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Abstract. We present an efficient algorithm for calculating the minimum energy path
(MEP) and energy barriers between local minima on a multidimensional potential en-
ergy surface (PES). Such paths play a central role in the understanding of transition
pathways between metastable states. Our method relies on the original formulation of
the string method [Phys. Rev. B, 66, 052301 (2002)], i.e. to evolve a smooth curve along
a direction normal to the curve. The algorithm works by performing minimization
steps on hyperplanes normal to the curve. Therefore the problem of finding MEP on
the PES is remodeled as a set of constrained minimization problems. This provides the
flexibility of using minimization algorithms faster than the steepest descent method
used in the simplified string method [J. Chem. Phys., 126(16), 164103 (2007)]. At the
same time, it provides a more direct analog of the finite temperature string method.
The applicability of the algorithm is demonstrated using various examples.
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1 Introduction

The dynamics of complex systems often involve thermally activated barrier-crossing
events that allow the system to move from one local minimum of the energy surface
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to another. At finite temperatures, the total kinetic energy accessible to the system is on
the order of NkBT, where N is the number of degrees of freedom, kB is the Boltzmann
constant and T is the temperature of the system. However, this huge amount of energy
is distributed over the whole system. Consequently, it fails to cross over the free energy
barrier (generally an index-1 saddle point) and move to a different basin of attraction. A
system can overcome a free energy barrier only when sufficient energy is localized on an
activated region of the system. The activated region is the volume of the sample where
bond breaking/formation, atomic re-arrangements etc. take place [1, 2]. It is of great
theoretical and practical interest to develop algorithms that can enable us to efficiently
compute the most probable pathways for such transition events. For systems with rela-
tively smooth energy landscapes, it can be shown that the most probable pathways are
the minimum energy paths (MEP). Minimum energy paths are physically relevant in the
low temperature dynamics of a system and provides information only about the energy
barrier involved in a thermally activated event without any consideration of the width of
the channel near the saddle point or other entropic effects. Further, at high temperature,
the energy surface becomes rugged due to thermal fluctuations and the presence of mul-
tiple peaks of O(kBT) makes the concept of MEP irrelevant. However in such a scenario
the MEP can still correspond to the path with the maximum likelihood [3, 4].

The problem of finding the MEP and the bottlenecks for transition events can be
broadly categorized into two classes depending on the initial conditions: (a) when only
the initial point is known, and (b) when both the initial and final points on the energy
surface are available. In the former case, one can resort to methods like gentlest ascent
dynamics [5], dimer method [6], etc. to explore the energy surface. For the second cate-
gory, the most notable examples include the string method [7–10] and the nudged elastic
band method [11–13]. In this case, we are given the initial and final states of the system,
and our aim is to find the MEP connecting these states. Since there can be multiple paths
joining the end points, the converged MEP is dependent on the choice of the initial path.
In the original string method, a path γ evolves as:

γ̇=−∇V (γ)⊥+rt̂ , (1.1)

where, γ̇ is the time derivative of γ, ∇V⊥=∇V−(∇V,τ̂) τ̂ is the gradient of the potential
perpendicular to γ, τ̂ is the unit vector parallel to the tangent to γ and r is a Lagrange
multiplier used to enforce a particular parametrization of the string.

The string method is easy to implement and works well even if the initial and the final
states are not local minimum [7]. This advantage has led to a class of algorithms called
growing string method that have been tested for real systems using quantum mechanical
tools [14–16]. Further, if one is solely interested in knowing the free energy barrier and
the configuration at the saddle point, the end of the string need not be a local minimum
but some intermediate configuration lying in a basin other than that of the initial point.

The string method is based on the idea of moving curves by using a steepest descent-
type of dynamics. It should be emphasized that even though the dynamics used in the
string method has very strong steepest decent flavor, the method does not amount to
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minimizing any energy functional. In order to apply quasi-Newton type of ideas to accel-
erate the string method, one has to resort to the Broyden formulation for solving coupled
system of equations rather than the BFGS type of formulation for optimization [17].

We propose a method that reduces the problem of finding the MEP to an optimiza-
tion problem, so that techniques from optimization theory can now be used directly. This
prescription is in some ways an improved version of the locally updated planes (LUP)
method proposed earlier by Elber and co-workers [18,19]. In the LUP method, each inter-
mediate configuration along the approximate path is relaxed by confining its motion to a
hyperplane. The hyperplanes are selected such that they are perpendicular to the straight
line joining the two end points. The LUP method is unstable because – (i) each interme-
diate configuration is relaxed independently and the algorithm does not prescribe any
scheme to make sure that the path is smooth, (ii) the hyperplane selection scheme can
result in the formation of kinks if the path has multiple local energy wells, and (iii) since
there is no prescribed way to control the separation between the intermediate config-
urations, the relaxed path can have images clustered around the local minima. These
problems severely limit the convergence to the correct MEP in the LUP method.

The finite temperature string (FTS) method is like an expectation-maximization (EM)
algorithm for curves [3, 4]. The current version of the string method is more in line with
the spirit of FTS in which the sampling procedure is replaced by the minimization step.

2 The method

Given a curve γ that joins two points A and B on the energy surface, let us parametrize γ

as γ={X(α) : α∈ [0,1]} where α is a continuous parameter. When the end points A and B

lie in different basins of attraction, the curve γ will pass through multiple saddle points
that are generally the bottlenecks of transition of a system from A to B. The path γ is the
MEP if

(∇V)⊥ (X(α))=0, (2.1)

where (∇V)⊥=∇V−(τ,∇V)τ is the component of ∇V normal to the path γ and τ is the
unit tangent vector of γ. If P(α) is the hyperplane perpendicular to the path γ at X(α),
then (2.1) can be restated as

X(α)=argmin V|P(α) . (2.2)

This is a variational characterization of the MEP. The new version of the string method is
based on the variational formulation in (2.2). The initial guess path is first discretized to
give

{

X0
j

}

j=1,···,N
. At step m, the path is updated by the following procedure:

1. Minimization: a number of minimization steps are performed on the hyperplanes normal to the
curve at the discretization points. This gives

{

X∗
j

}

j=1,···,N
.

2. Mixing: a mixing scheme is applied to get

X̃j=Xm
j (1−λ)+λX∗

j , (2.3)

where λ∈ (0,1) is the mixing co-efficient. This step helps in stabilizing the scheme.
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Figure 1: Schematic representation of the optimization-based string method to find MEP. The intermediate
configuration at Xm (α) is relaxed to Xm+1 on a plane P(α) which is perpendicular to the tangent at Xm (α).

3. Reparametrization: redistribute the intermediate configurations along the string according to
some metric, such as, equal spacing in configuration space, or equal spacing in energy space, etc.

{

X̃j

} reparametrize
−−−−→

{

Xm+1
j

}

. (2.4)

These steps are performed until convergence. Step 3 is a standard procedure in the string
method and accounts for the displacements parallel to the curve. Steps 1 and 2, are
different from the original and simplified string methods.

3 Algorithmic details

Step 1: Minimization

The minimization procedure can be implemented in different ways. The energy of each
intermediate configuration can be minimized on their respective hyperplanes till conver-
gence or the minimization can be performed only for few steps. Minimization algorithms
with better convergence like, FIRE (fast inertial relaxation engine) [20], conjugated gra-
dient [21], limited memory BFGS [21], etc. can be used for this purpose. For the sake of
completeness, below, we present the modified versions of BFGS and FIRE algorithms:

BFGS: Starting with an intermediate configuration at x0=X0
j on the path and an approxi-

mate Hessian matrix H0=∇∇V (x0) at x0, the BFGS scheme involves the following steps
until convergence is achieved [21]:

(i) Obtain a direction pk: Hkpk=F(xk), where F(xk)=−∇V (xk). This is performed by obtaining the
inverse of Hk by applying the Sherman-Morrison scheme.

(ii) Obtain step size αk along pk (line search).
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(iii) Update image: xk+1=xk+αkp̃k, where p̃k=pk−
(

pk,τ j

)

τ j is the projection of the search direction

perpendicular to the tangent (τ j) to the path at X0
j .

(iv) Set sk =αkpk and yk =−F(xk+1)+F(xk).

(v) Update Hessian:

Hk+1=Hk+
ykyT

k

yT
k sk

−
HksksT

k Hk

sT
k Hksk

. (3.1)

FIRE: Starting with an initial intermediate configuration at x=X0
j on the path, the follow-

ing dynamical system can be used for the constrained minimization [20]:

ẋ=v−
(

τ j ,v
)

τ j, (3.2a)

v̇=
1

m
F−βv+β|v|F̂, (3.2b)

where τj is the tangent to the path at X0
j , m is the mass and β is a parameter. For the

intermediate images, the tangent τj at X0
j can be approximated as

τj =
X0

j+1−X0
j−1

∣

∣X0
j+1−X0

j−1

∣

∣

, j=2,3,··· ,N−1. (3.3)

Step 2: Mixing

During minimization, since each intermediate image is relaxed independently, their re-
laxation step lengths can vary due to which the path develops kinks. This makes the
tangent vector inaccurate leading to numerical instability. To overcome this difficulty, in
the second step, we use a mixing scheme to have better control over step lengths.

Step 3: Reparametrization

Next, reparametrization is performed in two steps: computing the values of the param-
eter α̃ and performing interpolation to find the reparametrized intermediate configura-
tions. For parametrization by equal arc length we first obtain the length of the string:

Lj= Lj−1+
∣

∣X̃j−X̃j−1

∣

∣, (3.4)

where L0 = 0 and j= 1,2,··· ,N. The corresponding normalized parameter is then given
by α̃j=Lj/LN . Next, using cubic spline interpolation scheme, we obtain the intermediate

configuration positions
{

Xm+1
j

}

that are evenly distributed along the string according to

the updated parameter αj = j/N. For computational efficiency, reparametrization need
not be enforced at each step. In fact, we have found that reparametrization is much less
important for this version of the string method than the original version [7, 8]. Thus,
by constraining the minimization on the normal hyperplanes, we have already removed
the strong tendency for the intermediate positions to move towards the local minima. So
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reparametrization only plays a minor role here for improving the accuracy by optimizing
the distribution of the points along the curve.

Naturally one is interested in a comparison of the performance of this version of the
string method with the older version. The answer is that it depends on the problems
one needs to deal with. Suffice to say that the current version provides an alternative.
In addition, this version of the string method is more like a zero-temp analogue of the
FTS [3].

4 Illustrative examples

4.1 Two-dimensional potential

To get a better understanding of the effectiveness of the selection of hyperplanes, let us
look at the potential energy surface of a simple two-dimensional toy problem shown in
Fig. 2. The potential energy is given by [8]

V (x,y)=
(

1−x2−y2
)2
+

y2

x2+y2
. (4.1)

The line AB is perpendicular to the line joining the two local minimum points (-1,0) and
(1,0). C is at the intersection of the initial guess path and AB. If we perform a constrained
relaxation of C along AB, there are more than one local minimum points in the vicin-
ity. Consequently, during subsequent iterations the intermediate configuration can flip
between these locally stable structures. This will make the string uneven leading to the
development of kinks due to which it can not converge to the MEP.
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Figure 2: Contour plot of the two-dimensional potential energy landscape showing the MEP (red-dashed curve)
and an unrelaxed path (red curve) joining the two local minimum points (-1,0) and (1,0). Lines AB and EF
show the different possibilities of selecting hyperplanes at points C and D, respectively, on the string.
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However, consider now the line EF which is normal to the path at D. Now the point D
has only one choice to lower the energy — go from D towards E, because going towards F
means going uphill which increases the energy. Clearly, constrained minimization along
hyperplanes normal to the string is a better choice. After relaxation we obtain a smooth
string joining the two local minimum points which is shown in Fig. 2 (red dashed curve).

Table 1: Performance (in terms of the average force evaluations per intermediate configuration) of the modified
version of string method in comparison to the original string method for the two-dimensional energy surface.
The conjugated gradient implementation of the optimization based string method out performs the original
string method.

λ Original Modified Modified
string string (SD) string (CG)

0.25 1830 (dt = 0.001) 2875 192
0.25 4600 (dt = 0.001, λ = 0.25) 2875 192
0.25 305 (dt = 0.01) 410 192
0.15 305 (dt = 0.01) 635 222
0.35 305 (dt = 0.01) 310 139

In Table 1, we compare the performance of the different versions of the string method:
original string method, optimization based string method implemented using steepest
descent (SD) and conjugated gradient (CG) minimization schemes. The string iterations
converge when ratio of the net change in the string length to its current length is smaller
than 10−5. Reparametrization is performed every 5 steps. The original string method
does not require a mixing as in (2.3) to update the string, consequently λ = 0 for the
original string method. Upon introducing a mixing scheme in the original string method
and using λ=0.25, for example, we see that the performance deteriorates in comparison
to the SD implementation of the modified string method. For the CG implementation,
we have allowed each intermediate configuration to relax completely. For λ= 0.25, CG
requires an average of 192 force evaluations for each intermediate image as compared
to 305 in the original string method. Similarly, when λ = 0.35, CG requires an average
of 139 force evaluations per intermediate point as compared to 305 in the original string
method.

4.2 Ad-atom diffusion on (111) surface of Cu

Next, we use the optimization-based string method to find the MEP corresponding to
rare events taking place in nature. As an example, we study the diffusion of an ad-atom
on the {111} surface of copper. The {111} surface is used as it has lowest surface energy
in Cu. The inter-atomic interactions are modeled using embedded atom method (EAM)
potential developed by Mishin et al. [22].

On a pure {111} surface there are multiple sites at which the potential energy is locally
minimum. One of them is the face center cubic (fcc) hollow site and the other being the
hexagonal close-packed (hcp) hollow site. In a fcc crystal, a set of three {111} planes
forms the stacking sequence while in hcp a set of two {111} planes forms the stacking
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sequence. Hence, an ad-atom occupying a surface site which corresponds to fcc (hcp)
stacking is called fcc (hcp) hollow site.

The simulation cell contains 512 atoms with cell dimensions of 37.57×20.45×17.71 Å3

and cell axes parallel to [111], [11̄0] and [112̄] directions. Periodic boundary conditions
are imposed along the [11̄0] and [112̄] directions and free surface conditions are imposed
along the [111] direction. The end points of the string are configurations with ad-atoms
in hcp hollow sites separated by about 10 Å on the (111) surface.

Fig. 3 shows the converged MEP (force norm less than 10−3 eV/Å) as a function of the
length of the path in the multidimensional configuration space. The MEP is obtained by
performing constrained conjugated gradient minimization on each intermediate config-
uration. Each intermediate image is minimized using CG until the force is smaller than
10−3 eV/Å. The red curve corresponds to the converged MEP with intermediate config-
urations evenly distributed (now shown in the figure) along the path. The blue circles
denote an intermediate path without reparametrization. The intermediate structures in
this case cluster around each other. As shown in the figure, the ad-atom in hcp site is
not the lowest energy, the structure with ad-atom occupying the fcc hollow site has lower
energy (∼0.004 eV). The diffusion barrier from hcp hollow site to fcc hollow site is 0.036
eV. Similarly, the diffusion barrier from fcc to hcp hollow site is about 0.04 eV. The re-
sults shown are without any mixing scheme to update the image positions, i.e. λ = 1 and
reparametrization is carried out every 10 steps.

4.3 Dislocation nucleation in a nano-wire

Understanding the process of dislocation nucleation and multiplication is central to our
understanding of structural stability of materials. A dislocation is a line defect which cor-
responds to the interface between the sheared and unsheared regions of a sample. A bulk
sample in nature generally has an astronomical number of defects, of varied dimension-
ality, present in them. In contrast, in materials of small volume the density of defects can
be very small. Small volume materials, such as, quantum dots, nano-wires, thin films,
nanostructured materials, etc. have much higher surface area (or grain boundary area)
to volume ratio than their bulk counterparts [23, 24] and defect nucleation from the sur-
face becomes an important driving force for plastic deformation. Given the contrasting
length-scales involved, the deformation mechanisms changes from bulk-dominated plas-
ticity to surface-dominated plasticity with decrease in characteristic length scales. One
such potentially important form of deformation in nano-wires, nano-pillars, etc. that can
play a critical role in controlling plastic deformation is dislocation nucleation [25–27].
Here, we perform atomistic simulations of heterogeneous dislocation nucleation in a Cu
nano-wire. We use a nano-wire of square cross-section to include the corner as a prefer-
ential nucleation site.

The simulation cell has 28,900 atoms and the cell dimensions are 90.375×90.375×
90.375 Å3. The cell axes are parallel to [100], [010] and [001] directions. Periodic bound-
ary conditions are maintained along [001] direction (i.e. wire axis) and free surface con-
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Figure 3: Converged MEP of the ad-atom diffusion on
a (111) free surface in Cu. At the end point the ad-
atom occupies hcp hollow sites that are about 10 Å
apart. The energy barrier for diffusion from hcp to fcc
hollow site is 0.036 eV and from fcc to hcp hollow site
is 0.04 eV. The converged MEP is shown in the red-
curve while the blue circles show an intermediate path
without parametrization.

Figure 4: A snapshot of the initial structure of ad-
atom on (111) surface of Cu sample. The MEP
is shown in red dashed line. Coordination number
(CN) coloring is used in this case. The atoms on
the free surface have CN 9 while those near the
ad-atom have CN 10. The ad-atom sitting on the
hcp hollow site has CN 3.
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Figure 5: The converged MEP of the heterogeneous dislocation nucleation from the corner of a Cu nano-wire.
The zero temperature energy barrier is 0.43 eV for a 6 % uniaxial compressive strain applied along a direction
parallel to the wire axis. The initial state is a defect free Cu nano-wire with (100) surfaces.

(a) (b)

Figure 6: Snapshots of the initial and the saddle configuration for the process of heterogeneous dislocation
nucleation from the corner of a nano-wire. The nano-wire is under uniaxial compression of 6 %, the strain axis
being parallel to the wire axis. The central symmetry scheme of coloring [28] is used: (a) only the atoms on
the surface are visible; (b) the surface and the atoms in the sheared region, in the saddle point configuration,
are visible. The viewing direction is parallel to the wire axis.



274 A. Samanta and W. E / Commun. Comput. Phys., 14 (2013), pp. 265-275

ditions are imposed along the remaining two directions. The interatomic interactions
are modeled using embedded atom method (EAM) potential developed by Mishin et
al. [22]. Fig. 6(a) shows the initial structure of the nano-wire. The converged MEP (force
norm smaller than 10−3 eV/Å) is obtained by performing constrained conjugated gra-
dient minimization on each intermediate configuration along the path. In this case, we
have used λ=0.35, and reparametrization is carrier out every 10 steps. Starting with the
same initial guess path, the original string method converges in 187 steps (187 force calls
per intermediate configuration) while the CG implementation of the optimization based
string method requires an average of 113 force calls per intermediate configuration.

The initial structure is a defect-free pure Cu nano-wire and the final structure is one
with a dislocation loop (not a local minimum). The initial structure is generated by apply-
ing a compressive strain of 6 % along the nano-wire axis and then performing conjugated
gradient relaxation. The final structure with a dislocation loop is generated by applying
a relative displacement equal to a partial Burgers vector between two {111} planes. The
initial guess path is generated using linear interpolation between the end point configu-
rations.

Fig. 5 shows a section of the multi- dimensional PES as a function of the distance be-
tween the initial point and intermediate configurations. Fig. 6(b) shows an intermediate
configuration close to the saddle point. The activation energy barrier is 0.43 eV and the
sheared region consists of around 30 atoms. Central symmetry scheme of coloring is used
so only the atoms in the sheared region are visible [28]. More details about the thermally
activated nature of dislocation nucleation can be found elsewhere [29].

5 Conclusion

In this paper a modified version of the string method is proposed. The proposed method
allows determining the MEP by finding the minimum energy configuration along hyper-
planes normal to the path. The algorithm is simple, easy to implement and provides the
flexibility of using faster minimization algorithms.

The applicability of the algorithm is demonstrated using a simple two-dimensional
potential energy landscape. The algorithm can be easily extended to study systems of
higher dimensions. As examples taken from nature, diffusion barriers of an ad-atom on
the surface of Cu and the process of heterogeneous dislocation nucleation from the corner
of a nano-wire are evaluated. For the ease of reference, codes for some sample problems
are placed in a publicly accessed web link [30].
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