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Abstract. This paper studies convergence analysis of an adaptive finite element al-
gorithm for numerical estimation of some unknown distributed flux in a stationary
heat conduction system, namely recovering the unknown Neumann data on interior
inaccessible boundary using Dirichlet measurement data on outer accessible bound-
ary. Besides global upper and lower bounds established in [23], a posteriori local up-
per bounds and quasi-orthogonality results concerning the discretization errors of the
state and adjoint variables are derived. Convergence and quasi-optimality of the pro-
posed adaptive algorithm are rigorously proved. Numerical results are presented to
illustrate the quasi-optimality of the proposed adaptive method.
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1 Introduction

In this paper we study convergence analysis of an adaptive finite element algorithm for
numerical estimation of some unknown distributed flux in a stationary heat conduction
system, namely recovering the unknown Neumann data, called fluxes in the sequel, on
the interior inaccessible boundary using Dirichlet measurement data on the outer acces-
sible boundary.
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In heat conduction, the flux distribution is of paramount practical interest, e.g., the
real-time monitoring in steel industry [1], the visualization by liquid crystal thermogra-
phy [18], and estimating the freezing front velocity in the solidification process [37]. But
its accurate distribution is rather difficult to obtain on some inaccessible boundary, such
as the interior boundary of nuclear reactors and steel furnaces. Engineers seek to estimate
them from accessible outer boundary measurements, which naturally gives rise to the in-
verse problem of estimating the distribution of fluxes. This inverse problem is essentially
lack of continuous dependance on data, thus ill-posed in Hadamard’s sense [22].

Numerous numerical investigations have been made for this distributed flux recon-
struction problem, among which the least-squares formulation [36–38] has received in-
tensive investigations and it has been implemented by means of the boundary integral
method [38] and the finite element method [36]. Recently, adaptive techniques are in-
troduced for this problem for efficiency consideration [23]. Guided by the a posteriori
error estimates, the adaptive algorithm in [23] automatically refines the mesh to better
approximate the local but potentially very important features of the distributed flux, e.g.,
non-smooth boundaries, discontinuous fluxes, or singular fluxes with spikes or abrupt
sign changes. The computational cost of the adaptive algorithm is significantly reduced,
compared with that of the uniform refinement.

The research on Adaptive Finite Element Methods (AFEMs) dates back to the seminal
work [2] in the late 1970s. The main themes in AFEMs is how to measure, control and ef-
fectively minimize the discretization error of quantities of interest based on the computed
solution and given data, among which the difficulties lies in 1) deriving a posteriori error
estimates and 2) proving convergence of the resulting adaptive algorithm based on those
a posteriori error estimates.

AFEMs have witnessed significant advance in reducing the computational complex-
ity and improving efficiency in the solution of a variety of partial differential equations
in the past decades. In inverse problems and control community, adaptive methods have
been applied with emphasis on deriving a posteriori error estimates, to mention a few: 1)
the dual weighted residual framework in terms of some quantity of interest [3,4,9], which
provides a general recipe to construct a posteriori error estimates; 2) adaptive parameter
identification in elliptic systems [20]; 3) adaptive methods in PDE-constrained optimal
control problems [25–27].

On the other hand, theoretical convergence analysis of adaptive finite element meth-
ods has made important progress in recent years. It started with Dörfler [19], who in-
troduced a crucial marking strategy, from now on called Dörfler’s marking strategy, and
proved the strict energy reduction property for the Laplace equation provided the ini-
tial mesh satisfies the fineness assumption. Some breakthrough has been made on the
optimality of adaptive finite element methods since the pioneering work of Binev, Dah-
men, DeVore [10] and Stevenson [34]. In fact, the question of convergence and optimality
of adaptive finite element methods has been subject to intensive studies in recent years,
which is reflected from vast literature, see, e.g., [5–7, 12–15, 28, 30–32]. However, most
references aforementioned focused on direct model problems, as opposed to few litera-
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tures on inverse problems or optimal control problems arising from practice. Recently,
Gaevskaya et al. proved in [21] the first convergence result of AFEM for a simple opti-
mal control problem by introducing the concept of data oscillation and the interior node
property. By relaxing the interior node restriction, Becker and Mao [8] showed the con-
vergence of AFEM by an alternative approach using a different marking strategy.

This paper is a subsequent one following [23]. In this work, based on the a posteriori
error estimates derived in [23], we prove the convergence and quasi-optimality of a mod-
ified adaptive algorithm by using Dörfler’s collective marking strategy, compared with
that in [23]. The main ingredients for the analysis of the adaptive algorithm include a
novel a posteriori local upper bounds and a pair of important quasi-orthogonality results
concerning the discretization errors of the state and adjoint variables. Combined with
global upper and lower bounds established in [23], convergence and quasi-optimality
are rigorously proved for the proposed adaptive algorithm.

The paper is organized as follows. In Section 2, we briefly formulate our flux recon-
struction problem into a least-squares problem combined with Tikhonov regularization.
Then the finite element discretization on a single grid is described. In Section 3, we intro-
duce relevant terms of a posteriori error estimates and present an adaptive reconstruc-
tion algorithm under investigation. In Section 4, we prepare some important technical
tools, including a posteriori local upper bound and two quasi-orthogonality results. In
Section 5, we prove the convergence of the adaptive algorithm by showing the error re-
duction property of some total error measure, namely the discretization error plus the
error estimator up to some positive constant. In Section 6, quasi-optimality of the adap-
tive algorithm is proved rigorously. In Section 7, numerical results are presented to verify
the theoretical results.

Before ending this section, let’s recall some notations and conventions throughout the
paper. We adopt the standard notation Wm,p(D) for Sobolev spaces on an open bounded
domain D in R

2, and write Hm(D) =Wm,2(D) for p = 2. The norm and semi-norm of
Hm(D) are denoted respectively by ‖·‖m,D and |·|m,D. We use (·,·)D to denote the inner
product in L2(D). When no confusion is caused, we may simply drop D in the notation
‖·‖m,D and (·,·)D. In addition, we will often use c or C to denote generic positive constants
which are independent of mesh size h and functions involved.

2 Inverse problem and discretization

We briefly present in this section the mathematical formulation of the problem of flux
distribution reconstruction, and its finite element discretization.

2.1 Mathematical formulation

Let Ω be an open and bounded domain in R
2 with some smooth boundary Γ consisting of

two disjointed parts, namely Γ=Γa∪Γi. The boundaries Γi and Γa refer to the part of the
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boundary Γ that is inaccessible and accessible to experimental measurement, respectively.
The steady-state heat conduction problem could be described by the elliptic PDE:























−∇·(α(x)∇u(x))= f (x), x∈Ω,

α(x)
∂u

∂n
+k(u(x)−ua(x))=0, x∈Γa,

α(x)
∂u

∂n
+q(x)=0, x∈Γi,

(2.1)

where the given data include the source f , the ambient temperature ua, the heat transfer
coefficient k and the heat conductivity α. We assume that k>0 and α(x)>0 in this paper.
The flux q(x) on Γi is the quantity of interest in this work.

The inverse problem that we are interested in is to recover the distributed flux q(x) on the
interior inaccessible part Γi, given the partial measurement data z(x) of temperature u(x) on the
outer accessible part Γa.

Due to the severe ill-posedness (see, e.g., [36, Theorem 2.2]), the reconstruction is
carried out through the output least-squares formulation combined with the Tikhonov
regularization. More precisely, we seek q(x) by solving

min
q∈L2(Γi)

J(q)=
1

2
‖u(q)−z‖2

0,Γa
+

β

2
‖q‖2

0,Γi
, (2.2)

where u(q) : L2(Γi)→H1(Ω) represents the solution operator of the direct problem (2.1),
which maps parameter q to solution u.

The necessary and sufficient optimality conditions of the regularized formulation
(2.2) are characterized by the following theorem (cf. [23, Theorem. 2.1]).

Lemma 2.1. The optimization problem (2.2) admits a unique solution q. And q is the minimizer
if and only if there is a costate p ∈ H1(Ω) such that the triplet (u,p,q) satisfies the following
optimality conditions:











(α∇u,∇φ)+(ku,φ)Γa =( f ,φ)+(kua,φ)Γa−(q,φ)Γi
, ∀φ∈H1(Ω),

(α∇p,∇v)+(kp,v)Γa =(u−z,v)Γa , ∀v∈H1(Ω),

J′(q)(w)=(βq−p,w)Γi
=0, ∀w∈L2(Γi).

(2.3)

2.2 Finite element discretization

In this subsection, we describe the finite element discretization of the continuous non-
linear optimization problem (2.1)-(2.2) on a single grid. Let Th be a partition of Ω into
disjoint open regular triangles τ so that Ω̄=∪τ∈Th τ̄ in the sense of [16]. The natural re-
striction of Th on the boundary of Ω forms the triangulations of Γi and Γa, denoted by Γh

i

and Γh
a , respectively. Let Fh be the set of all edges of the triangulation Th and Fh

0 be the
set of all faces which are not on the boundary of Ω, namely, Fh = Fh

0

⋃

(Γh
i ∪Γh

a). Associ-
ated with Th is the piecewise linear finite element subspace Vh of C(Ω̄). And we take the
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feasible approximation space for parameters q to be the natural restriction of Vh on the
boundary Γi, denoted by Vh

Γi
.

Then the discrete counterpart of the continuous problem (2.2) can be formulated as:

min
qh∈Vh

Γi

Jh(qh)=
1

2
‖uh(qh)−z‖2

0,Γa
+

β

2
‖qh‖2

0,Γi
, (2.4)

where uh(qh)∈Vh is the finite element solution of (2.1) with the discrete flux qh, namely

(α∇uh,∇φh)+(kuh,φh)Γa =( f ,φh)+(kua,φh)Γa−(qh,φh)Γi
, ∀φh∈Vh. (2.5)

As in Lemma 2.1, the discrete optimality conditions can be obtained by simply replac-
ing (u,p,q) with (uh,ph,qh) and continuous spaces with finite element spaces (cf. [23,
Eq. (2.6)])











(α∇uh,∇φh)+(kuh,φh)Γa =( f ,φh)+(kua,φh)Γa−(qh,φh)Γi
, ∀φh∈Vh,

(α∇ph,∇φh)+(kph,φh)Γa =(uh−z,φh)Γa , ∀φh∈Vh,

J′h(qh)(wh)=(βqh−ph,wh)=0, ∀wh∈Vh
Γi

.

(2.6)

We define the energy norm by

‖|·|‖2
e =(α∇·,∇·)+(k·,·)Γa ,

which is equivalent to the H1-norm ‖·‖1 by the Poincaré inequality.
The following lemma concerning the a priori L2 error estimate of both state and ad-

joint variables is very crucial in the subsequent convergence analysis. To keep our content
focused, we refer interested readers to a relevant manuscript [24, Theorem 5.2] for details.

Lemma 2.2. Let (u,p,q) and (uh,ph,qh) be the solutions of (2.3) and (2.6), respectively. Then
there exists a constant C0>0 depending only on the minimum angle of Th such that

‖u−uh‖2
0+‖p−ph‖2

0≤C0h2γ(‖|u−uh|‖2
e +‖|p−ph |‖2

e ), (2.7)

with the constant γ∈ (0,1] depending on the geometry of the domain.

It is remarked that Lemma 2.2 can be obtained through Eqs. (5.7) and (5.12) in [24]
together with the Poincaré inequality.

3 Adaptive algorithm

In this section, we present our adaptive algorithm in detail. A posteriori error estimates
derived in [23] will be recalled, and Döfler’s collective marking strategy is used to replace
the old one.
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First of all, we introduce some notations to be used in the sequel. Let hτ=|τ|1/2 denote
the size of the element τ in Th, and hl=|l| the size of the edge l in Fh. We denote by Ωl the
union of two elements in Th sharing l. In addition, we denote by NF the cardinal number
of a finite set F . In particular, for a sequence of successively refined regular meshes
{Tk}k≥0 with edge set {Fk}k≥0. In the sequel, NTk , the number of degrees of freedom on
Tk, is abbreviated by Nk

A typical adaptive finite element method through local refinement can be written as
the following loop:

SOLVE→ESTIMATE→MARK→REFINE.

In this section, we shall focus on the modules Estimate and Mark.
The step Estimate consists of deriving the residual-type a posteriori error estimator,

which can be found in [23]. We first introduce the following error estimator terms, which
consists of some volume and edge residuals:











η2
1,h(τ)=h2

τ

∫

τ
(|∇·(α∇ph)|2+|∇·(α∇uh)+ f |2)dx, ∀τ∈Th,

η2
2,h(l)=hl

∫

l
([(α∇ph)·n]2l +[(α∇uh)·n]2l )ds, ∀l∈Fh,

(3.1)

where [·] stands for the jump of the concerned quantity across the interior edge l of adja-
cent elements, and for boundary edges, it is defined as follows:

[(α∇ph)·n]l =











α
∂ph

∂n
+kph−uh+z, ∀l∈Fh

a ,

α
∂ph

∂n
, ∀l∈Fh

i ,

(3.2a)

[(α∇uh)·n]l =











α
∂uh

∂n
+kuh−kua, ∀l∈Fh

a ,

α
∂uh

∂n
+qh, ∀l∈Fh

i .

(3.2b)

In the subsequent analysis, we also need to treat the oscillation terms



























osc2
1,h(uh,ph,τ)=h2

τ(‖∇·(α∇ph)−∇·(α∇ph)‖2
0,τ

+‖∇·(α∇uh)+ f −∇·(α∇uh)+ f ‖2
0,τ), ∀τ∈Th,

osc2
2,h(uh,ph,l)=hl(‖[(α∇uh)·n]l−[(α∇uh)·n]l‖2

0,l

+‖[(α∇ph)·n]l−[(α∇ph)·n]l‖2
0,l), ∀l∈Fh,

(3.3)

where · denotes the average of the corresponding quantities in the associated elements
or edges. Note that these oscillation terms are only used in theoretical analysis, but not
computed in practice.
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By noticing the relationships βq=p, and βqh=ph through (2.3) and (2.6). The estimates
of q−qh and p−ph are linearly dependent, therefore we choose to estimate p−ph. This
key observation facilitate the subsequent convergence analysis.

For any subset F ⊂Fh, we define

MF := ∑
l∈F

∑
τ∈Ωl

τ (3.4)

and

η2
h(F) := ∑

τ∈MF

η2
1,h(τ)+ ∑

l∈F
η2

2,h(l), (3.5a)

osc2
h(uh,ph,F) := ∑

τ∈MF

osc2
1,h(uh,ph,τ)+ ∑

l∈F
osc2

2,h(uh,ph,l). (3.5b)

For brevity, we drop Fh when F=Fh when no confusion is caused.
When {Tk}k≥0 are considered, the subscript h in uh, qh, and (3.1)-(3.5b) is always

replaced by k to denote the terms associated with the specific mesh Tk.
As for the Refine step, the refinement rule for dividing the marked triangles has to

been chosen to meet two requirements: i) The family of meshes obtained by this rule is
conforming and shape regular; ii) The number of elements added can be controlled to
ensure the overall optimality of the refinement procedure.

In this article, we define the family of admissible meshes in the following recursive
way. Starting from an initial mesh T0, we denote by Rloc(TH,F) with F ⊂ FH the mesh
resulting from a local mesh refinement algorithm such as the newest vertex bisection
algorithm, see [10, 29] for details. We first recall the following property of the newest
vertex bisection.

Lemma 3.1. Assume that the initial mesh T0 verifies condition (b) of Section 4 in [35]. Let
Tk, k= 0,··· ,n be a sequence of locally refined meshes generated by the newest vertex bisection,
starting from the initial mesh T0. Let F k ⊂ Fk, k = 0,··· ,n−1 be the collection of all marked
edges in step k. Then Tk, k=0,1,··· , are uniformly shape regular and the shape regularity of Tk,
k=0,1,··· , only depends on that of T0. Furthermore, we have

Nn ≤N0+C∗
0

n−1

∑
k=0

NF k . (3.6)

Lemma 3.1 and the complexity estimate (3.6) are known to be true for the newest
vertex bisection algorithm, see [10,35] (where the set of marked cells instead of the set of
marked edges is used). So we use newest vertex bisection algorithm in this paper.

The adaptive finite element algorithm for our inverse problem is described in the
following:

Algorithm 3.1. AFEM.
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(0) Choose parameter θ∈ (0,1], and an initial mesh T0, and set k=0.

(1) Solve the discrete optimization problem (2.6) on Tk to obtain the finite element so-
lutions (uk,pk,qk).

(2) Compute the error estimator ηk(l) for each edge l∈Fk.

(3) Mark a subset F k ⊂Fk with minimal cardinality such that

η2
k (F k)≥ θη2

k , (3.7)

where for abbreviation we write η2
k :=η2

hk
(Fk) on Tk.

(4) Refine the current mesh to get a new mesh, i.e., Tk+1 :=Rloc(Tk,F k).

(5) Set k := k+1 and go to Step (1).

4 A posteriori error estimates and some lower and upper bounds

In this section we present a posteriori error estimates for the finite element approximation
(2.4)-(2.5) for our inverse problem, and prove a new a posteriori local upper bounds and
two quasi-orthogonality results, which will play key roles in the subsequent convergence
and optimality analysis of our adaptive FEM algorithm. Let’s first recall the following
lemmas concerning the global upper and lower bounds of the discretization error derived
in [23].

Lemma 4.1. (see [23, Theorem 3.5]). Let (u,p,q) and (uh,ph,qh) be the solutions of (2.3) and
(2.6), respectively. Then there exists a constant C1>0 depending only on the minimum angle of
Th such that

‖|u−uh|‖2
e +‖|p−ph |‖2

e ≤C1η2
h . (4.1)

Lemma 4.2. (see [23, Theorem 3.9]). Let (u,p,q) and (uh,ph,qh) be the solutions of (2.3) and
(2.6), respectively. Then there exists a constant C2>0 depending only on the minimum angle of
Th such that

η2
h ≤C2(‖|u−uh|‖2

e +‖|p−ph |‖2
e +osc2

h(uh,ph)). (4.2)

The following lemma establishes the error reduction property between two nested
meshes.

Lemma 4.3. Let Th,TH be two nested meshes with TH ⊂Th and F = FH\(FH∩Fh)⊂ FH. Let
(uH,pH,qH) and (uh,ph,qh) be the solutions to (2.6) on meshes Th and TH, respectively. Then
there exists a constant C3>0 and C∗

3 depending only on the minimum angle of TH and a parameter
0<δ1<1 such that

η2
h ≤ (1+δ1)η

2
H− 1+δ1

2
η2

H(F)+C3

(

1+
1

δ1

)

(‖|uH−uh|‖2
e +‖|pH−ph|‖2

e ), (4.3)

and

osc2
H(uH,pH,FH∩Fh)−2osc2

h(uh,ph,FH∩Fh)≤C∗
3(‖|uH−uh|‖2

e +‖|pH−ph|‖2
e ). (4.4)
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Proof. The proof of the first and second inequalities can follow the similar lines in the
proof of Corollaries 3.4 and 3.5 in [14], respectively. We omit it here for brevity.

Compared with the global upper bounds in Lemma 4.1, the following lemma presents
a novel a posteriori local upper bounds by the estimators on the marked sets.

Lemma 4.4. Let Th,TH be two nested meshes with TH ⊂Th and F = FH\(FH∩Fh)⊂ FH. Let
(uH,pH ,qH) and (uh,ph,qh) be the solutions to (2.6) on meshes TH and Th, respectively. There
exists a constant C4>0 depending only on the minimum angle of TH such that

‖|uH−uh|‖2
e +‖|pH−ph|‖2

e ≤C4

(

η2
H(F)+H2γ(‖|u−uH|‖2

e +‖|p−pH |‖2
e )
)

, (4.5)

and
#F ≤C5(Nh−NH). (4.6)

Proof. We first bound the term ‖|uH−uh|‖e. Let IH be the Scott-Zhang quasi-interpolation
operator defined on mesh TH (cf. [33]), which satisfies

‖v− IHv‖s,τ ≤C ∑
τ̄∩τ̄′ 6=∅

H1−s
τ |v|1,τ′ , ∀τ∈TH . (4.7)

Then by the first equation of (2.6) over mesh Th, we have

‖|uh−uH|‖2
e ≤

(

α∇(uh−uH),∇(uh−uH)
)

+
(

k(uh−uH),uh−uH

)

Γa

(2.6)
=

(

f ,uh−uH

)

+
(

kua,uh−uH

)

Γa
−
(

qh,uh−uH

)

Γi

−
(

α∇uH,∇(uh−uH)
)

−
(

kuH,uh−uH

)

Γa

=
(

f ,uh−uH

)

+
(

kua,uh−uH

)

Γa
−
(

qh,uh−uH

)

Γi

−
(

α∇uH,∇IH(uh−uH)
)

−
(

kuH , IH(uh−uH)
)

Γa

+
(

α∇uH,∇
(

IH(uh−uH)−(uh−uH)
))

+
(

kuH , IH(uh−uH)−(uh−uH)
)

Γa
, (4.8)

which, together with a repeat application of the first equation of (2.6) over TH, integrating
by parts in each element and applying the Cauchy-Schwartz inequality, we can derive

‖|uh−uH|‖2
e

(2.6)
=

(

f ,uh−uH− IH(uh−uH)
)

−
(

qh−qH,uh−uH

)

Γi

+ ∑
l∈ΓH

a

∫

l

(

(α∇uH)·n+kuH−kua

)(

IH(uh−uH)−(uh−uH)
)

ds

+ ∑
l∈ΓH

i

∫

l

(

(α∇uH)·n+qH

)(

IH(uh−uH)−(uh−uH)
)

ds

+ ∑
τ∈TH

∫

τ

(

∇·(α∇uh)
)(

uh−uH− IH(uh−uH)
)

dx

− ∑
l∈FH

0

∫

l
[(α∇uH)·n]l

(

uh−uH− IH(uh−uH)
)

ds
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= ∑
τ∈MF

∫

τ

(

f +∇·(α∇uH)
)(

uh−uH− IH(uh−uH)
)

dx

− ∑
l∈F

∫

l
[(α∇uH)·n]l

(

uh−uH− IH(uh−uH)
)

ds

−β−1
(

ph−pH,uh−uH

)

Γi

(4.7)

≤ C
(

∑
τ∈MF

h2
τ

∫

τ
| f +∇·(α∇uH)|2dx

)
1
2 ‖|uh−uH|‖e

+C
(

∑
l∈F

hl

∫

l
[(α∇uH)·n]2l ds

)
1
2 ‖|uh−uH|‖e

+C‖uh−uH‖0,Γi
‖ph−pH‖0,Γi

≤C
(

ηH(F)‖|uh−uH|‖e+
1

2
‖uh−uH‖2

0,Γi
+

1

2
‖ph−pH‖2

0,Γi

)

, (4.9)

where we have used the fact that IH(uh−uH) = uh−uH on the elements in the subset
Th∩TH.

We next bound the term ‖|ph−pH |‖e. By a similar argument, applying the Poincaré
inequality, the second equation of (2.6) over mesh Th and TH, and integrating by parts
over each element and the Cauchy-Schwartz inequality, we derive

‖|ph−pH |‖2
e =

(

α∇(ph−pH),∇(ph−pH)
)

+
(

k(ph−pH),ph−pH

)

Γa

(2.6)
=

(

uh−z,ph−pH

)

Γa
−
(

α∇pH ,∇(ph−pH)
)

−
(

kpH ,ph−pH

)

Γa

=
(

uh−z,ph−pH

)

Γa
−
(

α∇pH ,∇IH(ph−pH)
)

−
(

kpH , IH(ph−pH)
)

Γa

−
(

α∇pH ,∇
(

(ph−pH)− IH(ph−pH)
))

−
(

kpH ,ph−pH− IH(ph−pH)
)

Γa

(2.6)
=

(

uh−z,ph−pH

)

Γa
−
(

uH−z, IH(ph−pH))Γa

−
(

α∇pH ,∇
(

(ph−pH)− IH(ph−pH)
))

−
(

kpH ,ph−pH− IH(ph−pH)
)

Γa

=
(

uh−uH,ph−pH

)

Γa

+ ∑
l∈ΓH

a

(

uH−z−kpH−(α∇pH)·n
)(

ph−pH− IH(ph−pH))ds

− ∑
l∈ΓH

i

∫

l
(α∇pH)·n

(

ph−pH− IH(ph−pH)
)

ds

− ∑
l∈FH

0

∫

l
[(α∇pH)·n]l

(

ph−pH− IH(ph−pH)
)

ds
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− ∑
τ∈TH

∫

τ
∇·(α∇pH)

(

(ph−pH)− IH(ph−pH)
)

dx

=
(

uh−uH,ph−pH

)

Γa

− ∑
τ∈MF

∫

τ
∇·(α∇pH)

(

(ph−pH)− IH(ph−pH)
)

dx

+ ∑
l∈F

∫

l
[α∇pH)·n]l

(

ph−pH− IH(ph−pH)
)

ds

(4.7)

≤ C
(

ηH(F)‖|ph−pH |‖e+
1

2
‖uh−uH‖2

0,Γa
+

1

2
‖ph−pH‖2

0,Γa

)

. (4.10)

On the other hand, by the trace inequality, Young’s inequality and Lemma 2.2, we get

‖uh−uH‖2
0,Γ ≤ c1‖uh−uH‖0‖uh−uH‖1

≤ 1

δ
‖uh−uH‖2

1+
c1δ

4
‖uh−uH‖2

0

≤ 1

δ
‖uh−uH‖2

1+
c1δ

2
(‖u−uH‖2

0+‖u−uh‖2
0)

≤ 1

δ
‖uh−uH‖2

1+c1δ‖u−uH‖2
0

(2.7)

≤ 1

δ
‖uh−uH‖2

1+c1δC0H2γ(‖|u−uH |‖2
e +‖|p−pH |‖2

e ) (4.11)

with δ∈ (0,1).
Similarly,

‖ph−pH‖2
0,Γ ≤

1

δ
‖ph−pH‖2

1+c1δC0H2γ(‖|u−uH |‖2
e +‖|p−pH |‖2

e ). (4.12)

Then the desired result will be obtained by a collection of the above results together with
a proper choice of the parameters of the Young’s inequality.

Finally we give an estimate for the quasi-orthogonality of the discretization error with
respect to the energy norm, which explain the coupling relation of errors on two succes-
sive meshes.

Lemma 4.5. Let Th,TH be two nested meshes with TH ⊂Th and F = FH\(FH∩Fh)⊂ FH. Let
(uH,pH ,qH) and (uh,ph,qh) be the solutions to (2.6) on meshes Th and TH, respectively. Then
there exists a constant C6>0 depending on the minimum angle of TH such that

‖|u−uh|‖2
e +‖|p−ph |‖2

e

≤ 1+C6Hγ

1−2C6Hγ
(‖|u−uH |‖2

e +‖|p−pH |‖2
e )

− 1−C6Hγ

1−2C6Hγ
(‖|uh−uH|‖2

e +‖|ph−pH |‖2
e ) (4.13)
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and

‖|u−uH |‖2
e +‖|p−pH |‖2

e

≤1+2C6Hγ

1−C6Hγ
(‖|u−uh|‖2

e +‖|p−ph |‖2
e )

+
1+C6Hγ

1−C6Hγ
(‖|uh−uH|‖2

e +‖|ph−pH |‖2
e ). (4.14)

Proof. By the definition of the energy norm ‖|·|‖e , the equations of (2.3) and (2.6), we
derive

‖|u−uh|‖2
e +‖|p−ph |‖2

e

=
(

α∇(u−uh),∇(u−uh)
)

+
(

k(u−uh),u−uh

)

Γa

+
(

α∇(p−ph),∇(p−ph)
)

+
(

k(p−ph),p−ph

)

Γa

=‖|u−uH|‖2
e +‖|p−pH |‖2

e −(‖|uh−uH|‖2
e +‖|ph−pH|‖2

e )

+2
(

α∇(u−uh),∇(uh−uH)
)

+2
(

k(u−uh),uh−uH

)

Γa

+2
(

α∇(p−ph),∇(ph−pH)
)

+2
(

k(p−ph),ph−pH

)

Γa

(2.3),(2.6)
= ‖|u−uH|‖2

e +‖|p−pH |‖2
e −(‖|uh−uH|‖2

e +‖|ph−pH|‖2
e )

+2(q−qh,uh−uH)Γi
+2(u−uh,ph−pH)Γa

=‖|u−uH|‖2
e +‖|p−pH |‖2

e −(‖|uh−uH|‖2
e +‖|ph−pH|‖2

e )

+2β−1(p−ph,uh−uH)Γi
+2(u−uh,ph−pH)Γa , (4.15)

then by Cauchy-Schwarz inequality, the trace inequality, we have

2
∣

∣β−1(p−ph,uh−uH)Γi
+(u−uh,ph−pH)Γa

∣

∣

≤c2

(

‖p−ph‖2
0,Γ+‖u−uh‖2

0,Γ

)

+c2

(

‖uh−uH‖2
0,Γ+‖ph−pH‖2

0,Γ

)

≤c2c1

(

‖p−ph‖0‖p−ph‖1+‖u−uh‖0‖u−uh‖1

)

+c2c1

(

‖uh−uH‖0‖uh−uH‖1+‖ph−pH‖0‖ph−pH‖1

)

≤c2c1

(

‖p−ph‖0‖p−ph‖1+‖u−uh‖0‖u−uh‖1

)

+c2c1

(

‖uh−uH‖0‖uh−uH‖1+‖ph−pH‖0‖ph−pH‖1

)

(4.16)

with c2=max{1,β−1}.
By a proper choice of the parameters of Young’s inequality and Lemma 2.2, we have

‖p−ph‖0‖p−ph‖1+‖u−uh‖0‖u−uh‖1

≤ 1

2
√

C0Hγ
(‖u−uh‖2

0+‖p−ph‖2
0)+

√
C0Hγ

2
(‖u−uh‖2

1+‖p−ph‖2
1)

(2.7)

≤
√

C0Hγ(‖|u−uh|‖2
e +‖|p−ph |‖2

e ) (4.17)
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and

‖uh−uH‖0‖uh−uH‖1+‖ph−pH‖0‖ph−pH‖1

≤
√

2

4
√

C0Hγ
(‖uh−uH‖2

0+‖ph−pH‖2
0)+

√
2C0Hγ

2
(‖uh−uH‖2

1+‖ph−pH‖2
1)

≤
√

2

2
√

C0Hγ
(‖u−uH‖2

0+‖p−pH‖2
0)+

√
2C0Hγ

2
(‖uh−uH‖2

1+‖ph−pH‖2
1)

(2.7)

≤
√

2C0Hγ

2
(‖|u−uH |‖2

e +‖|p−pH |‖2
e )+

√
2C0Hγ

2
(‖uh−uH‖2

1+‖ph−pH‖2
1). (4.18)

Then a collection of (4.15), (4.17) and (4.18) with C6= c1c2

√
2C0/2 yields

(1−2C6Hγ)(‖|u−uh|‖2
e +‖|p−ph |‖2

e )

≤(1+C6Hγ)(‖|u−uH|‖2
e +‖|p−pH |‖2

e )

−(1−C6Hγ)(‖|uh−uH|‖2
e +‖|ph−pH |‖2

e ) (4.19)

and

(1−C6Hγ)(‖|u−uH |‖2
e +‖|p−pH |‖2

e )

≤(1+2C6Hγ)(‖|u−uh|‖2
e +‖|p−ph|‖2

e )

+(1+C6Hγ)(‖|uh−uH|‖2
e +‖|ph−pH |‖2

e ), (4.20)

which implies the desired result (4.13) and (4.14) immediately.

5 Convergence of AFEM

In this section, we prove the convergence of the AFEM algorithm developed in Section 3
by showing the error reduction property with respect to the total error measure:

ek+µη2
k ,

where ek := ‖|u−uk|‖2
e +‖|p−pk |‖2

e and µ is a positive constant to be determined in the
subsequent analysis.

Based on the lemmas developed in Section 4, we are now in a position to state our
first main theorem.

Theorem 5.1. Let {Tk}k≥0 be a sequence of meshes generated by algorithm AFEM and let
{uk,pk}k≥0 be the corresponding sequence of finite element solutions. Under the assumption that
the mesh size hTk on Tk is small enough, there exist some µ> 0 and 0< ρ< 1 such that for all
k=1,2,··· ,

ek+1+µη2
k+1≤ρ(ek+µη2

k ). (5.1)
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Proof. First by letting TH,Th be Tk and Tk+1, respectively, using (4.13) of Lemma 4.5, (4.3)
of Lemma 4.3, (3.7) and (4.1) of Lemma 4.1, we obtain

(1−2C6h
γ

Tk)ek+1+µη2
k+1

(4.13),(4.3)

≤ (1+C6h
γ

Tk)ek+µ(1+δ1)η
2
k −

1

2
µ(1+δ1)η

2
k (F k)

−
(

1−C6h
γ

Tk−µC3

(

1+
1

δ1

))

(‖|uk−uk+1|‖2
e +‖|pk−pk+1|‖2

e )

(3.7)

≤ (1+C6h
γ

Tk)ek+µ(1+δ1)η
2
k −

1

2
µ(1+δ1)θη2

k

−(1−C6h
γ

Tk−µC3

(

1+
1

δ1

))

(‖|uk−uk+1|‖2
e +‖|pk−pk+1|‖2

e )

=(1+C6h
γ

Tk)ek+µ(1+δ1)
(

1− (1−b)θ

2

)

η2
k −

θ

2
µ(1+δ1)η

2
k

−(1−C6h
γ

Tk−µC3

(

1+
1

δ1

))

(‖|uk−uk+1|‖2
e +‖|pk−pk+1|‖2

e )

(4.1)

≤
(

1+C6h
γ

Tk−
bθ

2C1
µ(1+δ1)

)

ek+µ(1+δ1)
(

1− (1−b)θ

2

)

η2
k

−(1−C6h
γ

Tk−µC3

(

1+
1

δ1

))

(‖|uk−uk+1|‖2
e +‖|pk−pk+1|‖2

e ), (5.2)

where the constant b∈ (0,1) is chosen in the following analysis.
If we choose µ and δ1 such that

1−C6h
γ

Tk−µC3

(

1+
1

δ1

)

=0, (5.3)

the inequality (5.2) becomes

(1−2C6h
γ

Tk)ek+1+µη2
k+1

≤
(

1+C6h
γ

Tk−
θ

2C1
µ(1+δ1)

)

ek+µ(1+δ1)
(

1− (1−b)θ

2

)

η2
k . (5.4)

Then the desired result (5.1) will be obtained if there holds

bθ

2C1
µ(1+δ1)>3C6h

γ

Tk (5.5)

and

(1+δ1)
(

1− (1−b)θ

2

)

<1. (5.6)

The inequality (5.6) is equivalent to

(1−b)>
2δ1

(1+δ1)θ
. (5.7)
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Thus if δ1 is chosen such that

0<δ1<
θ

2−θ
, (5.8)

then there exists a desired constant b according to (5.7). Lastly, when δ1 and b are fixed,
then µ can be chosen according to (5.3). Note that (5.5) is guaranteed if the mesh scale hTk

is small enough. The proof is completed.

6 Quasi-optimality and optimal complexity of AFEM

In this section, we establish the quasi-optimality and optimal complexity of AFEM. In
order to investigate the optimal complexity, we introduce some notations from nonlinear
approximation theory, developed in [10,11,17]. Let HN be the set of all triangulations Th

which satisfy Nh ≤N.
Next we define the approximation class

W s :=
{

(u,p, f )∈ (H1(Ω),H1(Ω),L2(Ω)) :‖(u,p, f )‖W s <+∞
}

(6.1)

with
‖(u,p, f )‖W s := sup

N≥N0

Ns inf
Th∈HN

(

‖|u−uh|‖2
1+‖|p−ph |‖2

1+osc2
h

)

. (6.2)

The infimum above means that Th runs through all admissible triangulations that are
refined by newest vertex bisection algorithm, satisfying Nh ≤ N. The quasi-optimality
of an adaptive finite element method is meant that whenever (u,p, f )∈W s, it produces
a triangulation Tk with cardinal number Nk and corresponding approximation (uk,pk)
such that

e2
k+η2

k ≤C(Nk−N0)
−s. (6.3)

Our second main theorem is devoted to show AFEM enjoys a quasi-optimal con-
vergence rate for the inverse problem.

Theorem 6.1. Let {Tk}k≥0 be a sequence of meshes generated by algorithm AFEM and let
{uk,pk}k≥0 be the corresponding sequence of finite element solutions. Under the assumption that
hTk is small enough and

0< θ< θ∗ (6.4)

with

θ∗ :=
1−C1C2C4h

2γ

Tk

(

1+C6h
γ

Tk

1−C6h
γ

Tk

+C∗
3

)

C2C4

(

1+C6h
γ

Tk

1−C6h
γ

Tk

+C∗
3

)

+C2

,

then there exists a constant C such that for all k=1,2,··· ,

e2
k+µη2

k ≤C(Nk−N0)
−s. (6.5)
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Proof. We suppose λ∈(0,1) is a constant to be chosen appropriately below and according
to the definition of the W s norm, there exists an admissible mesh Th∗ with the edge set
F h∗ , which is refined from T0 with minimum number of elements such that

‖|u−uh∗ |‖2
e +‖|p−ph∗ |‖2

e +osc2
h∗(uh∗ ,ph∗)≤λ(e2

k+µη2
k ) (6.6)

with

Nh∗ ≤λ−1/s(e2
k+µη2

k )
−1/s‖(u,p, f )‖1/s

W s . (6.7)

Next we choose Th′ (with the edge set F h′ ) as the refinement of Tk with minimal number
of elements such that Th′ ⊂Th∗ and thus

‖|u−uh′ |‖2
e +‖|p−ph′ |‖2

e +osc2
h′(uh′ ,ph′)

≤(‖|u−uh∗ |‖2
e +‖|p−ph∗ |‖2

e +osc2
h∗(uh∗ ,ph∗ ))

≤λ(e2
k+µη2

k ). (6.8)

Since both the triangulations Th′ and Tk are refinements of T0 and the former can be
obtained from the latter by using at most NTh′ refinements (cf. [34]). Therefore by the
property of newest vertex bisection in Lemma 2.2, there holds

NTh′−Nk ≤C∗
0 Nh∗ ≤C∗

0 λ−1/s(e2
k+µη2

k )
−1/s‖(u,p, f )‖1/s

W s . (6.9)

In the following we will bound Nk+1−Nk by NTh′−Nk to obtain the desired results. In
view of Lemma 4.4, there exists a subset

F h∗ =Fk\(Fk∩Fh′)⊂Fk,

such that

|‖uk−uh′ |‖2
e +‖|pk−ph′ |‖2

e ≤C4(η
2
k (F h∗+h

2γ
Tk

e2
k) (6.10)

and

NF h∗ ≤C5(NTh′ −Nk). (6.11)

On the other hand, if we choose λ such that

0<λ<
1

2
.

From Lemma 4.1, Lemma 4.2, the second inequality in Lemma 4.3, Lemma 4.4, the second
inequality in Lemma 4.5, and the fact that

osc2
k(uk,pk,F h∗)≤η2

k (F h∗) (6.12)
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together with (6.8), we obtain

(1−2C∗λ)η2
k

(4.2)
≤ C2(1−2λ)(e2

k+osc2
k(uk, pk))

(6.8)
≤ C2

(

e2
k−2(‖|u−uh′ |‖2

e +‖|p−ph′ |‖2
e )+osc2

k(uk, pk)−2osc2
h′(uh′ , ph′)

)

≤C2

(

e2
k−

1+2C6h
γ

Tk

1−C6h
γ

Tk

(‖|u−uh′ |‖2
e +‖|p−ph′|‖2

e )+osc2
k(uk, pk)−2osc2

h′(uh′ , ph′)
)

(4.14)
≤ C2

(1+C6h
γ

Tk

1−C6h
γ

Tk

(‖|uk−uh′ |‖2
e +‖|pk−ph′ |‖2

e )+osc2
k(uk, pk)−2osc2

h′(uh′ , ph′)
)

≤C2

(1+C6h
γ

Tk

1−C6h
γ

Tk

(‖|uk−uh′ |‖2
e +‖|pk−ph′ |‖2

e )+osc2
k(uk, pk,F h∗)

+osc2
k(uk, pk,Tk∩Th′)−2osc2

h′(uh′ , ph′ ,T
k∩Th′))

)

(4.4),(6.12)
≤ C2

((1+C6h
γ

Tk

1−C6h
γ

Tk

+C∗
3

)

(‖|uk−uh′ |‖2
e +‖|pk−ph′ |‖2

e )+η2
k (F h∗)

)

(4.5)
≤ C2

(

C4

(1+C6h
γ

Tk

1−C6h
γ

Tk

+C∗
3

)

(η2
k (F h∗)+h

2γ

Tk e2
k)+η2

k(F h∗)
)

(4.1)
≤ C2

(

C4

(1+C6h
γ

Tk

1−C6h
γ

Tk

+C∗
3

)

(η2
k (F h∗)+C1h

2γ

Tk η2
k )+η2

k (F h∗)
)

, (6.13)

where we have made the assumption that (1+2C6h
γ

Tk)/(1−C6h
γ

Tk)≤ 2, which only re-

quires hTk ≤ (4C6)1/γ.
It yields from (6.13)

η2
k (F k∗)≥

(1−2λ)+C1C2C4h
2γ

Tk

(

1+C6h
γ

Tk

1−C6h
γ

Tk

+C∗
3

)

C2C4

(

1+C6h
γ

Tk

1−C6h
γ

Tk

+C∗
3

)

+C2

η2
k . (6.14)

Therefore, if we choose λ such that

0<λ≤
1−θ

(

C2C4

(

1+C6h
γ

Tk

1−C6h
γ

Tk

+C∗
3

)

+C2

)

−C1C2C4h
2γ

Tk

(

1+C6h
γ

Tk

1−C6h
γ

Tk

+C∗
3

)

2
, (6.15)

which is possible due to (6.4), we have

η2
k (F h∗)≥ θη2

k . (6.16)

Since in the marking strategy we choose the minimal edge set F k ⊂ Fk such that (3.7)
holds, then we conclude that

Nk+1−Nk ≤C∗
0 N(F k)≤C∗

0 N(F h∗ )≤C∗
0 C5(NTh′−Nk)

≤(C∗
0)

2C5λ−1/s(e2
k+µη2

k )
−1/s‖(u,p, f )‖1/s

W s . (6.17)
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By Theorem 5.1, we finally deduce that

Nk−N0=
k−1

∑
i=0

(Ni+1−Ni)C
∗
0

≤(C∗
0)

2C5λ−1/s
k−1

∑
i=0

(e2
i +µη2

i )
−1/s‖(u,p, f )‖1/s

W s

le(C∗
0)

2C5λ−1/s
(k−1

∑
i=0

ρ
k−i

s

)

(e2
k+µη2

k )
−1/s‖(u,p, f )‖1/s

W s

≤(C∗
0)

2C5λ−1/s 1−ρ
k
s

1−ρ
1
s

(e2
k+µη2

k )
−1/s‖(u,p, f )‖1/s

W s , (6.18)

which implies the desired result. The proof of the theorem is completed.

It is remarked that the smallness assumption on hTk is essential in the proof of quasi-
optimality of the AFEM. One may refer to [34] for a nontrivial proof for an elliptic
model problem for technical details.

As a direct corollary of Theorem 6.1, we obtain the following quasi-optimal complex-
ity of the proposed adaptive algorithm.

Corollary 6.1. Under the same assumptions of Theorem 6.1, there exists a constant C such
that for all k=1,2,··· , such that the following estimate on the complexity of the algorithm
holds:

Nk−N0 ≤C(e2
k+µη2

k )
− 1

s . (6.19)

7 Numerical results and discussions

In this section we report two numerical experiments to validate the convergence and
optimality of the proposed adaptive algorithm. Throughout the section, the spatial dis-
cretization is always done with continuous piecewise linear finite elements on triangles.
The resulting discrete optimality system (2.6) are treated by fast direct solvers in the
UMFPACK library. All the computations are done using Matlab and C++ compiler on
a eight-core linux desktop with AMD 925 processors and 16GB memory.

The computational examples arise from an application in steel furnace. For the tests,
the computational domain is chosen to be a concentric disk with radii 1 and 1.5, respec-
tively, as shown in Fig. 1. For ease of visualization, the inner boundary plot of the flux
is parametrized by its arc length (in the angular direction [−π,π]) so that both the exact
and constructed fluxes can be represented by a function of arc length in one dimension.

In the sequel, the simulated noisy data is synthesized as follows:

z(x)=u(x)+δ·u(x)rand(x),
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Figure 1: Computational domain for experiments.

where u(x) denotes the true solution, δ represents the noise level and rand(x) is a nodal-
wise uniformly random number between −1 and 1. For parameters, we set α = 1, k =
1, ua = 0 and f = 0. The noise level δ is always chosen to be 1%. The regularization
parameter β is obtained by trial and error, ranging from 10−4 to 10−7. The initial guess
of the unknown flux is always set to zero everywhere. The parameter θ in the marking
strategy is chosen to be 0.6. To satisfy the assumption of fineness of the initial mesh, we
start with an initial mesh of about 2400 DOF’s and mesh size 0.1.

Example 7.1. (Discontinuous flux). The exact flux to be constructed is discontinuous at
the points (0,1) and (0,−1) and given by the 2-D function

qexact(x,y)=

{

1, if x>0,

−1, if x<=0,

restricted on the inner boundary Γi.

The true solution u is shown in Fig. 2(a). After 15 adaptive refinements from the
initial mesh with 2400 DOF’s, the adaptively refined mesh is shown in Fig. 2(b). Local
feature of the unknown flux is approximated reasonably well, see Fig. 2(c). The loci of
discontinuity in the flux are well captured with some oscillations around. Our adaptive
algorithm refines adaptively elements around the singular points (0,1) and (0,−1). It is
emphasized that the unique flux associated with (2.6) differs from the exact one and is
unknown in general. Although the exact fluxes are specified with formulae, while the
unique true flux corresponding to the problem (2.6) is only a regularized approximation
of the exact one, which is a distinct feature of inverse problems. The convergence history
of the error estimator versus the DOF’s of the finite element discretization is plotted in
Fig. 2(d), which shows convergence and asymptotically optimal complexity O(N−1) of
the adaptive algorithm, compared with the reference red line of first order decay.
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Figure 2: Example 7.1: (a) True solution u, (b) and the final mesh with 203063 DOF’s, (c) the reconstructed
flux qh with reference to the exact one q, and (d) global error indicator versus DOF’s.

Example 7.2. (Dipole-like flux). We try to construct a dipole-shaped flux, which is even
more challenging. The exact flux has a sharp sign change at the point (0,1) and given by
the 2-D function

qexact(x,y)=

{

exp(−10(x2+(y−1)2)), if x>0,

−exp(−10(x2+(y−1)2)), if x<0,

restricted on the inner boundary Γi. The flux given makes the true solution u has a sharp
sign change at (0,1) as shown in Fig. 3(a). Fig. 3(b) is the final mesh after 15 adaptive
refinements. Taking into account the challenging feature of the dipole-like flux, the re-
constructed flux in Fig. 3(c) is a good approximation to the exact one. Local feature of
the unknown flux is successfully resolved by our adaptive algorithm, which adaptively
refine elements around the singular point (0,1) as shown in Fig. 3(b). It is observed that
the reconstructed heat fluxes capture well the location and height and even the sharp
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Figure 3: Example 7.2: (a) True solution u, (b) and the final mesh with 215753 DOF’s, (c) the reconstructed
flux qh with reference to the exact one q, and (d) global error indicator versus DOF’s.

sign change of the dipole flux except small shift of the tips of the dipole flux. It is worth
noting that the local feature of the flux in this example is highly nontrivial, which re-
quires far more local refinements for better recovering the sharp sign change. Through
the convergence test shown in Fig. 3(d), our adaptive algorithm achieves convergence
and asymptotically optimal complexity of order O(N−1).

8 Conclusions

We have proposed a modified adaptive algorithm for the inverse problem of distributed
flux reconstruction. The proof of the convergence and optimality is rigorously shown by
using an a posteriori local upper bound and quasi-orthogonality of solutions on succes-
sively refined meshes, based on the a posteriori error estimates developed in [23]. The
generalization to other inverse problems will be reported elsewhere.
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