstructures, while
LPM2 took the longest time to converge for the low porosity microstructure. Plots of the
convergence behavior as a function of time for HPM2 and LPM2 are shown in Fig. 8 and
Fig. 9 respectively. It is evident in each case that the implementation of deflation as a
second stage preconditioner significantly improves the convergence with time. The time
convergence of HPM1 and LMP1 are shown in Figs. 10 and 11. For HPM1, LBILU(1)-D
converged the quickest, while for LPM1, LBILUp(18) converged the quickest.
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Table 11: Amount of runtime required for convergence to a linear residual of 8×10−7 for different preconditioners
on different geometries.

Preconditioner BD BD-D LBILU(0) LBILU(0)-D

HPM1 Time (sec) N N N 3985

HPM2 Time (sec) N N N 6519

HPM3 Time (sec) N 5100 5534 2631

HPM4 Time (sec) N N N 3176

HPM5 Time (sec) N N N 3126

LPM1 Time (sec) N 6780 5903 2181

LPM2 Time (sec) N N 5710 2679

LPM3 Time (sec) N N 3848 2125

LPM4 Time (sec) N 5949 3586 2092

LPM5 Time (sec) N 6718 2957 1669

Table 12: Amount of runtime required for convergence to a linear residual of 8×10−7 for different preconditioners
on different geometries.

Preconditioner LBILU(1) LBILU(1)-D LBILUp(18) LBILUp(18)-D

HPM1 Time (sec) 6292 3218 4804 3965

HPM2 Time (sec) N 5312 N 5931

HPM3 Time (sec) 3803 2766 3964 2392

HPM4 Time (sec) 5172 3171 4441 2473

HPM5 Time (sec) 5116 3257 3371 2927

LPM1 Time (sec) 3814 1752 1699 1993

LPM2 Time (sec) 3592 2634 4500 2479

LPM3 Time (sec) 3371 2004 2601 1882

LPM4 Time (sec) 3698 2134 3220 1742

LPM5 Time (sec) 3284 1722 2484 1780
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Figure 8: Plot of linear residual as a function of time for different preconditioners for HPM2.
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Figure 9: Plot of linear residual as a function of time for different preconditioners for LPM2.
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Figure 10: Plot of linear residual as a function of time for different preconditioners for HPM2.
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Figure 11: Plot of linear residual as a function of time for different preconditioners for LPM2.
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4.2 Comparison of number of deflation vectors

The number of deflation vectors computed at each GMRES iteration (n) and the total
number of deflation vectors (p) was changed for each case, and the number of iterations
required for convergence are shown in Tables 13 and 14, while the total amount of time
required for convergence is shown in Tables 15 and 16. There is a wide spread in the
results. Clearly, the values of n and p are important parameters in determining the con-
vergence of the simulations. As n and p increase, the total amount of computational work
required to implement the deflation preconditioner increases as well, due to additional
floating point operations and communication that is required.

The combination of n = 2 and p = 4 gave the shortest time for convergence in fifty
percent of the cases. Using high values for n and p usually took 30-40 percent longer to
converge compared to n=2 and p=4. However, for LPM1, having no deflation vectors
resulted in the shortest convergence time. A plot of the convergence of HPM3 with time
is shown in Fig. 12. Deflation improves the convergence, especially when lower values
of n and p are used.

Table 13: Number of total iterations for convergence to a linear residual of 8×10−7 for different numbers of
deflation vectors on different geometries.

Deflation Vectors 0/0 2/1 4/1 4/2
HPM1 Iterations 9328 6679 6798 6498
HPM2 Iterations N 8755 11575 10126
HPM3 Iterations 6726 4098 3934 3691
HPM4 Iterations 7780 5079 5842 4059
HPM5 Iterations 6086 5287 6196 4872
LPM1 Iterations 2929 2851 3156 3326
LPM2 Iterations 8122 4097 4067 4062
LPM3 Iterations 4788 3496 3369 3079
LPM4 Iterations 6192 3492 3091 2556
LPM5 Iterations 4465 3280 2848 2968

Table 14: Number of total iterations for convergence to a linear residual of 8×10−7 for different numbers of
deflation vectors on different geometries.

Deflation Vectors 8/2 8/4 16/4 16/8
HPM1 Iterations 8446 4995 8793 4726
HPM2 Iterations 9489 9047 10000 8289
HPM3 Iterations 4398 4151 4951 4582
HPM4 Iterations 5181 4899 6916 4493
HPM5 Iterations 5297 5372 6683 5878
LPM1 Iterations 3339 3379 3490 3384
LPM2 Iterations 4776 4482 5189 4722
LPM3 Iterations 3082 3094 3110 3877
LPM4 Iterations 3369 3039 3391 3459
LPM5 Iterations 3214 3189 3270 3599
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Table 15: Amount of runtime (sec) required for convergence to a linear residual of 8×10−7 for different numbers
of deflation vectors on different geometries.

Deflation Vectors 0/0 2/1 4/1 4/2
HPM1 Time (sec) 4804 3585 4051 3965
HPM2 Time (sec) N 5027 6401 5931
HPM3 Time (sec) 3964 2634 2322 2392
HPM4 Time (sec) 4441 2865 3451 2473
HPM5 Time (sec) 3371 3097 3736 2927
LPM1 Time (sec) 1699 1761 1930 1993
LPM2 Time (sec) 4500 2656 2509 2479
LPM3 Time (sec) 2601 2084 1972 1882
LPM4 Time (sec) 3220 2036 1848 1742
LPM5 Time (sec) 2484 1991 1771 1780

Table 16: Amount of runtime (sec) required for convergence to a linear residual of 8×10−7 for different numbers
of deflation vectors on different geometries.

Deflation Vectors 8/2 8/4 16/4 16/8
HPM1 Time (sec) 4975 3314 5331 3385
HPM2 Time (sec) 5306 5546 6205 5815
HPM3 Time (sec) 2618 2815 3289 3176
HPM4 Time (sec) 3225 3109 4115 3280
HPM5 Time (sec) 3160 3515 4376 3998
LPM1 Time (sec) 1975 2097 2320 2395
LPM2 Time (sec) 2727 2755 3117 3210
LPM3 Time (sec) 1936 2018 2175 2593
LPM4 Time (sec) 2124 1979 2219 2525
LPM5 Time (sec) 2006 2022 2241 2461
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Figure 12: Plot of linear residual as a function of time for different numbers of deflation vectors for HPM3.
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4.3 Comparison of restart parameters

Tables 17 and 18 show the total number of iterations required for convergence for each of
the ten microstructures when the restart parameter values are changed. The baseline case
refers to the simulation using the parameters listed in Table 8. The constant case refers
to a case where deflation vectors are computed for every GMRES restart and Newton
iteration and are never thrown out.

The implementation of the second stage deflation preconditioner at every GMRES
restart and Newton iteration (Constant) results in poor convergence. In most cases, in-
creasing the value of γ did not improve the convergence of the simulations. However,
using a value of γ= 0.8 reduced the number of required iterations by 20-25 percent for
HPM1 and HPM2. Decreasing the value of δmax to 0.8 had mixed results, with only five of
the ten microstructures showing a decrease in the total number of iterations. Increasing
the value of δmax to 0.95 only resulted in one of the ten microstructures showing a de-
crease in the total number of iterations required for convergence. Changing the cycling

Table 17: Number of total iterations for convergence to a linear residual of 8×10−7 for different restart
parameters on different geometries.

RP Baseline Constant γ=0.7 γ=0.8 δmax=0.8
HPM1 Iterations 6498 N 6498 5091 5294
HPM2 Iterations 10126 N 10126 7639 10126
HPM3 Iterations 3691 5378 3965 3597 3665
HPM4 Iterations 4059 N 3999 3928 4670
HPM5 Iterations 4872 N 4976 4948 4549
LPM1 Iterations 3326 3538 3326 2839 2996
LPM2 Iterations 4062 7222 4062 4451 4315
LPM3 Iterations 3079 4458 3123 3094 2962
LPM4 Iterations 2556 4890 2556 2556 2556
LPM5 Iterations 2968 4048 2968 2968 2832

Table 18: Number of total iterations for convergence to a linear residual of 8×10−7 for different restart
parameters on different geometries.

RP Baseline δmax=0.95 nc =10 δmin=0.5 δmin =0.7
HPM1 Iterations 6498 7689 7337 5291 5759
HPM2 Iterations 10126 7378 11254 6967 7183
HPM3 Iterations 3691 3691 4190 3658 3777
HPM4 Iterations 4059 4882 6057 5161 4441
HPM5 Iterations 4872 5843 5383 4881 5066
LPM1 Iterations 3326 3326 3399 3519 2977
LPM2 Iterations 4062 4392 3962 3801 4252
LPM3 Iterations 3079 3079 3811 2966 3088
LPM4 Iterations 2556 2556 3470 3251 3381
LPM5 Iterations 2968 2985 2764 2983 3026
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frequency to nc = 10 resulted in an increase in the total number of iterations required
for convergence for eight out of the ten microstructures. Increasing the absolute lower
threshold δmin reduced the total number of iterations required for convergence for HPM1
and HPM2, but did not significantly reduce the number of required iterations for other
microstructures.

4.4 Comparison of the number of GMRES search directions

Tables 19 and 20 show a comparison of the total number of iterations and total amount
of runtime required for convergence when the total number of GMRES iterations used at
each restart is changed. For every case except HPM2, the total amount of runtime does
not change significantly when the total number of GMRES search directions is changed.
When 50 GMRES search directions are used, the total number of iterations increases,
but the amount of required storage and computational work for each GMRES cycle is
significantly reduced. At higher numbers of GMRES search directions, the reverse is

Table 19: Number of iterations required for convergence to a linear residual of 8×10−7 for different numbers
of GMRES search directions on different geometries.

GMRES search directions 50 100 150 200
HPM1 Iterations 7854 6498 5593 5299
HPM2 Iterations 14271 10126 5573 4936
HPM3 Iterations 4678 3691 3870 3109
HPM4 Iterations 5745 4059 4429 3781
HPM5 Iterations 5906 4872 4735 4167
LPM1 Iterations 4879 3326 2866 2363
LPM2 Iterations 5198 4062 3537 3206
LPM3 Iterations 3795 3079 2808 2643
LPM4 Iterations 3156 2556 2673 2329
LPM5 Iterations 3653 2968 2684 2429

Table 20: Amount of runtime required for convergence to a linear residual of 8×10−7 for different numbers of
GMRES search directions on different geometries.

GMRES search directions 50 100 150 200
HPM1 Time (sec) 3893 3965 3722 4102
HPM2 Time (sec) 6239 5931 3724 4151
HPM3 Time (sec) 2379 2392 2797 2498
HPM4 Time (sec) 2836 2473 3083 3274
HPM5 Time (sec) 2947 2927 3244 3557
LPM1 Time (sec) 2475 1993 2127 1947
LPM2 Time (sec) 2667 2479 2479 2537
LPM3 Time (sec) 1917 1882 1992 2106
LPM4 Time (sec) 1654 1742 1878 1908
LPM5 Time (sec) 1901 1780 1902 1956
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true, where more storage and computational work are required for fewer GMRES cycles.
For HPM2, using 50 and 100 GMRES search directions is not sufficient to achieve good
convergence.

5 Discussion

Implementing deflation as a second stage preconditioner improves the convergence for
all but one of the considered cases. It also usually results in better convergence behavior
than a more sophisticated first stage preconditioner. LBILU(0)-D outperforms LBILU(1)
and LBILUp(18) in most cases. This is likely due to the fact that the effectiveness of
the deflation preconditioner is independent of the number of processors, whereas the lo-
calized block LBILU preconditioner deteriorates in quality as the number of processors
is increased. Additionally, LBILU(0)-D requires much less storage than LBILU(1) and
LBILUp(18), reducing the computational overhead of implementing the preconditioner.
The BD-D preconditioner did not perform as well as LBILU(0) in most cases. However,
there are a number of different parameters that might be altered in the second stage defla-
tion preconditioner, which might result in equivalent performance. Nonetheless, simula-
tions which use matrix-free GMRES may benefit from using a two-stage block-diagonal
deflation preconditioner, since only the diagonal blocks and the deflation vectors are re-
quired to be stored, and the performance is much better than a simple block-diagonal
preconditioner.

It is clear from Table 17, that the implementation of the second stage deflation precon-
ditioner at every GMRES restart and Newton iteration (Constant) results in poor conver-
gence. In previous works [38, 39], it is shown that when not enough GMRES iterations
are used at each restart, implementing deflation at each restart will not result in good
convergence. The fact that only 100 search directions are used for a matrix with a dimen-
sion of 32 million indicates that this is likely what is happening here. Another interesting
observation is that in previous works [38, 39], increasing the number of deflation vectors
improved the convergence of restarted GMRES. However, in this case, the convergence
did not improve significantly when the number of deflation vectors was increased.

This then begs the question as to why the convergence of the simulation is improved
by implementing the algorithm in Section 3.5.5. In the solution process, the approximate
eigenvalues obtained from solving equation 3.29 were observed to be two to three orders
of magnitude less than the approximate eigenvalues obtained from equation 3.32. The
improvement in convergence can be attributed to the fact that with the preconditioning
matrix changing at every GMRES restart and Newton iteration, this reduces the effects
of stalling often seen with restarted GMRES, where the same preconditioning matrix is
used for every GMRES restart. In essence, a different linear problem with different eigen-
spectra is solved at every GMRES restart.

The large variance in the results in Table 15, Table 16, Table 17 and Table 18 illus-
trates the challenge of developing a deflation preconditioner with optimum parameters.
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Making adjustments to the restart parameters and the number of deflation vectors will
improve the convergence of some simulations but not others depending of the details of
the reconstructed microstructure.

Future numerical work will focus on refining the adaptive deflation algorithm to ob-
tain optimum convergence. In addition, the LBILU algorithm will be modified so that the
localized block ILU decomposition will use matrix entries from neighboring processors
as well. On the physical modelling front, future developments will need to account for
two-phase flow to extend the applicability to a broader range of operating conditions.
Finally, multi-scaling strategies are required to couple pore scale models to macroscopic
models of complete fuel cells which have spatial resolution that are several orders of
magnitude coarser.

6 Conclusions

The preconditioning strategies presented are scalable and should prove effective for mas-
sively parallel simulations of other non-linear porous media problems. For most of the
considered PEMFC catalyst layer simulations, implementing deflation as a second-stage
preconditioner with dynamic restarting improves the convergence of restarted GMRES.
The convergence behavior will vary depending on the number of deflation vectors and
the values of the restart parameters. Changing the number of GMRES search directions
did not significantly affect the total runtime for most simulations. It is unlikely that the
improved convergence is not due to an accurate approximation of an eigenvector of the
matrix, but rather due to the changing of the matrix problem at each GMRES restart.
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Nomenclature

Variables

1Pt value is 1 at platinum reaction sites and 0 elsewhere
~A outward normal pointing area vector
A matrix for linear problem
a relative humidity
b right hand side of linear problem
c gas concentration
c1 membrane conductivity curve-fitting parameter
c2 membrane conductivity curve-fitting parameter
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c3 membrane conductivity curve-fitting parameter
c4 membrane conductivity curve-fitting parameter
c5 membrane conductivity curve-fitting parameter
c6 membrane conductivity curve-fitting parameter
D gas diffusivity
Erev

c activation energy
F Faraday’s constant
Hm Hessenberg matrix constructed during Arnoldi process of GMRES
Im Identity matrix
i0 exchange current density
k thermal conductivity
l length
M preconditioning matrix for linear problem
m mass
n number
nc cycling restart number
nd electro-osmotic drag coefficient
p pressure
p1 saturation pressure curve-fitting parameter
p2 saturation pressure curve-fitting parameter
p3 saturation pressure curve-fitting parameter
p4 saturation pressure curve-fitting parameter
Q solution variable vector
Qm orthonormal matrix formed from Q-R decomposition of Hm

R residual vector
Rm upper triangular matrix formed from Q-R decomposition of Hm

Ru Universal gas constant
r radius
S source term
T matrix used in deflation
T Temperature
U approximate eigenvector of A
u deflation eigenvector
V orthogonal set of basis vectors generated by the Arnoldi Process
x solution vector for linear problem
y mole fraction
y intermediate vector for preconditioned linear problem
z z position
z intermediate vector two-stage preconditioned linear problem

Greek Symbols

αc cathodic charge transfer coefficient
Γ flux
γ reaction order
δ rms ratio
η overpotential
θ deflation eigenvalue
µ platinum loading
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Π Peltier heat coefficient
ρ density
σ conductivity
φ potential
Ω volume

Subscripts

b baseline
bd block diagonal
cath cathode
cond conductive
d diffusive
dom computational domain
e electron
eod electro-osmotic drag
H2O water vapor
i solution variable index
Kn Knudsen
ILU incomplete LU
m membrane
max maximum
min minimum
n face index
N2 nitrogen
noD no Deflation
O2 oxygen
part particle
p proton
Pt platinum
reac reactive
re f reference
s solid
sat saturation
T heat

Superscripts

∗ reference value for electrochemical reaction
e end
i cell index
j cell index
k cell index
s start
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