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Abstract. Hemodynamics is a complex problem with several distinct characteristics;
fluid is non-Newtonian, flow is pulsatile in nature, flow is three-dimensional due to
cholesterol/plague built up, and blood vessel wall is elastic. In order to simulate this
type of flows accurately, any proposed numerical scheme has to be able to replicate
these characteristics correctly, efficiently, as well as individually and collectively. Since
the equations of the finite difference lattice Boltzmann method (FDLBM) are hyper-
bolic, and can be solved using Cartesian grids locally, explicitly and efficiently on par-
allel computers, a program of study to develop a viable FDLBM numerical scheme
that can mimic these characteristics individually in any model blood flow problem
was initiated. The present objective is to first develop a steady FDLBM with an im-
mersed boundary (IB) method to model blood flow in stenoic artery over a range of
Reynolds numbers. The resulting equations in the FDLBM/IB numerical scheme can
still be solved using Cartesian grids; thus, changing complex artery geometry can be
treated without resorting to grid generation. The FDLBM/IB numerical scheme is val-
idated against known data and is then used to study Newtonian and non-Newtonian
fluid flow through constricted tubes. The investigation aims to gain insight into the
constricted flow behavior and the non-Newtonian fluid effect on this behavior.

AMS subject classifications: 76Z05, 76M20, 65N06

Key words: Finite difference method, lattice Boltzmann method, immersed boundary method,
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1 Introduction

Flow behavior in a stenosed artery is quite different from that in normal ones. Viscous
stresses and resistance to flow are much higher in stenosed arteries compared to their

∗Corresponding author. Email addresses: mescfu@ust.hk (S. C. Fu), Wallace.Leung@inet.polyu.edu.hk
(W. W. F. Leung), mmmcso@polyu.edu.hk (R. M. C. So)

http://www.global-sci.com/ 126 c©2013 Global-Science Press



S. C. Fu, W. W. F. Leung and R. M. C. So / Commun. Comput. Phys., 14 (2013), pp. 126-152 127

normal counterparts. If the stenosis is severe enough, high blood flow speeding through
narrow stenosis will give rise to considerable compressive stress in the tube wall, and
critical flow conditions such as negative pressure, high shear stress and flow separation
will develop. These flow and mechanical conditions can cause artery fatigue, arterial
compression flow limitation, and possible flow-induced instabilities. The resulting static
and dynamic loading on the diseased arterial wall may be sufficiently vigorous or sus-
tained to fracture the plaque cap of the stenosis, thus causing fragments to sweep down-
stream. This process could directly lead to serious clinical consequences, such as strokes
or heart attacks [1–3]. In view of this rather complicated and complex flow behavior,
any numerical scheme used to investigate hemodynamics should at least be able to han-
dle pulsating flow of Newtonian and non-Newtonian fluids through three-dimensional
(3-D) tubes with and without constrictions where the boundary geometry changes with
time, and with solid and/or elastic boundaries.

Lattice Boltzmann method (LBM) has developed into an alternative powerful numer-
ical solver for the Navier-Stokes (NS) equations and for modeling flow physics [4–6].
The equation is hyperbolic and can be solved locally, explicitly, and efficiently on parallel
computers [7, 8]. Consequently, the applicability and suitability of LBM to the field of
blood flow has been widely explored by researchers [7–14]. Real arterial stenoses rarely
have well-defined geometric shapes and stenotic plaques usually have complex geome-
tries. Therefore, it is difficult to apply the boundary conforming grid method to such
problems. Besides, the plague built up boundary could be changing with time. The com-
plicated body-fitted geometry method plays a significant role in numerical stability and
its eventual accuracy. Hence, for most simulations, either the grids were generated a pri-
ori [12], or the computer generated meshes were checked manually to ensure sufficient
accuracy of the computational results [13]. In the case of a generated mesh, an a priori
knowledge of the artery configuration is required. Therefore, for model blood flow prob-
lem, it would be desirable to develop a numerical technique that does not necessarily
keeps the mesh conforms to the complicated boundary. One such technique is the im-
mersed boundary (IB) method first introduced by Peskin [15] in his study of blood flow
in the human heart. In the IB method, the governing equations are discretized on a fixed
Cartesian grid. The wall conditions of a boundary are accounted for by introducing an
external force field in the equations of motion, which is designed to ensure that the fluid
satisfies the no-slip condition on blood vessel walls. The boundary was modelled as a set
of elements linked by springs. Subsequent advanced boundary treatments dealing with
complex geometry, moving boundary and even fluid-structure interaction (FSI) can be
derived from the IB method [16].

Recently, Fu et al. [17,18] have developed a finite difference lattice Boltzmann method
(hereafter designated as FDLBM) that provides a convenient algorithm for setting the
boundary condition using a splitting method to solve the discrete lattice Boltzmann (LB)
equation. Their FDLBM is capable of simulating flows of Newtonian and non-Newtonian
fluids, with (or without) external body forces [17]. Also, the inherent compressibility ef-
fect of the conventional LBM [19], which might produce significant errors in some incom-
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pressible flow simulations, is eliminated [18]. Through this numerical approach, a wide
variety of governing equations can be similarly treated [20]. The work of Fu et al. [17]
was originally aimed at the simulation of micro-channel flows, but its application can be
much broader [20]. However, solution of the FDLBM relies on Cartesian grids; hence, it
is not easily adapted to flows with complex boundary geometries. This is a serious draw-
back of the FDLBM. If this FDLBM were to be a viable tool for blood flow simulations,
implementing the IB method into the FDLBM would give rise to a numerical tool that
could handle complex boundaries using Cartesian grids in axisymmetric and 3-D flow.
Therefore, the first objective of this paper is to implement the IB into the FDLBM; this
new tool is designated as the FDLBM/IB numerical scheme.

The present paper reports on the development of the FDLBM/IB scheme. After val-
idating the scheme, numerical simulations of Newtonian and non-Newtonian fluid flow
in constricted tubes are investigated and discussed. There is increasing evidence that
hemodynamics is closely related to intimal thickening, lipid deposition and endothelial
adaptations, cell adhesion, elongation, and adaptation, thrombus development, and var-
ious cell behaviour under specific shear stress conditions. Consequently, blood pressure
and wall stress have considerable effects on artery remodelling [1–3]. In view of this,
the second objective of this paper is to investigate hemodynamic in stenotic arteries by
deducing scaling laws for pressure drop and wall shear stress in constricted tubes using
the simulated results.

2 Finite difference lattice Boltzmann method

Details of the governing NS and the LB equations for steady incompressible flows have
been given in earlier work [17, 18, 20]. In view of this, only a brief description of these
equations is reported here. In the following, the NS equations and its associated bound-
ary conditions are described first; it is then followed by a brief discussion of the LB equa-
tion and the FDLBM.

2.1 Navier-Stokes equations and boundary conditions

A schematic representation of the present problem is shown in Fig. 1. An incompress-
ible steady flow passes through a rigid tube with a localized constriction. The effect of
swirl in the flow is not considered and the problem, even with the presence of secondary
flow behind the constriction, is assumed to be axisymmetric. The flow upstream and
downstream of the constriction is assumed to be a fully developed Poiseuille flow. The
unconstricted radius of the tube is R̂0 and the maximum upstream velocity Û0 is taken to
be the centerline velocity. Hence, the through flow rate is Q̂=πR̂2

0Û0/2 and the Reynolds
number is defined as Re = ρ̂0 Û0R̂0/µ̂0. All equations given below are dimensionless and
the following normalization is utilized,

(x,y)=
(x̂,ŷ)

R̂0

, (u,v)=
(û,v̂)

Û0

, ρ=
ρ̂

ρ̂0
, µ =

µ̂

µ̂0
, p=

p̂

ρ̂0Û2
0

, (2.1)
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Figure 1: Schematic of the model blood flow problem investigated.

where (x,y) are respectively the axial and radial coordinates, (u,v) are the axial and ra-
dial velocity components along x and y, respectively, ρ is fluid density, µ is fluid dynamic
viscosity, and p is pressure. Without loss of generality, ρ is taken to be unity in an in-
compressible flow. However, in the following presentation, ρ is kept in the equations for
convenience. Their corresponding dimensional quantities are represented by a ’hat’. In
cylindrical coordinates, the NS equations can be written as

∂u

∂x
+

∂v

∂y
+

v

y
=0, (2.2a)

ρ

(

∂u2

∂x
+

∂uv

∂y
+

uv

y

)

=−∂p

∂x
+

∂τxx

∂x
+

∂τxy

∂y
+

τxy

y
, (2.2b)

ρ

(

∂uv

∂x
+

∂u2

∂y
+

v2

y

)

=−∂p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+

τyy

y
, (2.2c)

where the shear stress components have been normalized by ρ̂0Û2
0 and are defined by

τxx =
2

Re

∂u

∂x
, τyy=

2

Re

∂v

∂y
, τxy=

1

Re

(

∂u

∂y
+

∂v

∂x

)

. (2.3)

The upstream and downstream condition is assumed to be a fully developed Poiseuille
flow; therefore, the velocity profiles are

{

u=1−y2,

v=0,
x→±∞. (2.4)

The geometry of the constriction is described by a cosine curve, just as that assumed by
previous researchers [21, 22],

R(x)=1− α1

2

[

1+cos

(

π x

X0

)]

, −X0≤ x≤X0, (2.5a)

R(x)=1, |x|≥X0, (2.5b)

where α1 and X0 are constants used to characterize the length and degree of occlusion.
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2.2 Brief description of the FDLBM

The FDLBM of [17, 18] proposed to consider the NS equations in cylindrical coordinates
as a conservative set plus additional source terms; here this same approach is adopted.
Basically, the FDLBM [17] solves the BGK-type modeled lattice Boltzmann equation,

∂ fα

∂ t
+

⇀

ξ α ·∇⇀
x

fα +gα = − 1

ϕ
( fα − fα

eq), (2.6)

using a splitting method. All distribution functions including the equilibrium distribu-
tion function f

eq
α in Eq. (2.6) are normalized by ρ̂0, e.g. fα = f̂α/ρ̂0. Besides the basic

distribution function fα, which is used to recover the conservative set of NS equations,
another distribution function gα is added to help recover the source terms in Eqs. (2.2a)-
(2.2c). These source terms arise as a result of writing the NS equations for the constricted
tube problem in cylindrical coordinates. The lattice model employed is a D2Q9 model

with lattice velocities
⇀

ξα=
(

ξαx,ξαy

)

given by

~ξ0 = 0, α = 0, (2.7a)

~ξα = σ(cos [π(α− 1)/4], sin [π(α− 1)/4]), α = 1, 3, 5, 7, (2.7b)

~ξα =
√

2σ(cos [π(α− 1)/4], sin [π(α− 1)/4]), α = 2, 4, 6, 8, (2.7c)

where σ is a numerical parameter to be determined later. In Eq. (2.6), the f
eq
α is defined as

f
eq
α = Aα + ξα x A xα + ξα y Ayα + ξ2

α x B x xα + ξ2
α y B yyα + ξα x ξα y B xyα , (2.8)

and the coefficients can be determined as

A0 = ρ− 2p

σ2
− ρ |~u|2

σ2
+

τxx +τyy

σ2
, A1 = A2 = 0, (2.9a)

A x1 =
ρu

2σ2
, Ax2 = 0, (2.9b)

Ay1 =
ρv

2σ2
, Ay2 = 0, (2.9c)

Bxx1 =
1

2σ4

(

p+ ρu2 − τxx

)

, Bxx2 = 0, (2.9d)

Byy1 =
1

2σ4

(

p+ ρv2 − τyy

)

, Byy2 = 0, (2.9e)

Bxy2 =
1

4σ4

(

ρuv− τxy

)

, Bxy1 = 0. (2.9f)

The shear stress components, τxx, τyy, τxy, are found by using a central difference scheme.
If a Newtonian fluid is assumed, Eq. (2.3) with constant µ is adopted for the stress compo-
nents. However, it is clear that other non-Newtonian fluid models can also be assumed.
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The additional distribution function gα and the associated coefficients are given by (e.g.
see [17])

gα =Aα+ξαx Axα+ξαy Ayα, (2.10a)

A0 = 0, A1=
ρv

4y
, A2 =0, (2.10b)

Ax1 =
1

2σ2y

(

ρuv−τxy

)

, Ax2 =0, (2.10c)

Ay1 =
1

2σ2y

(

ρv2−τyy

)

, Ay2 =0, (2.10d)

so that the following constraints are fulfilled for the distribution function gα,

8

∑
α=0

gα =
ρv

y
,

8

∑
α=0

gαξαx =
ρuv

y
− τxy

y
, (2.11a)

8

∑
α=0

gαξαy =
ρv2

y
− τyy

y
,

8

∑
α=0

gα

(

ξ2
αx+ξ2

αy

)

=0. (2.11b)

Finally, the macroscopic variables are determined from

u=
1

ρ

8

∑
α=0

fαξαx , v=
1

ρ

8

∑
α=0

fαξαy , (2.12a)

p=
8

∑
α=0

fα
1

2

(

ξ2
αx+ξ2

αy

)

− 1

2
ρ
(

u2+v2
)

+
τxx+τyy

2
. (2.12b)

Numerically, Eqs. (2.6)-(2.12) are solved by a splitting method outlined below.
The initial step is to solve Eq. (2.6), by first setting its right hand side (RHS) to zero,

using any numerical solver. In this paper, the Lax-Wendroff scheme is chosen for the
discretization of the advective term because it is second order accurate. Also, it solves
the equation locally and explicitly, and the finite difference calculation only requires in-
formation from adjacent points. The macroscopic variables are then determined using
Eq. (2.12) and the boundary condition is set in macroscopic level at this moment. Af-
ter obtaining a solution in this first step, it is used as the initial condition to solve the
following differential equation

∂ fα

∂ t
= − 1

ϕ
( fα − fα

eq) . (2.13)

These two steps together combine to give a solution to Eq. (2.6). An important procedure
of the FDLBM is the application of the Euler method to Eq. (2.13), and the setting of
ϕ=∆t. This procedure gives rise to exactly the same fα before and after this time step
[17,18]. Thus, no computational resource is required in this time step and the macroscopic
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quantities obtained, including the boundary setting, are in fact the same as before. The
procedure, therefore, allows the boundary conditions to be set at the macroscopic level,
contrary to the conventional LBM which requires the boundary conditions to be set at the
microscopic level. Consequently, the boundary setting can be achieved as conveniently
as any conventional finite difference methods used to solve the NS equations.

The scheme is designed for steady flow, so the time variable in the equations is consid-
ered as a pseudo-time and the previous two procedures are repeated and iterated upon
the pseudo-time until the following criterion is satisfied,

max

∥

∥

∥

∥

∂

(

p+
1

2
ρ
(

u2+v2
)

− τxx+τyy

2

)∥

∥

∥

∥

≤ ∆t2σ2

2
, (2.14)

thus ensuring that the continuity equation is satisfied to an error of O(∆t). The operator
’∂’ denotes the difference between successive time steps and the maximum norm is taken
within the whole spatial domain. Using the Lax-Wendroff scheme for the discretization of
the advective term gives an overall accuracy of the numerical method as second order in
space and first order in time. Since the scheme is designed for steady flow, iterations are
carried out until all time derivative terms vanish, the numerical parameter σ is allowed
to vary for each iteration step according to

σ= c

√

max

∥

∥

∥

∥

u2+v2+
2p−τxx−τyy

ρ

∥

∥

∥

∥

. (2.15)

Numerical experiments (e.g. see [23]) show that better accuracy and convergence is ob-
tained by using a time varying σ instead of a constant one. The numerical parameter σ
plays an important role in the stability condition. The detailed numerical analysis can be
found in [23]. The scheme will become unstable if the choice of the scaling parameter c is
too small; however, it affects the convergence and accuracy if c is too large; therefore, a
small enough c for stable calculation is required for all simulation cases attempted in this
paper.

3 FDLBM/IB numerical scheme

The term ”immersed boundary method” was first used in reference to a method devel-
oped by Peskin [15] to simulate cardiac mechanics and associated blood flow. It was
used to solve the NS equations in the presence of moving immersed boundaries (the
heart-valve leaflets) which moved at the local fluid velocity and exerted forces locally on
the fluid. The entire simulation could be carried out on a Cartesian grid, which did not
conform to the geometry of the heart, and a novel procedure was formulated to impose
the effect of the immersed boundary on the flow. Due to the potential of the IB method
in handling complex boundary geometries, moving and even elastic boundaries [16], it
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is chosen as the tool of choice for the present simulation of flow through a pipe with con-
striction. The boundary inside the computational domain is called the immersed bound-
ary. The IB is represented by a set of massless points, ~Xk =(Xk,Yk) with index k=1,··· ,N
that moves with the local fluid velocity ~u=(u,v). Hence, the tracking is Lagrangian in
nature,

∂~Xk

∂t
=~u

(

~Xk,t
)

. (3.1)

In this paper, the Euler method is used to solve the above equation; thus, the local fluid
velocity is

~u
(

~Xk,t
)

=
∫

~x∈Ω

~u(~x,t)δ
(
∣

∣

∣
~x−~Xk

∣

∣

∣

)

, (3.2)

where δ is the Dirac delta function. It appears as a kernel in each of the equations in which
a transition is made from boundary to fluid quantities or vice versa. In the present study,
the original discrete delta function used by Peskin [15] is adopted. It should be noted
that the choice of the discrete delta function may affect the accuracy for different types of
governing equations [24]. Since satisfactory results are obtained by using Peskin’s choice,
it is adopted for all simulations in this paper. The effect of the immersed boundary on the
surrounding fluid is transmitted through a localized forcing term ~Fib=

(

Fib
x ,Fib

y

)

, which is
added as a body force in the momentum equations. This force is given by

~Fib(~x,t)=
1

N

N

∑
k=1

~Fk (t)δ
(∣

∣

∣
~x−~Xk

∣

∣

∣

)

. (3.3)

The relation between ~Xk and ~Fk depends on the material properties of the immersed
boundary. In this paper, the immersed boundary is considered as a rigid wall, which
is simulated using the mechanism employed in [24, 25]. The immersed boundary points
~Xk are supposed to be attached to a fictitious fixed equilibrium location ~Xe

k by a spring

with the restoring force ~Fk given by

~Fk (t)=−κ
(

~Xk (t)−~Xe
k

)

, (3.4)

where κ is a positive spring constant. When κ is large enough, the displacement between
~Xe

k and ~Xk is negligible and the immersed boundary is approximately unmoved. Then, a

rigid wall represented by ~Xk is simulated. It should be noted that although κ is preferred
to be as large as possible, but large values of κ result in a stiff system which may subject
to severe stability problem [16]. Although the IB method is only used to simulate a rigid
wall here, it is obvious that more complicated boundaries, such as elastic and/or mov-
ing boundaries, can be simulated by suitably changing the mechanism of the ”material
properties”.

In order to combine the desirable features of the LB and IB method, a first attempt
to incorporate the IB method into the LBM/FDLBM framework was made by Feng and
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Michaelides [26, 27]. In their work, the immersed points were used to simulate some
moving inelastic particulates. An external force term which is due to the deformation of
the particulate was computed by the penalty method [26] or the direct forcing scheme
[27]. A similar idea was put forward by Niu et al. [28] and Strack and Cook [29]. Niu
et al. [28] adopted a multi-relaxation collision LBM model and their forcing term was
calculated by the momentum exchange method. On the other hand, Strack and Cook [29]
applied a similar concept to treat problems with a moving boundary in 2-D and 3-D
flows.

To implement the IB method into the FDLBM, the additional difficulty is to recover
the NS equations with an external body force included. In previous work [26–29], an
additional collision function is required to calculate the density distribution function fα

to account for the forcing function of the immersed boundary points. In the present
scheme, the procedure of including an external body force has already been discussed
in the formulation for cylindrical coordinates. Consequently, the extra work needed to
perform here is to modify the distribution function gα to account for the forcing function
of the immersed boundary points in addition to that introduced by the cylindrical coor-
dinates. The calculation procedures for fα remain unchanged. This is a major difference
between the present FDLBM/IB and other proposed LBM/IB methods reported in the
literature [26–29]. The coefficients in Eq. (2.10b)-(2.10d) are thus modified to read

A0 = 0, A1=
ρv

4y
, A2 =0, (3.5a)

Ax1 =
1

2σ2y

(

ρuv−τxy

)

+
Fib

x

2σ2
, Ax2 =0, (3.5b)

Ay1 =
1

2σ2y

(

ρv2−τyy

)

+
Fib

y

2σ2
, Ay2 =0. (3.5c)

As pointed out by Shu et al. [30], most IB methods use the restoring force technique;
therefore, some streamlines may pass through the solid body because the non-slip con-
dition is only approximately satisfied. To avoid this drawback, a new proposal called
immersed boundary velocity correction method was put forward in [30]. In this method,
the fractional step technique was used to directly enforce the non-slip boundary condi-
tion. Since no body force is involved in the prediction step, which is solved using LBM,
it is not necessary to modify the lattice Boltzmann equation. The present FDLBM/IB also
suffers from streamline leakage, much like most of the IB methods examined; however, it
could be improved by adopting the immersed boundary velocity correction method. In
this paper, the primary objective is to implement the IB into the present FDLBM, there-
fore, the relatively simple and well-established penalty method is attempted first.

3.1 Validation of the FDLBM/IB scheme

The FDLBM/IB scheme is validated against a known solution. A 2-D driven cavity flow
with a Gaussian profile bed is chosen as an example. In this validating example, (x,y)
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are respectively the horizontal and vertical coordinates and (u,v) are the horizontal and
vertical velocity components along x and y, respectively. The cavity bed geometry is
described by a Gaussian profile, i.e.,

h(x)=0.2exp

[

−1

2

(

x−0.5

0.1

)2
]

. (3.6)

With a Gaussian profile bed, a conformal grid can be generated for the FDLBM simula-
tion without having to adopt the IB method. This way, the FDLBM/IB solution can be
compared with the FDLBM simulation obtained using the conformal grid; thus allowing
the accuracy of the IB method to be assessed directly.

Altogether, four different cases are investigated; the schematic diagrams of these cases
are shown in Fig. 2. The computational domain is bounded by 0≤(x,y)≤1 with the upper
wall (y=1) moving at velocity U and the physical parameters are specified as ρ=1, U=1,
Re= 100. In Case A and B, the bed profile is located at the bottom and slightly away
from the bottom of the computational domain, respectively. Case C and D are similar to
Case B except that the bottom of the computational domain is not stationary; instead, it is
driven to the right (U=1) for case C and to the left (U=−1) for Case D. These four cases
are chosen to check the effectiveness of the IB points as a no-slip wall. The equilibrium
locations of the IB points are set as

~Xe
k =(xk, h(xk)), (3.7)

where xk=(k−1)∆x and k=1,··· ,N. The numerical parameters are defined by ∆x=∆y=
0.01, ∆t=0.0001, N=100, c=1, κ=10000, and a Lax-Wendroff scheme is employed for the
discretization of the advective term in Eq. (2.6). As an illustrative example, the streamline
of the flow in Case A is plotted in Fig. 3; streamline plots of the other three cases are
very similar and are not shown. Three characteristic vortexes are clearly displayed. It
should be noted that the region between the immersed boundary and the computational
boundary (arrow pointing) does not have any physical meaning; thus the computational
resources seem wasted. However, one of the advantages of the FDLBM/IB is that it
solves the equation locally; such waste of computational resource can be minimized by
reducing the computational domain.

The results deduced from the FDLBM/IB scheme are compared with those given by
a conformal grid. In the latter case, all spatial derivatives including the Jacobian in the
grid transformation are discretized using a 2nd order central difference scheme, and the
conservation of mass is ensured by using the artificial compressibility method of [31,32].
The numerical parameters are given by ∆x=∆y=0.01, ∆t=0.0001, which is the same as
those of the FDLBM/IB case, and the grid is transformed by

xp= x, yp =y+h(1−y), (3.8)

where (x,y) and (xp,yp) are, respectively, the coordinates in the computational and phys-
ical domain. Very good agreement between the calculated horizontal (u) and vertical
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Figure 2 Schematics for the four driven cavity flow cases attempted by the FDLBM/IB method.

Case A Case B

Case C Case D

Figure 2: Schematics for the four driven cavity flow cases attempted by the FDLBM/IB method.
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Figure 3: Streamline plot calculated using the FDLBM/IB method; symbol ’o’ are the immersed boundary

points at location ~Xk, deviation of their location with ~Xe
k is insignificant.

(v) velocities at three different y locations is shown in Fig. 4. The solid line is the result
calculated using conformal gird, while the symbols ’x’, ’o’, ’∇’, ’△’ are the FDLBM/IB
results for Case A, B, C, D, respectively. In Fig. 4, it should be noted that only the domains
above y≥0.008, y≥0.2 and y≥0.008, for x=0.25, x=0.5, x=0.75, respectively, are physi-
cally meaningful. All FDLBM/IB results are in excellent agreement with those calculated
using conformal girds. It shows that the IB method simulates the no slip condition effec-
tively and the calculation of the physically meaningful regions is basically unaffected by
the artificial flow in the region bounded by the Gaussian profile and the cavity bottom.
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Figure 4: Distribution of the u and v velocity along y direction: ”—” calculated using conformal grids; symbols
’x’, ’o’, ’∇’, ’△’ represent results for Case A, B, C and D, respectively.

For the region close to the IB points (see the plot of y=0.25 in Fig. 4), the accuracy (first or-
der only, i.e. O(∆x)) is not as good as that of the region outside. It is because the discrete
delta function inherent in the IB method smoothed out the sharp delta function resulting
in an inability to provide a sharp representation near the IB points [24]. Anyway, the
overall accuracy retains second order in space outside this small region.

4 FDLBM/IB simulation of model blood flows

Simulations for the various stenotic artery models with Newtonian and non-Newtonian
(CY model) fluids over a wide range of Re are performed using FDLBM/IB. A rectan-
gular computational domain of −(10+X0)≤ x≤ L and 0≤ y≤1 is used. It is noted that
all the length scales are normalized by the radius R̂0 of the unconstricted tube. The in-
let is located at 10 radii upstream of the start of the constriction, which is far enough to
assure that the flow pattern is independent of the inlet position. The outlet is placed far
enough downstream to allow the development of the characteristic separation pattern
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and Poiseuille flow. The exact location of the computational outlet, L, should be deter-
mined case by case. In addition, an absorbing boundary treatment [33] is applied at the
region near the outlet to ensure that any reflective waves, if present, are minimized. After
every iteration step, the following absorbing boundary treatment is applied,

u=u0−∆tκd (u0−ud), v=v0−∆tκd (v0−vd), (4.1)

where (u0,v0) is the flow velocity calculated immediately after each iteration, (ud,vd) is
the expected Poiseuille flow at the outlet as defined by Eq. (2.4), ∆t is the step size for the
pseudo-time, and κd is a damping coefficient defined as

κd =







σd

[

x−(L−Ld)
Ld

]2
, x> L−Ld,

0, x≤ L−Ld,
(4.2)

where Ld is the length of the damping region and σd is a damping factor. The settings
Ld=10, σd=10 are found to give satisfactory and effective results for all cases attempted
here. The Newtonian cases are presented first; this is followed by a discussion of the
non-Newtonian fluid flow cases.

4.1 Newtonian fluid

The number of model blood flow cases attempted in this section is summarized in Table
1. For ease of comparison, model M0, M1, M2 and M3 are exactly the same as those
studied by Deshpande et al. [34]. Three more models, M02 and M04, for area reduction
of 75%, and M31 for area reduction of 89%, are added in order to gain a more complete
picture of the effect of area reduction and length of occlusion. Furthermore, they could
facilitate a better comparison of the present approach with previous numerical methods.

Table 1: Geometry of constriction models and Re range investigated.

Model α1 X0 Area Reduction Range of Re Calculated

M0 0.500 1 75% 0-200

M02 0.500 2 75% 0-200

M04 0.500 4 75% 0-200

M1 0.333 4 56% 0-900

M2 0.667 4 89% 0-150

M3 0.667 2 89% 0-100

M31 0.667 1 89% 0-90

The streamline and vorticity plots for the M3 case with Re=50 are shown in Figs. 5(a)
and 5(b), where the numerical parameters are set at ∆t = 10−4, ∆x = 0.05, ∆y = 0.025,
c = 4, L = 88, N = 100, κ = 100000. For illustration purposes, only the plots of the M3
case with Re=50 are shown because the flow patterns for all other cases are similar. In all



S. C. Fu, W. W. F. Leung and R. M. C. So / Commun. Comput. Phys., 14 (2013), pp. 126-152 139

(a)
-10 0 10 20 30
0

0.25

0.5

0.75

1

x

y

(b)

(b) x

y

-10 0 10 20 30
0

0.25

0.5

0.75

1

Figure 5: Streamline (a) and vorticity (b) plots for model M3 at Re= 50; ’o’, immersed boundary points (the
area inside the immersed boundary should be ignored).
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Figure 6: Axial velocity (a) and pressure (b) distribution at centerline for model M3 at Re=50; ”—” FDLBM/IB
calculation, ”x” numerical result from Deshpande et al. [34].

cases calculated, only one recirculation region is observed downstream of the constriction
when Re is 50 or larger. However, the size of the recirculation region is found to increase
with Re. It should be noted that in these plots (Figs. 5(a) and 5(b)), the area inside the
immersed boundary should be ignored. Distribution of the axial velocity and pressure at
the centerline along the axial direction are shown in Figs. 6(a) and 6(b), where the data
of [34] are also plotted for comparison. The FDLBM/IB results are in good agreement
with those obtained by Deshpande et al. [34].

4.2 Non-Newtonian fluid (CY model)

In this section, the ability of the scheme to simulate non-Newtonian fluid flow through
constricted tube is demonstrated. Again, the constriction models treated in the New-
tonian fluid flow cases are considered here. In these simulations, the only difference
between the current cases and those of the Newtonian fluid flow cases is in the vis-
cosity model. For blood flow modeling, the power law model, Casson’s model, and
the Carreau-Yasuda (CY) model are the most popular among those used to replicate the
shear thinning phenomena of blood flows [12, 35]. Experiments on blood rheology show
that a yield stress is required for blood at rest to start flowing. However, the power law
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model [35] does not take this characteristic feature into account. On the other hand, Cas-
son’s model takes this behavior into account; however, it is only valid for a small range
of shear rate. According to Fung [36], Casson’s model is only valid for blood with shear
rates smaller than 10s−1 and hematocrit less than 40%. Also, the determination of yield
stress in the equation is questionable [12]. The CY model takes this feature into account
in its formulation; therefore, it is adopted in this section to investigate the shear thinning
effect of blood on its flow in stenotic arteries. Experimental data of this model for a blood
analog fluid can be found in Gijsen et al. [37]. In the CY model, non-Newtonian effect is
reflected by a non-constant viscosity and, just as in Newtonian fluid, the stress tensor is
written as,

τ̂ij = µ̂ ˆ̇γij , (4.3)

where the shear rate is

ˆ̇γij=
∂ûi

∂x̂j
+

∂ûj

∂x̂i
. (4.4)

The viscosity in the CY model is dependent on the shear rate and can be written as

µ̂−µ̂∞

µ̂z−µ̂∞

=
[

1+
(

λ̂
∣

∣ ˆ̇γ
∣

∣

)a
]

n−1
a

, (4.5)

where µ̂z and µ̂∞ are the viscosity at zero and infinite shear rate, respectively, λ̂ is a char-
acteristic viscoelastic time of the fluid, n and a are two empirical parameters obtained
by experiment. Using the radius of the artery R̂0 as characteristic length, the maximum
speed Û0 in the artery as characteristic speed, and normalizing the viscosity by ρ̂0 Û0 R̂0

and λ by R̂0/Û0, the dimensionless form of Eq. (4.7) can be re-arranged to give an expres-
sion for the viscosity as

µ=
1

Re∞

+

(

1

Rez
− 1

Re∞

)

[

1+(λ|γ̇|)a] n−1
a . (4.6)

The scalar measure of the rate of deformation |γ̇| is defined as [38]

|γ̇|=
√

1

2 ∑
i

∑
j

γ̇ijγ̇ji

=

√

2

(

∂u

∂x

)2

+

(

∂u

∂y
+

∂v

∂x

)2

+2

(

∂v

∂y

)2

for 2D, (4.7)

and the two specific Reynolds numbers corresponding to the viscosity at zero (µ̂z) and
infinite (µ̂∞) shear rate are defined as

Rez=
ρ̂0Û0R̂0

µ̂z
, Re∞=

ρ̂0Û0R̂0

µ̂∞

. (4.8)
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The experimental data obtained by Gijsen et al. [37] for a CY model to fit a blood analog
fluid was µ̂z=0.022Pa/s, µ̂∞=0.0022Pa/s, a=0.644, n=0.392, and λ̂=0.110s. Also, setting
the density of blood as 1050kg/m3 [39] and using the typical blood flow data suggested
in [21], i.e. R̂0 = 2mm, Û0 = 0.2653m/s, the dimensionless physical parameters become
Rez =25.324, Re∞ =253.24 and λ=14.59.

The constriction models investigated previously are calculated again assuming a non-
Newtonian fluid given by the CY model with physical parameters as stated above. The
upstream condition for the non-Newtonian fluid flow is determined as follows. First,
the velocity profile of the fully developed flow for the CY model is calculated using the
Newtonian parabolic profile, Eq. (2.4), as the driving upstream condition. Second, after
a steady, fully developed flow profile with the CY model has been obtained, it is used
as the upstream boundary condition for the simulation of the constricted pipe flow with
different constriction models. The flow pattern thus obtained for a non-Newtonian fluid
(CY model) is very similar to that of the Newtonian fluid, i.e., only one flow separation
region is observed downstream of the constriction.

Table 2 compares certain important flow characteristics, such as the reattachment lo-
cation lr, the minimum vorticity along the upper wall after the constriction ωmin, and
the maximum vorticity over the whole domain ωmax, deduced from the Newtonian and
non-Newtonian (CY model) fluid flow at different Re for constriction model M3. The
reattachment location is identified as the position where the vorticity vanishes along the
upper wall after the constriction. The maximum and the minimum vorticities calculated
by the CY model do not exceed the bounds of the Newtonian calculations at Re= 105.
Also, the CY model simulation yields a longer reattachment length compared to all New-
tonian cases investigated. These results show that vorticity is more quickly dispersed by
the non-Newtonian fluid (CY model) investigated.

Table 2: Comparison of certain important characteristics between Newtonian and non-Newtonian (CY model)
fluid at different Re for model M3.

Newtonian Non-Newtonian

Re=15 Re=30 Re=50 Re=105 CY Model

lr 2.7 5.45 8.95 18.65 20.75

ωmin −0.7027 −2.229 −2.6970 −3.4465 −1.9984

ωmax 70.8975 81.9791 82.9952 112.7575 86.7025

The non-Newtonian shear thinning effect can be further visualized from the contour
plots of the normalized viscosity for constriction model M3 as shown in Fig. 7. The nor-
malized viscosity is in fact the reciprocal of the ’local’ Re, i.e. µ = µ̂0/ρ̂0 Û0R̂0 = 1/Re.
It should be noted that the Re defined here is not exactly a local one because only the
viscosity is local; the reference parameters for length and velocity are still R̂0 and Û0,
respectively. For the Newtonian fluid, it is observed that numerical calculations become
more difficult when Re exceeds a hundred because flow transition to turbulence is begin-
ning to occur. However, for non-Newtonian fluid (CY model), the ’local’ Re may increase
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Figure 7: Normalized viscosity (reciprocal of the ’local’ Reynolds number) contour for model M3 derived from
non-Newtonian fluid (CY model) a; ’o’, immersed boundary points. There are 64 equally distributed contour
lines, and the maximum and minimum bounds are 0.0395 and 0.0044.

to two hundred when the shear rate is approaching infinite, but the flow is still laminar
and a stable numerical solution is obtained. Thus, it appears that shear thinning tends to
promote flow stabilization, or to delay transition to turbulence.

5 Scaling laws for pressure drop and wall shear stress

Considerable research has been carried out to identify factors causing atherosclerosis and
related cardiovascular diseases [40–42]. Atherosclerosis tends to form and grow at cer-
tain locations of arteries (bifurcations, bending, etc.). The type of artery where plaque
develops varies with each person. The exact mechanism of this entire process remains
unresolved, but there has been increasing evidence that hemodynamics is closely related
to intimal thickening, lipid deposition and endothelial adaptations, cell adhesion, elonga-
tion, and adaptation, thrombus development, and various cell behaviours under specific
shear stress conditions. Blood pressure and wall stress have considerable effects on artery
remodelling. High shear stress may damage normal endothelium; it may also activate
platelets and cause platelets aggregation and thrombus formation. Consequently, there
might be a high correlation between the development of atherosclerosis and abnormal
wall shear stress [43].

Having verified the FDLBM/IB simulations with the experimental measurements
of Deshpande et al. [34], the next step is to derive empirical relations for the pressure
drop and wall shear stress using the Newtonian fluid flow results obtained from the
FDLBM/IB simulations, and compared the relations thus deduced with those derived
from experimental measurements. This is followed by an assessment of the effect of non-
Newtonian fluid (CY model) on the pressure drop and wall shear behavior.
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5.1 Scaling law for pressure drop

The experimental data of [44] was measured by transducers connected to wall taps lo-
cated at ±16 radii from the plane of minimum constriction. For comparison purpose,
the same scaling is used in the present analysis. It should be noted that they used the
mean velocity Ûm, instead of the maximum velocity Û0 of the Poiseuille flow to normal-
ize the velocity, which is different from the present study. Also, the inlet of the present
calculation is located at 10 radii upstream of the start of the constriction, which is smaller
than 16 radii specified in [44]. As a result, an extrapolation assuming Poiseuille flow is
used to obtain the pressure drop. A grid refinement analysis is carried out on model M0.
From existing literature data, the velocity gradient along the y-axis is expected to be more
significant than that along the x-axis, so gird dependence is investigated by varying ∆y
while keeping ∆x constant at 0.05. In Fig. 8, the pressure drop is plotted against Re at
different ∆y. A converging limit is observed in Fig. 9 in which only the case of Re= 7.5
is shown. It should be pointed out that a finer grid is desirable especially for cases with
higher Re (see Fig. 8). In order to save computing time, all calculations presented below
use y = 0.025, which only deviates a few percent from the finer grid (∆y = 0.02) result
(Fig. 8).
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Figure 8: Pressure drop versus Re at different ∆y for
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Figure 9 Pressure drop versus y at Re = 7.5 for Model M0.Figure 9: Pressure drop versus ∆y at Re= 7.5 for
Model M0.

Fig. 6 of Deshpande et al. [34] with ∆ p̂/ρ̂0 Û2
m vs Re was replicated in Fig. 10. Included

for comparison are the experimental data of [44] and the present FDLBM/IB results. At
very small Re, all curves are parallel to that given by a Poiseuille flow. The slope of
the curve increases with Re; implying that the inertia term is becoming more important
than the viscous term. The pressure drop eventually becomes independent of Re, at
which point the flow begins its transition to turbulence [34,44]. The present mathematical
models and [34] do not account for transition to turbulence; therefore, it is not surprising
that the modeling results deviate from experimental data [44] at high Re.

Young and Tsai [44] proposed an empirical formula for the pressure drop as

∆p̂

ρ̂0 Û2
m

=
Kv

Re
+

Kt

2
A2, (5.1)
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Figure 10: Comparison of pressure drop between ±16 radii from plane of minimum constriction with previous
numerical [34] and experimental [44] data: ’—’ FDLBM/IB results; ×, △, � and ◦ are data from [34] for
model M0, M1, M2, M3, respectively; N and � are data from [44] for model M1 and M2, respectively.

where A is the area reduction, Kv and Kt are two geometry dependent coefficients to be
determined. They argued that, as a first attempt, ∆p̂ can be approximated by the sum
of the losses due to viscous effect (1st term on RHS) and turbulence (2nd term on RHS).
Although the present study assumes laminar flow, the results show that ∆p̂ is essentially
proportional to 1/Re; hence, Eq. (5.1) is still applicable for the present study.

It is observed that in some models, the position of 16 radii after the plane of minimum
constriction as a pressure measurement point may not be long enough for pressure recov-
ery to the Poiseuille flow behavior (e.g. see Fig. 6). It would be more desirable to examine
only the ∆p̂ due to the constriction and ignore the distance between measurement points.
Therefore, another pressure drop given by δp = δ p̂/ρ̂0 Û2

0 is proposed; this δp is defined
as the difference between the pressure far enough downstream of the constriction and
the pressure at the same location calculated without constriction (Poiseuille flow). It is
assumed that δp can be expressed as

δp=
δ p̂

ρ̂0 Û2
0

= f (X0, A, Re) =
K′

v

Re
+K′

t . (5.2)

The values of the coefficients determined from the present analysis are given in Table
3. Both coefficients are dependent on the geometry of the constriction. For the series of
models with the same area reduction, K′

t essentially remains unchanged; thus showing
that assuming K′

t to be solely dependent on A, as suggested in Eq. (5.1), is a good approx-
imation. From the series of models with the same area reduction (for A= 75%, Models
M0, M02 & M04; for A= 89%, Models M31, M3 & M2), K′

v is found to increase linearly
with X0 (see Table 3).
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Table 3: Pressure drop coefficients for Eq. (5.2).

Model X0 A K′
v K′

t R2-value

M1 4 56% 49.91 0.1743 0.9999

M0 1 75% 48.84 1.4975 0.9974

M02 2 75% 70.675 1.3724 0.9985

M04 4 75% 113.85 1.3486 0.9991

M31 1 89% 199.44 12.957 0.9970

M3 2 89% 258.83 12.750 0.9999

M2 4 89% 429.04 10.116 0.9993

5.2 Scaling law for maximum wall shear stress

Results for wall shear stress from existing literature were mostly approximated by the
assumption that it is proportional to the vorticity [21, 22, 34], because they solved the
stream-function-vorticity form of the NS equation. The use of wall vorticity on a curved
surface to approximate shear rate requires the assumption that

∂un

∂xs
≪ ∂us

∂xn
, (5.3)

where the subscripts ’n’ and ’s’ denote the normal and tangential direction of the surface.
However, the validity of this assumption cannot be ascertained. In the present calcula-
tion, the primitive variables are solved directly. The wall shear stress can be calculated
from the shear stress tensor by interpolation along the wall profile. It is known that the
discrete delta function inherent in the IB method smoothed out the sharp delta function
resulting in an inability to provide a sharp representation near the IB points [24]. Conse-
quently, the results at the position exactly along the IB obtained simply by interpolation
will look ”smeared” and may not be reliable. Therefore, the following two extrapolation
methods are attempted in order to find the more correct wall shear stress. The stress
tensor at the wall is found either by

τi,j=M =
(

4τi,j=M−1−τi,j=M−2

)

/3, (5.4a)

or

τi,j=M =2τi,j=M−1−τi,j=M−2, (5.4b)

where τi,j stands for the components of the stress tensor, τxx, τxy and τyy, at position
indexed by i and j along the wall profile and its offset as shown in Fig. 11. For the position
j = M, it represents the wall profile, R(x) in Eq. (2.5). The positions j = M−1 and j =
M−2 represent the profile offset from the wall vertically (in y-direction) with ∆y and 2∆y,
respectively. The wall shear stress τi,j=M−1 and τi,j=M−2 are found by interpolation of the
components of the stress tensor. Using Eq. (5.4a), the gradients of the stress components,
which are approximated by the second order one-side finite difference discretization, are
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Figure 11: Schematic of IB to illustrate how wall shear stress is determined by extrapolation.

assumed zero along the y-direction. As for Eq. (5.4b), it is a simple extrapolation method
used in [45]. After the required components of the stress tensor along the wall are known,
the wall shear stress is given by the dot product with the tangential and normal vectors
of the wall profile.

Siegel et al. [21] obtained a scaling law for the maximum wall shear rate, which is, in
normalized form, proportional to the wall shear stress by a factor of 1/Re. They found
that the maximum shear rate was linearly proportional to the square root of Re. Instead
of fixing the power exponent for the Re as 0.5, a more general empirical formula for data
fitting is suggested,

τw,m= f (X0, A, Re) = aRe−n+b, (5.5)

where τw,m is the maximum wall shear stress normalized by ρ̂0 Û2
0 . The values of the co-

efficients as determined from the present analysis are presented in Tables 4 and 5. All
coefficients a, b, n are constriction geometry dependent. The results from both extrapo-
lation methods, Eqs. (5.4a) and (5.4b), are very similar. Therefore, the ”smearing effect”
due to the immersed boundary method is not very significant in the present study. From
the present analysis, the power exponent, n, is generally greater than 0.5 and it decreases
when the area reduction increases.

Table 4: Wall shear stress coefficients for Eq. (5.5) according to Eq. (5.4a).

Model X0 A a b n R2-value

M1 4 56% 5.9611 0.0164 0.95 0.9999

M0 1 75% 12.910 -0.0010 0.85 0.9998

M02 2 75% 11.026 0.0317 0.85 0.9998

M04 4 75% 8.6781 0.0398 0.85 1.0000

M31 1 89% 28.543 -0.2910 0.75 0.9999

M3 2 89% 31.254 -0.3725 0.70 0.9997

M2 4 89% 17.438 -0.2699 0.60 0.9993
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Table 5: Wall shear stress coefficients for Eq. (5.5) according to Eq. (5.4b).

Model X0 A a b n R2-value

M1 4 56% 6.0885 0.0214 0.95 0.9999

M0 1 75% 12.839 -0.0115 0.85 0.9997

M02 2 75% 11.571 0.0373 0.85 0.9996

M04 4 75% 8.8272 0.0578 0.85 1.0000

M31 1 89% 22.913 -0.2097 0.75 0.9997

M3 2 89% 33.458 -0.3393 0.70 0.9968

M2 4 89% 17.744 -0.1142 0.60 0.9996

5.3 Non-Newtonian fluid (CY model) effect

Table 6 shows the result of the pressure drop of non-Newtonian fluid (CY model) against
different occlusion models. The pressure drop δp is again estimated using the method
discussed in previous section under scaling law for pressure drop. Similar to the Newto-
nian case, δp is mainly determined by the area reduction A. In order to compare the shear
thinning effect of the CY model with the Newtonian model, the empirical formulae of δp
for Newtonian fluid together with the results of the CY model are plotted in Figs. 12-14.
Since the CY model covers a range of viscosity, resulting in a range of Re (ranging from
Rez=25.324 to Re∞=253.24), the non-Newtonian fluid results are plotted as a horizontal
line in the figures. It should be noted that the horizontal line for the CY model doesn’t
mean that the pressure drop is independent on the ’local’ Re, or the normalized viscosity.
On the other hand, the pressure drop of the CY model is dependent on a range of Re and
only one horizontal line is plotted for each case because only one range of Re is calculated
for each constriction case. It is shown that the pressure drop of the CY model is in general
smaller than that deduced from the Newtonian model, which implies that a Newtonian
fluid assumption tends to overestimate the pressure drop in blood flow simulation.

Table 6: Pressure drop derived from non-Newtonian fluid (CY model).

Model X0 A δp

M1 4 56% 0.4351

M0 1 75% 1.5411

M02 2 75% 1.4959

M04 4 75% 1.7185

M31 1 89% 11.5616

M3 2 89% 9.4820

M2 4 89% 8.0742

The non-Newtonian effect on the maximum wall shear stress is investigated also. Ta-
ble 7 shows the results obtained using extrapolation methods stated in Eqs. (5.4a) and
(5.4b). Again, it can be seen that the result is mainly determined by the area reduction
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Figure 12: Comparison of pressure drop between Newtonian and non-Newtonian (CY model) fluid for model
M1 (A=56%, X0=4).
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Figure 13: Comparison of pressure drop between Newtonian and non-Newtonian (CY model) fluid for A=75%;
model M0 (X0 =1), M02 (X0 =2) and M04 (X0 =4).
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Figure 14: Comparison of pressure drop between Newtonian and non-Newtonian (CY model) fluid for A=89%;
model M2 (X0 =4), M3 (X0=2) and M31 (X0 =1).
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Table 7: Maximum wall shear stress derived from non-Newtonian fluid (CY model).

Maximum wall shear stress from

Model X0 A Eq. (5.4a) Eq. (5.4b)

M1 4 56% 0.0629 0.0683

M0 1 75% 0.1188 0.1025

M02 2 75% 0.1413 0.1492

M04 4 75% 0.1375 0.1576

M31 1 89% 0.3220 0.3125

M3 2 89% 0.3670 0.4225

M2 4 89% 0.3178 0.4009

A when compares to the effect of X0. The comparison between the CY model of non-
Newtonian fluid and Newtonian fluid flow for constriction model with X0 =4 is shown
in Fig. 15 and the maximum shear stress is found by the extrapolation method given in
Eq. (5.4a). Similar to the δp results, the maximum wall shear stress is also overestimated
by assuming blood to be modeled by a Newtonian fluid. This implies that an appropri-
ate non-Newtonian fluid model for blood should be at least one that accounts for shear
thinning, such as the CY model.
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Figure 15: Comparison of maximum wall shear stress using extrapolation in Eq. (5.4a) between Newtonian and
non-Newtonian (CY model) fluid for X0 =4; model M2 (A=89%), M04 (A=75%) and M1 (A=56%).

6 Conclusions

The FDLBM and the IB method have been successfully integrated to give the FDLBM/IB
numerical scheme for model blood flow problems. The FDLBM/IB scheme has been val-
idated against known numerical solution. Consequently, the FDLBM/IB scheme can be
extended to treat axisymmetric flow through constricted tubes. The FDLBM is applicable
for Newtonian and non-Newtonian fluids and is able to correctly replicate incompress-
ible flow with constant density invoked for the whole flow field. In this paper, Newtonian
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and non-Newtonian flow through constricted tubes with different constriction geome-
tries is treated without numerical instability and with accuracy. These characteristics are
most desirable for any solver used to simulate blood flows. Thus developed, the data of
the FDLBM/IB simulations have been used to deduce scaling laws for pressure drop and
wall shear stress in constricted tubes and the results are found to be in agreement with
previous studies. If this FDLBM/IB scheme were to be truly applicable for real blood flow
problems, its ability to simulate pulsating flow in a fully three-dimensional environment
needs to be developed. In a companion paper [46], the ability of the FDLBM/IB scheme
to simulate Newtonian and non-Newtonian pulsating flow in an axisymmetric blood ves-
sel is reported. Extension of the unsteady FDLBM/IB to fully three-dimensional model
blood flow problem where the vessel wall could be elastic is currently being attempted.
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