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Abstract. In this paper, we study a class of contact smoothed particle hydrodynamics
(SPH) by introducing Riemann solvers and using high-order limiters. In particular, a
promising concept of WENO interpolation as limiter is presented in the reconstruction
process. The physical values relating interactional particles used as the initial values of
the Riemann problem can be reconstructed by the Taylor series expansion. The contact
solvers of the Riemann problem at contact points are incorporated in SPH approxima-
tions. In order to keep the fluid density at the wall rows to be consistent with that of
the inner fluid wall boundaries, several lines of dummy particles are placed outside
of the solid walls, which are assigned according to the initial configuration. At last,
the method is applied to compressible flows with sharp discontinuities such as the
collision of two strong shocks and the interaction of two blast waves and so on. The
numerical results indicate that the method is capable of handling sharp discontinuity
and efficiently reducing unphysical oscillations.

AMS subject classifications: 76N15, 35L03
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1 Introduction

In the past decade, a number of mesh-free methods such as material point method (MPM)
[1], reproducing kernel particle method (RKPM) [2], smoothed particle hydrodynam-

∗Corresponding author. Email addresses: zhangxy.math@gmail.com (X. Zhang), haiyan.tian@usm.edu (H.
Tian), Leihsin.kuo@eagles.usm.edu (L. Kuo), chenwen@hhu.edu.cn (W. Chen)

http://www.global-sci.com/ 425 c©2013 Global-Science Press



426 X. Zhang et al. / Commun. Comput. Phys., 14 (2013), pp. 425-442

ics (SPH) [3], radial basis function-based differential quadrature (RBF-DQ) [4], and the
method of particular solutions (MPS) [5], have become the most important research top-
ics in computational mechanics. These methods are able to approximate an unknown
function or its derivatives on a set of scattered nodes within the local support. Since
the meshless methods do not require mesh for spatial discretization, they do not achieve
the accuracy of the Riemann-based methods for most ideal gas problems, but they have
advantages for many complex problems.

The smoothed particle hydrodynamics (SPH) method is a fully Lagrangian, mesh-
less method which was originally devised to simulate a wide variety of problems in
astrophysics involving motion of compressible fluid masses at different spatial scales.
Unlike some traditional methods such as finite-difference (FD), finite volume method
(FVM) and finite element method (FEM), the SPH is easy to deal with complicated flow
phenomena involving arbitrary geometries. Moreover, it is simple for solving two- and
three-dimensional problems. The crucial idea of the method is that a smoothing ker-
nel is introduced to approximate functions and their spatial derivatives originating from
the interactions of neighboring particles. At present the method has become a useful
tool for applications in numerous domains, including free surface and interfacial flows,
multi-phase, magnetohydrodynamics, high-velocity impacts, penetration, shock damage
in solids and explosion phenomena.

In general, the classical SPH suffers from several perplexing problems, for example,
the stability and the consistency issues. The SPH gives shock profiles that are not as sharp
as those of exact Riemann solutions and that show unphysical wiggle. In order to achieve
high order accuracy, a lot of reformulations of SPH for handling strong shock phenomena
were reported. Campbell applied the penalty formulation to enforce the contact condi-
tion [6]. Monaghan [7] introduced an artificial viscosity term into the motion and thermal
energy equations to handle shocks. Monaghan [8] devised a modified form of the dissi-
pative terms. In this case, the SPH equations were formulated using the total energy
equation rather than the thermal energy equation. Inutsuka [9], Parshikov [10, 11], Cha
and Whitworth [12] proposed similar schemes where the force acting on each particle is
determined by solving the Riemann problem in the vicinity of the midpoint between each
pair of interacting particles. This procedure is analog to that employed in Godunov-type
schemes which use a Riemann solver to calculate the flux at each cell interface. More
recently, Ferrari et al. [13] devised a SPH method that relies on the use of Godunov-type
schemes in Lagrangian coordinates. Above methods are the combination of standard
SPH with Riemann solutions. Any pair of interacting particles is treated as the left and
right states of the Riemann problem, with the changes between the two particles being
taken along the line joining them. As expected, the SPH formulations based on Riemann
solvers have performed well for solving sharp discontinuities of a variety of shock prob-
lems. Sigalotti [14, 15] also provided a family of formulations of SPH which do not rely
on Riemann solvers but on an adaptive density kernel estimation (ADKE). The particle
distribution is redefined at appropriate intervals in accordance with a previous update of
smoothing length. With regard to SPH based on Riemann solvers, any pair of interacting
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particles is treated as gradually piece-wise constant where every particle possesses cell
which corresponds to the classical piece-wise constant initial condition of the Riemann
problem. This means that all of the first and higher-order spatial derivatives of the initial
condition for the classical Riemann problem away from the origin vanish identically. So
higher-order approximation is necessary for the formations of SPH.

The motivation of the paper is to formulate a family of higher order accuracy SPH,
which is stable and efficient for strong and weak shocks as well as rarefaction waves. We
intend to reconfigure initial conditions of the Riemann problem by high-order interpola-
tion or alternative fitting method. We introduce three types of limiters based on Taylor
series expansions and high-order interpolation. The initial states of the Riemann prob-
lem between each pair of interacting particles can be obtained. The contact solvers of
the Riemann problem can be achieved by exactly solving Riemann problem, which are
used to discrete the fluid dynamic equations. It is obviously different from the classical
piece-wise constant data Riemann problem.

2 The outline of classical SPH

2.1 Key formulation

Smoothed particle hydrodynamics is a Lagrangian method which uses the kernel func-
tion to approximate physical quantities of each particle in a domain based on the relation
of neighbor particles instead of background mesh. A function f (x) is approximated in
a continuous form by an integral of the product of the function and a kernel function
W(x−x′,h) as follows

〈 f (x)〉=
∫

Ω
f (x′)W(x−x′,h)dx′ . (2.1)

The kernel estimation of the spatial derivative at the point x is

〈∇ f (x)〉=−
∫

Ω
f (x′)∇W(x−x′,h)dx′, (2.2)

where W(x−x′,h) is a smoothing function that tends to the Dirac delta function as h tends
to zero, the brackets ′′〈 〉′′ denote kernel approximation, h is a parameter that defines the
size of the kernel support known as the smoothing length. Using the concept of unitary
volume and kernel approximation, we represent the particle approximation for f (x) and
its derivative at a point xi as

〈 f (xi)〉=
N

∑
j=1

mj

ρj
f (xj)Wij, (2.3)

〈∇ f (xi)〉=
N

∑
j=1

mj

ρj
f (xj)∇iWij, (2.4)
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where N is the number of interpolation points within the compact support of radius 3h,
the subscript j refers to a surrounding particle, Wij =W(xi−xj,h) and ∇iWij denotes the
gradient of W(xi−xj,h) with respect to the coordinates of the particle i and ∂Wij/∂xi =
∂W(xi−xj,h)/∂xi . The more details of the SPH formation are given in [14, 17, 22]. Since
Wij is a function of the distance r= |xi−xj| between the particles i and j, we obtain the
equation

∇iWij =
∂Wij

∂xi
=

xi−xj

hr
W ′

ij, (2.5)

where W ′
ij denotes the first-order derivative with respect to the variable q= r/h. Accord-

ing to the relation ∇ f = 1
ρ∇(ρ f )− f

ρ∇ρ, an alternative representation of the gradient at

particle i is

〈∇ f (xi)〉=
1

ρi

N

∑
j=1

mj

(
f j− fi

)
∇iWij. (2.6)

When the above equation is applied to approximate the gradient of pressure in the equa-
tion of motion, it is not conservative exactly with regard to momentum. Based on the

relation ∇ f =ρ∇( f
ρ )+ρ( f

ρ2 )∇ρ, the symmetrized approximation is obtained,

〈∇ f (xi)〉=ρi

N

∑
j=1

mj

(
fi

ρ2
i

+
f j

ρ2
j

)
∇iWij. (2.7)

2.2 The discretizations of governing equations

The Euler equations for inviscid gas dynamics in Lagrangian form are given by





dρ
dt =−ρ∇·v,
dv
dt =− 1

ρ∇p,
de
dt =− p

ρ∇·v,

(2.8)

where ρ is density, v is the velocity vector, e denotes the specific internal energy and p
denotes pressure.

In SPH method, the fluid field is represented as a collection of N particles interacting
with each other through evolution equations. Consequently, the equations in Lagrangian
framework are respectively discretized by converting the continuous volume integrals
to sums over surrounding supporting points in a local domain. The density at particle
i is approximated by selecting density summation of neighboring particles according to
Eq. (2.3)

ρi =
N

∑
j=1

mjWij, (2.9)
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where the summation includes the contribution of particle i itself. Eq. (2.9) is used to dis-
cretize the continuity equation. If this form is chosen to calculate the density, variational
consistency will demand a symmetrized SPH representation for the equations of motion
and thermal energy [12].

The divergence of the velocity ∇·v is calculated by replacing Eq. (2.4), thus the conti-
nuity equation has another approximation of particle as follows

dρi

dt
=−ρi

N

∑
j=1

mj

ρj
v

β
j ·

∂Wij

∂x
β
i

. (2.10)

The gradient of 1 being 0 from Eq. (2.3), we have the following approximation of particles

ρi

N

∑
j=1

mj

ρj
v

β
i ·

∂Wij

∂x
β
i

=0. (2.11)

Obviously, adding the left-hand side of Eq. (2.11) and the right-hand side of Eq. (2.10),
we obtain the alternative representation for the continuity equation,

dρi

dt
=

N

∑
j=1

mjρi

ρj

(
v

β
i −v

β
j

)
·
∂Wij

∂x
β
i

, (2.12)

where v
β
j is the βth component of the velocity of the jth interacting fluid particle and x

β
i

is the βth Cartesian component of the position vector of the jth interacting fluid particle.
Similarly, the discretization of the equation of momentum corresponding to Euler equa-
tion without artificial viscosity term and artificial heat conduction term for isentropic
flows is

dv
β
i

dt
=

N

∑
j=1

mj

pi−pj

ρiρj

∂Wij

∂x
β
i

, (2.13)

which can be written another form in the following

dv
β
i

dt
=−

N

∑
j=1

mj

pi+pj

ρiρj

∂Wij

∂x
β
i

. (2.14)

The discretization of thermal energy equation can be written as

dei

dt
=

N

∑
j=1

mj

ρiρj
pi

(
v

β
i −v

β
j

)
·
∂Wij

∂x
β
i

. (2.15)

The thermal energy equation may also be discretized as

dei

dt
=

1

2

N

∑
j=1

mj

ρiρj

(
pi+pj

)(
v

β
i −v

β
j

)
·
∂Wij

∂x
β
i

. (2.16)
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In order to ensure variational consistency of the whole scheme, the symmetrized repre-
sentation for the smoothed version of the thermal energy equation is given as follows

dei

dt
=

1

2

N

∑
j=1

mj

(
pi

ρ2
i

+
pj

ρ2
j

)(
v

β
i −v

β
j

)
·
∂Wij

∂x
β
i

. (2.17)

In addition to the above SPH equations, the particle positions are evolved by solving the
equation

dxα
i

dt
=vα

i . (2.18)

In calculations of compressible fluid, an artificial viscosity term Πij is added into the
discrete equations. This is to dissipate postshock oscillations and to avoid particle inter-
penetration in high Mach number collisions. An excellent expression has been proposed
in [18]. But it may produce errors in the form of excessive heating, which are commonly
referred to as ′wall−heating′ errors. In order to reduce excessive wall-heating errors, an
artificial heat conduction term Hij is added into the specific internal energy in the litera-
tures [14, 15].

3 Formulations of the method

3.1 The SPH discrete form including contact solution

We want to use the result of the Riemann problem in the vicinity of the position of the
contact point Aij relevant to the interactional ith and jth particles in the support domain
of ith particle. Researchers such as Parshikov, Cha, Inutsuka and Ferrari have proposed
valuable research results [9–13]. This is achieved by modifying the values of v and p. The
most effective and direct means to combine SPH and the Riemann problem is to replace
p∗n

ij with pi and pj, replace v∗n
ij with vi and vj. The physical variables such as pressure

and density of particle i is determined by the physical variables surrounding it. The
expressions in Eqs. (2.13) and (2.14) have different forms, so is Eqs. (2.15) and (2.16). Tak-
ing into consideration its own contributions to approximation, we assign corresponding
weight coefficients positive numbers that are less than 1. So, the SPH equation (2.12)-
(2.16) can be converted into discrete forms including contact solution by pi+pj = 2p∗n

ij

and vR
i +vR

j =2v∗n
ij ,

dρi

dt
=2ρi

N

∑
j=1

mj

ρjh
(v∗n

ij −vR
i )W

′
ij, (3.1)

dv
β
i

dt
=−2

N

∑
j=1

mj

ρiρj
(p∗n

ij −λpi)
∂Wij

∂x
β
i

, (3.2)

dei

dt
=2

N

∑
j=1

(µ1 p∗n
ij +µ2 pi)mj

ρiρjh
(v∗n

ij −vR
i )W

′
ij, (3.3)
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where λ, µ1 and µ2 are positive weights that satisfy 0≤λ≤1, µ1+µ2=1, µi≥0. As a matter
of fact, Eq. (3.2) would take a convex combination of (2.13) and (2.14). Also, Eq. (3.3)
would take a convex combination of (2.15) and (2.16). It is noted that when choosing
λ = 1 and µ1 = 0, the contribution to the discretization is entirely derived from (2.13),
(2.15) and the contact discontinuity of the Riemann problem. However, an optimal choice
of weighted coefficients depends on the specific situation. Supposing, in this method,
that the functional values at the reference node i and its supporting node j form a local
Riemann problem, thus p∗n

ij and v∗n
ij can be obtained by exactly solving Riemann problem.

It should be noted here that
∂Wij

∂x
β
i

or W ′
ij in Eqs. (3.1)-(3.3) denotes the partial derivative

with respect to particle i, not to particle j. In the local region with point i as the centre,
the location of the center is fixed, so the partial derivative with respect to particle i is
essentially independent of its supporting particle j.

The choice of the smoothing function is related to the accuracy, efficiency and stability
of the resulting algorithm. The quintic spline is given as [16]

Wij =W(r,h)=ω0





(3−q)5−6(2−q)3+15(1−q)5, if 0≤q<1,

(3−q)5−6(2−q)3, if 1≤q<2,

(3−q)5, if 2≤q<3,

0, if q≥3,

(3.4)

where q= r/h and the normalization factor ω0 =7/(478πh2) for two-dimensional prob-
lems. Other kernels such as cubic B-Spline kernel [17], the modified Gaussian kernel [18],
and Quadratic kernels [19] have been proposed in related literatures.

3.2 The contact algorithm for interactional particles

In general, the conventional SPH method cannot distinguish the influence from upstream
or downstream. To overcome this problem, we take into consideration the directions
of wave propagations of the underlying hyperbolic system. Otherwise, non-physical
oscillations may be generated near steep gradients. It is noted that the scheme shown in
(3.1), (3.3) and (3.3) has only first-order accuracy for spatial approximation supposing that
the initial values for the Riemann problem between the reference point and its supporting
node remain constants. In terms of the capability of capturing shock, how to construct
the high-order Riemann solver is a very critical issue in this study.

Supposing that the Riemann problem is expressed as

PDE : ∂tu+∂x f (u)=0, (3.5)

IC : u(x,tn)=

{
uL(t

n), if on one side of Aij,

uR(t
n), if on the other side of Aij,

(3.6)
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Figure 1: Sketch of interactional particles. Support domain marked with dotted lines for a point xi is a sphere
of a certain radius that relates to the nodal spacing near the point xi. The contact state at the contact point
Aij at the axis R is denoted by p∗ij,v

∗
ij,ρ

∗
il and ρ∗jr. Every interacting particle has its own interpolation stencil

surrounding the points i and j.

where initial conditions uL(t
n) and uR(t

n) are extrapolated values of the smooth recon-
struction functions to both sides of the contact interface Aij, t= tn denotes current time
level.

We introduce a high-order interpolation for the scattered points to reconstruct the
initial data of the Riemann problem. In order to further explain this, a local coordinate is
designed, whose origin is Aij and whose orientation is along the outer normal from i to
j with the axis R. The local interpolation functions ui(x) and uj(x) taking particles i and
j as their centers can be constructed, respectively. A variation in the value of a physical
quantity of each particle i is relevant to every surrounding particle j within the interaction
distance kh. As a matter of fact, the particle interaction occurs at the contact interface Aij

which is located at the line between the reference particle i and its supporting particle
j. The distances from the position of the contact point Aij at the axis R to interactional
particles are proportional to their radiuses. Sketch of particle interaction is shown in
Fig. 1.

To evaluate the contact states p∗ij and v∗ij in Eqs. (3.1)-(3.3), the data for the Riemann

problem first need to be formulated so that correspond to the contact interface Aij be-
tween reference point i and its supporting point j. A detailed description of the recon-
structed technology will be given in next section.

3.3 The interpolated reconstruction for the Riemann problem

The initial conditions can be reconstructed for the Riemann problem by selecting one-
sided stencils from scattered particles. This in particular leads to an improvement upon
previous stencil selection strategies [10,11], especially near discontinuities. As a matter of
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fact, the quality of the utilized stencils has a significant impact on the performance of the
reconstruction. One should consider the following crucial aspects for the selection. First,
every stencil should be local relative to its corresponding center i. Second, in smooth
regions of the solution the stencils should be isotropic, whereas in non-smooth regions
of the solution, one-sided stencils should be preferred in order to avoid interpolation
across discontinuities, which would lead to non-physical oscillations. The amount of
particles surrounding particle i is uncertain. Moreover, an increasing order of polynomial
interpolation gives rise to Runge phenomenon on scattered points.

For simplicity, we first construct a high-order Riemann solver for the one-dimensional
compressible flow. Due to randomly distributed knots, it is difficult to employ polyno-
mial interpolation which is usually employed for the mesh-based methods such as finite
volume and finite difference. So, we resort to the Taylor series expansion of the function
and its derivatives at the reference point or the supporting points to evaluate uL(t

n) and
uR(t

n).

Take one arbitrary function f (x) as an example, which may be the function of pres-
sure, velocity and other flow variables. The Taylor series expansion with second-order
accuracy is given by

f (x)= fs+ f ′s∆x+O((∆x)2), x∈ (xs− 1
2
,xs+ 1

2
), (3.7)

where the subscript s denotes reference point xi or supporting point xj. Let ∆s= xs+ 1
2
−

xs− 1
2
. Unless special treatment is enforced, the spurious numerical oscillation around the

discontinuities possibly arises. So, a limiter is introduced into the reconstruction process.
Accordingly, the function f (x) is then expressed as

f (x)= fs+
δ f

∆s
∆x, (3.8)

where
δ f
∆s is the approximation of the derivative at the point s with

δ f =minmod( fs− fs−1, fs+1− fs). (3.9)

The minmod is upwind limiter. We notice that the derivatives in Eq. (3.8) at every knot
only have second-order spatial approximation. To achieve higher resolution, δ f in Eq. (3.8)
is taken as

δ f =minmod( f−
s+ 1

2

− f−
s− 1

2

, f+
s+ 1

2

− f+
s− 1

2

), (3.10)

where f±
s+ 1

2

and f±
s− 1

2

denote the left and right values at the interface xs+ 1
2

and xs− 1
2

of

the cell s, which can be reconstructed by WENO5 interpolation which has 5-point stencil
and is fifth-order accurate. C. W. Shu gave more details on how to reconstruct such an
interpolating function in [20]. The details will not be repeated here.
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Another anti-diffusive limiter can be given in the following form

f̃+
s+ 1

2

= fs+minmod( f+
s+ 1

2

− fs, fs− fs−1, fs+1− fs), (3.11)

f̃−
s+ 1

2

= fs+1−minmod( fs+1− f−
s+ 1

2

, fs+1− fs, fs+2− fs+1), (3.12)

δ f =minmod( f̃−
s+ 1

2

− f̃−
s− 1

2

, f̃+
s+ 1

2

− f̃+
s− 1

2

). (3.13)

The limiter given by Eq. (3.9) is denoted as limiter 1. The limiters in Eqs. (3.10)-(3.13)
are denoted as limiter 2 and limiter 3, respectively. In contrast, the anti-diffusive fifth-
order WENO reconstruction has an obvious improvement on the smearing of the contact
discontinuity and oscillations. With these limiters, the new functional values relating to
the reference node i and its supporting node j are reconstructed which form initial data
of local Riemann problems. The exact Riemann solver p∗ij,v

∗
ij,ρ

∗
il and ρ∗jr can be obtained

at the contact point Aij by exactly solving one-dimensional Riemann problem (3.5) and
(3.6). Solving process for the Riemann problem will not be repeated again, see [21] for
more details.

As for the extension of the method to multidimensional problems, the generalization
of the scheme is not straightforward. Due to arbitrary distribution of scattered particles,
it is troublesome to reconstruct the initial data of the Riemann problem. We may do this
through the RBF interpolation for the scattered points or the Taylor series expansion.
In the latter case, take a two-variable function f (x,y) as an example, the Taylor series
expansion with second-order accuracy is given by

f (x,y)= f (xs ,ys)+ fx(xs,ys)∆x+ fy(xs,ys)∆y+O(ρ2), (3.14)

where ρ=
√

∆x2+∆y2, the subscripts s denotes reference point (xi,yi) or supporting point
(xj,yj). Similarly, the two partial derivatives at the point (xs,ys) in Eq. (3.14) can be ap-
proximated by introducing upwind limiter. Suppose the derivative fx(xi,yi) can be de-
noted as

fx(xi,yi)=
δ f

∆x
, (3.15)

where δ f =minmod( fi− f j), j=1,2,··· ,Ni. As shown in Fig. 1, Ni denotes the number of
supporting points within the interaction distance kh.

4 Numerical tests

In the section we present numerical examples as applied to one dimensional compressible
Euler equation to validate effectiveness of the proposed SPH method. We provide some
examples with strong discontinuities. For comparisons we also run the conventional
SPH, the contact SPH (HSPH) algorithm, the contact SPH with three kinds of limiters.
All SPH computational schemes do not include artificial viscosity term and artificial heat
conduction term. The smooth length is taken as hij =(hi+hj)/2.
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4.1 The Sod shock-tube problem

At first, we suppose a diaphragm is located at x=0 which separates two regions of con-
stant density and pressure. The initial conditions are given by ρL =1.0, pL =1.0, eL =2.5
for left state (x < 0) and ρR = 0.25, pR = 0.1795, eR = 1.795 for right state (x > 0). The
same initial parameters were used in [14]. The gas on the left of the initial discontinuity
is represented by 320 particles of equal mass, yielding a uniform spacing δx= 0.001875
and the remaining 80 particles were placed to the right side yielding a uniform spacing
δx=0.0075 covering the interval −0.6≤ x≤0.6. The compressible fluid satisfies ideal gas
equation of state written as p=(γ−1)ρe, where γ is the adiabatic index. Fig. 2 shows the
results at t=0.25 when the diaphragm broken flashily.
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Figure 2: Numerical results with different
limiters for density, pressure, velocity plots
at time t = 0.25 units. Dashed line repre-
sents exact solution. Delta line indicates
the numerical results as calculated using
conventional SPH with artificial viscosity.
Solid line represents the numerical result
with standard SPH without artificial viscos-
ity. Star line denotes the numerical solution
as calculated using contact SPH without
limiter. Square line, circle line and gradient
line represent the numerical solutions ob-
tained with limiter 1, limiter 2 and limiter
3, respectively.

We may see that the initial discontinuity evolves into three types of discontinuities
consisting of rarefaction wave, contact discontinuity and shock wave. In particular, when
a classical SPH scheme without artificial viscosity is employed, the profiles denoted by
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solid lines for density, pressure and velocity are severely affected by the presence of un-
physical wiggles near the contact discontinuity and shock wave. Furthermore, the linear
stability of the method is clearly affected by the artificial viscosity. The amplitude of the
numerical oscillations is reduced when the artificial viscosity is introduced, see the lines
denoted by symbol ′△′.

It is noted that the excessive numerical diffusion across several points arises from the
density plots at both the shock and contact discontinuity. When the contact solutions of
Riemann problem and three kinds of limiters are used, we may see that higher accuracy
and steeper representation of wave front can be achieved, see the density plot. The lines
denoted by symbols ′

✷
′, ′◦′ and ′∇′ indicate respectively the calculated solutions with

′limiter1′ , ′limiter2′ and ′limiter3′ , which reproduce the exact ones (dashed lines) with
very good accuracy.

4.2 The shock-tube problem

We further test another shock-tube problem by using different numbers of particles and
initial conditions of the Riemann problem. It can be seen that the left and the right regions
of the tube are separated by a diaphragm which is filled by the same gas with different
physical states. After bursting of the diaphragm, the discontinuity breaks into leftward
moving and rightward moving waves, which are separated by a contact discontinuity.
The initial conditions are given by ρL =1, pL =1, vL =0 for left-side state x<0 and ρR =
0.125, pR = 0.1, eR = 0 for right-side state x > 0, with γ= 1.4. Note that the same initial
parameters were used in [21]. The 600 uniformly distributed particles are placed on each
side of the initial discontinuity. The spatial range is −0.6≤x≤0.6. The initial spatial step
is uniformly ∆x= 0.002. The initial smoothing length is set to h0 = 3∆x. The calculation
was carried out with a constant time step ∆t=2.5×10−4.

The solution profiles are shown in Fig. 3 for density, velocity and pressure as com-
pared to the exact ones denoted by dashed lines at t= 0.24. The proposed contact SPH
with limiters can give steep representation of wave fronts that has the ability of capturing
the possible discontinuity and shock wave.

4.3 The shock-tube with a strong shock

The test model deals with a Riemann problem whose initial data are given by ρL =1.5×
103, vL = 0, pL = 3.0×104, eL = 10.0 for left-side state x < 0 and ρR = 1.2×103, vR = 0,
pR=1.0×104, eR=4.16667 for right-side state x>0, with γ=1.4, see [11]. The calculation
is implemented by using 400 distributed particles. 320 particles are uniformly placed on
the left side of x = 0 and 80 particles on the other side. The computational interval is
−0.6≤ x≤0.6. The time step is ∆t=0.0004. The numerical solutions are shown in Fig. 4
as compared to the exact one denoted by dashed line at t=0.04.

The solution to this problem consists of a left moving shock, moving slowly to the left,
a right traveling contact discontinuity and a shock wave moving to the right. We see that
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Figure 3: Density, pressure and velocity pro-
files for shock tube problem as calculated
using the contact SPH and limiters with
600 particles. The numerical solutions are
compared with the exact solution at time
t=0.24 units. Dashed line represents exact
solution. Square line, circle line and delta
line represent the numerical solutions ob-
tained with limiter 1, limiter 2 and limiter
3, respectively.

using standard SPH without artificial viscosity a large amplitude oscillations are caused
for the density, velocity and pressure in the whole star region of the flow. When contact
solvers of the Riemann problem and limiter are introduced, the contact discontinuity is
now very well solved. Across the contact discontinuity the velocity and pressure are
continuous, while the density is discontinuous.

4.4 The blast wave

We now test the method on the blast wave problem used in [21], also see the litera-
ture [14]. The problem with shock Mach number approximate 200 involves extremely
supersonic flows. The initial conditions are given by ρL =1, pL =1000, eL =2500 for left-
side state x< 0 and ρR = 1, pR = 0.01, eR = 0.0254 for right-side state x> 0, with γ= 1.4.
For calculation, 1000 uniformly distributed particles are placed on each side of the initial
discontinuity. The spatial range is −1≤x≤1. The initial spatial step is uniform ∆x=0.001
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Figure 4: Numerical results of the shock-
tube problem containing a very strong
shock as calculated with 400 particles, us-
ing conventional SPH and the contact SPH
with limiters. The numerical solutions are
compared with the exact one at time t=0.04
units. Dashed line represents exact solu-
tion. Star-solid line represents the numeri-
cal results with standard SPH without arti-
ficial viscosity. Square line, circle line and
gradient line represent the numerical solu-
tions obtained with limiter 1, limiter 2 and
limiter 3, respectively.

and the initial smoothing length is set to h0=1.5∆x. The calculation was carried out with
a constant time step ∆t=0.5×10−6.

In contrast to above shock-tube test, the initial pressure of the gas on the left-hand
side is 105 times that of the right-hand side. The blast wave problem is seen as a severe
test which produces a sharp spike in the density variation just behind the shock. The
conventional SPH does not work well for this test and gives an inaccurate description of
the rarefaction wave and wrong post-shock values of the pressure and velocity, while the
solution with the contact SPH and limiters matches the exact one.

The results for this test case are shown in Fig. 5 at t=0.0075. The position of the shock
which locates at x = 0.1764 is very well compared with the exact solution denoted by
dashed line. The density and pressure plots reproduce the analytical solutions with good
accuracy except that there is a slight increment of the sharp density spike and a further
reduction of the pressure plot in the star region of the flow.
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Figure 5: Numerical results for the blast wave problem as calculated using contact solvers of Riemann problem
and three types of limiters with 1000 particles at time t = 0.0075 units. The numerical solutions are compared
with the exact one. Dashed line represents exact solution. Square line, circle line and gradient line represent
the numerical solutions obtained with limiter 1, limiter 2 and limiter 3, respectively.

4.5 Collision of two strong shocks

We now consider the collision of two strong shocks which is the implosion of an ideal
gas conceived in [21]. The initial conditions are given by ρL = 1.0, vL = 0, pL = 0.01 for
left-side state x<0 and ρR=1.0, vL=0, pR=100. 1000 uniformly distributed particles are
placed on spatial range −1≤ x ≤ 1. The calculation is carried out with a constant time
step ∆t=1×10−5.

In particular, the problem is known to be a computationally intractable model pro-
ducing a sharp spike in the density behind the shock. The conventional SPH fails to give
the representation of wave fronts and correct post shock values of the density, pressure
and velocity. Even, the computational process is probably terminated.

Fig. 6 compares the numerical solutions as obtained using contact SPH and three
types of limiters. We also compare the simulated results with the exact solution denoted
by dashed line at t = 0.035. Its solution consists of a left shock and a right rarefaction
which are separated by middle contact discontinuity. We note that a sharp density spike
forms when the two blast waves collide. The contact SPH with limiter may produce
a more accurate solution except for the small wiggles in the density at the top of the
contact discontinuity and shock wave, which in turn cause the oscillations in pressure
and velocity plots. In addition, some weak disturbance is seen in front of rarefaction
wave. The positions of contact discontinuity and shock wave match the exact solution.

From above examples it can be seen that the worst relative errors occur in the po-
sitions of the rarefaction heads and tails, the postshock values while the position of
the contact discontinuity is well reproduced by the numerical solution. In contrast to
grid-based formulations such as finite element method and finite difference method, the
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Figure 6: Numerical results for the collision of two strong shocks as calculated using three types of limiters as
compared to the exact solution at time t = 0.035 units. Dashed line represents exact solution. Square line,
circle line and gradient line represent the numerical solutions obtained with contact solution of Riemann problem
and limiter 1, limiter 2 and limiter 3, respectively.

shock-capturing scheme proposed here rely on the Riemann problem as a guide to im-
prove SPH. In fact, it is not based on standard symmetrized representations of the SPH
equations along with the usual kernel smoothing for the density so variational consis-
tency of the scheme is not guaranteed.

5 Concluding remarks

In this paper, we have presented a class of contact SPH method suitable for inviscid
compressible flow based on contact solvers of Riemann problem and different limiters
which are first-order and second-order approximations. Combining high-order WENO
interpolation with the limiter methods, the physical variables are reconstructed for inter-
actional particles by Taylor series expansion. The obtained values are used as the initial
values of the Riemann problem. The contact solvers and three types of limiters are intro-
duced into discretization of control equations. We also briefly present some preliminary
formulations on the possible extension of the contact SPH schemes of this paper to two-
dimensional non-linear systems. The extension to nonlinear hyperbolic systems in 2D
and 3D is the subject of ongoing research.

A number of one-dimensional numerical examples have been studied with compar-
isons to the results of conventional methods. The proposed method looks promising in
capturing the sharper front of the shock and contact discontinuity. The obtained results
suggest that the unexpected physical oscillations through the contact discontinuities can
be prevented effectively and sharp interface can be captured accurately.
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