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Abstract. This article is to discuss the bilinear and linear immersed finite element (IFE)
solutions generated from the algebraic multigrid solver for both stationary and moving
interface problems. For the numerical methods based on finite difference formulation
and a structured mesh independent of the interface, the stiffness matrix of the linear
system is usually not symmetric positive-definite, which demands extra efforts to de-
sign efficient multigrid methods. On the other hand, the stiffness matrix arising from
the IFE methods are naturally symmetric positive-definite. Hence the IFE-AMG algo-
rithm is proposed to solve the linear systems of the bilinear and linear IFE methods
for both stationary and moving interface problems. The numerical examples demon-
strate the features of the proposed algorithms, including the optimal convergence in
both L2 and semi-H1 norms of the IFE-AMG solutions, the high efficiency with proper
choice of the components and parameters of AMG, the influence of the tolerance and
the smoother type of AMG on the convergence of the IFE solutions for the interface
problems, and the relationship between the cost and the moving interface location.
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1 Introduction

In this article, we first consider the following second order elliptic interface problem:
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{

−∇·
(

β∇u
)

= f (X), X∈Ω,
u(X)= g(X), X∈∂Ω,

(1.1)

together with the jump conditions on the interface Γ:

[u]|Γ =0, (1.2a)
[

β
∂u

∂n

]
∣

∣

∣

Γ
=0. (1.2b)

Here, see Fig. 1, without loss of generality, we consider the case in which Ω⊂ IR2 is
an open rectangular domain, and the interface curve Γ is defined by a smooth function
which separates Ω into two sub-domains Ω−, Ω+ such that Ω = Ω−∪Ω+∪Γ, and the
coefficient β(X) is a positive piecewise constant function defined by

β(X)=

{

β−, X∈Ω−,
β+, X∈Ω+.

We will also consider the following parabolic moving interface problem:











ut−∇·(β∇u)= f (t,X), X∈Ω, t∈ (0,Tend],

u(t,X)= g(t,X), X∈∂Ω, t∈ (0,Tend],

u(0,X)=u0(X), X∈Ω,

(1.3)

with the jump condition on a moving interface Γ(t):

[u]|Γ(t)=0, (1.4a)
[

β
∂u

∂n

]∣

∣

∣

Γ(t)
=0. (1.4b)

Without loss of generality, we consider the case in which the interface curve Γ(t) is de-
fined by a smooth function Γ : [0,Tend]→Ω. At any time t ∈ [0,Tend], the interface Γ(t)
separates Ω into two sub-domains Ω+(t) and Ω−(t) such that Ω=Ω+(t)∪Ω−(t)∪Γ(t)
and Γ(t)∩∂Ω=∅. The coefficient function β(t,X) is discontinuous across the interface
Γ(t). For simplicity, we assume β(t,X) is a piece-wise constant function as follows:

β(t,X)=

{

β−, X∈Ω−(t),
β+, X∈Ω+(t).

The stationary interface problems (1.1)-(1.2b) and the moving interface problem (1.3)-
(1.4b) are involved in many applications of engineering and sciences, such as the field
injection problem [25, 77], flow problem [3, 15], electromagnetic problems [4, 8, 43],
shape/toplogy optimization problem [7, 19], and the Stefan problem [11, 62]. These in-
terface problems can be solved by conventional finite difference or finite element meth-
ods with optimal convergence if a body-fitting mesh is utilized [5, 6, 9, 14, 38]. However,
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Figure 1: The sketch of domain Ω with the interface Γ.

Figure 2: Rectangular and triangular Cartesian meshes independent of the interface.

there are many applications, such as Particle-In-Cell method for plasma particle simula-
tion [44, 60, 61, 71, 72] and moving interface problems [37], in which a structured mesh
independent of the interface is preferred for solving the interface problems.

Therefore, many efforts have been attempted to develop numerical methods for solv-
ing interface problems on structured meshes (Fig. 2) independent of the interface even
if their geometries are non-trivial. In the finite difference formulation, the immersed
boundary method [28,45,55,63,64], immersed interface method [21–23,50,68,76], matched
interface and boundary method [24, 78–81], cut-cell method [40, 41], and embedded
boundary method [39, 42] have been developed.

In real world applications, we often need to solve large scale linear systems arising
from these methods many times due to various realistic needs, such as the curse of the
dimensionality, the high accuracy requirement, and moving interface. This demands
very efficient solvers. The multigrid methods, which are well known for their efficiency
and natural preconditioning feature, perform efficiently on Cartesian meshes which can
be naturally provided by the aforementioned methods for interface problems. L. Adams
and Z. Li [49] designed a geometric multigrid method for the immersed interface method
of the second order elliptic interface problems. L. Adams and T. P. Chartier [47] devel-
oped a new restriction operator and the corresponding interpolation operator to guar-
antee that the coarse-grid matrices are M-matrices. R. D. Guy and B. Philip discussed a
multigrid method for an implicit immersed boundary equations [29]. Moreover, T. Chen
and J. Strain [13] developed a Krylov-accelerated multigrid approach to a new piecewise-
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polynomial method for elliptic problems with complex interfaces. L. Adams and T. P.
Chartier [48] also utilized a similar idea in [47] to design the corresponding algebraic
multigrid method and compare it with the geometric one.

For the algebraic multigrid method [65, 67], extra efforts are usually needed in order
to design efficient multigrid solvers to solve the non-symmetric linear systems arising
from the methods based on finite difference formulation and a structured mesh inde-
pendent of the interface. On the other hand, the immersed finite element (IFE) meth-
ods [1,2,10,16–18,20,26,27,30–37,43,46,51–54,56–59,66,70,73–75], which are developed
under the general framework of finite elements and proposed by using local basis func-
tions according to the interface jump conditions while their meshes do not have to be
aligned with interfaces, naturally provide symmetric positive-definite matrices for the
above interface problems. While minimizing the extra efforts to modify the traditional fi-
nite element packages, the IFE methods can also easily deal with complex interface with
optimal accuracy order. Hence we believe that the combination of the features of the
algebraic multigrid method (such as its efficiency, preconditioning capability and inde-
pendence of the geometry) and the features of the IFE methods (such as their symmetric
positive-definite matrices, capability to handle the interface without using body-fitting
meshes, and optimal convergence rates) can generate very efficient and competitive nu-
merical methods for large-scale applications in which a structured mesh independent of
the interface is preferred for solving the interface problems.

The rest of this article is organized as follows. In Section 2, we recall the definitions
of the bilinear and 2D linear IFE spaces. In Section 3, we first combine the algebraic
multigrid method with the IFE method for the elliptic interface problem, and then we
extend the resulted algorithm to a Crank-Nicolson-type IFE method for the parabolic
moving interface problem. In Section 4, we present some numerical examples to illustrate
the features of IFE-AMG algorithms. Finally, we summarize our results in Section 5.

2 The bilinear and 2D linear immersed finite elements

In this section, we briefly recall the bilinear IFE space [31, 56] and the 2D linear IFE
space [53, 54].

First, we consider a rectangular Cartesian mesh (see the left graph of Fig. 2) indepen-
dent of the interface. Let Th denote the collection of all elements in a mesh with parameter
h. When h is small enough, most of elements in Th are non-interface elements not inter-
secting with the interface Γ. Only those elements in the vicinity of Γ have the possibility
to be cut through by Γ and become the so-called interface elements. We will use Tint to
denote the collection of all interface elements of Th.

On each non-interface element T, we let the local finite element space Sh(T) be
Snon

h (T), which is spanned by the four standard bilinear nodal basis functions ψi(x,y),
i= 1,2,3,4 on T. To describe the local IFE space on an interface element T∈Tint, we as-
sume that the vertices of T are Ai, i=1,2,3,4, with Ai=(xi,yi)

T. Without loss of generality,
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Figure 3: Two typical rectangular interface elements. The element on the left is of Type I while the one on the
right is of Type II.

we assume that ∂T intersects with Γ at two points D=(xD ,yD)
T and E=(xE ,yE)

T. When
the mesh is fine enough, there are two types of rectangle interface elements. Type I are
those for which the interface intersects with two of its adjacent edges; Type II are those
for which the interface intersects with two of its opposite edges, see the sketches in Fig. 3.

Since the line DE separates T into two subsets T− and T+, we naturally form a piece-
wise function by two bilinear polynomials defined in T− and T+, respectively. Then by
using the interface conditions (1.2a)-(1.2b), the bilinear immersed functions are defined
as follows [31, 56]:

ψ(x,y)=



























ψ−(x,y)= a−x+b−y+c−+d−xy, (x,y)∈T−,

ψ+(x,y)= a+x+b+y+c++d+xy, (x,y)∈T+,

ψ−(D)=ψ+(D), ψ−(E)=ψ+(E), d−=d+,
∫

DE

(

β−
∂ψ−

∂nDE

−β+ ∂ψ+

∂nDE

)

ds=0.

(2.1)

Now let ψi(X) be the bilinear IFE function described by (2.1) such that

ψi(xj,yj)=

{

1, if i= j,
0, if i 6= j,

for 1≤ i, j≤ 4, and we call them the bilinear IFE nodal basis functions on an interface
element T. We then let Sint

h (T)= span{ψi , i=1,2,3,4}.
In summery, for each element T∈Th, we define

Sh(T)=

{

Snon
h (T), if T is a non-interface element,

Sint
h (T), if T is an interface element.

LetNh={Xi}
N
i=1 denote the set of nodes in Th,N o

h =Nh∩Ω,N b
h =Nh∩∂Ω, I o

h={i:Xi∈N
o
h },

and I b
h ={i : Xi∈N

b
h }. Define φi(X) (i=1,··· ,N) to be a piecewise bilinear function such

that

φi|T∈Sh(T), ∀T∈Th and φi(Xj)=δij, ∀Xj∈Nh.
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Figure 4: A typical triangular interface element.

Then the bilinear IFE space on the whole domain Ω is defined as

SIFE
h (Ω)= span{φi(X) : 1≤ i≤N}.

We also define the subspace SIFE
h,0 (Ω)⊂SIFE

h (Ω) such that

SIFE
h,0 (Ω)= span{φi(X) : i∈I o

h}.

Remark 2.1. Here φi(X) is a global bilinear IFE basis function if Xi is a node of any inter-
face element. Otherwise, φi(X) is a standard global bilinear finite element basis function
associated with the node Xi. Since IFE functions are discontinuous on the element edges
cut by the interface, the immersed finite elements are nonconforming [31, 56].

In the following we consider a triangular Cartesian mesh (see the right graph in Fig. 2)
independent of the interface. On each of the non-interface element T, we let the local
finite element space Sh(T) be Snon

h (T) spanned by the three standard linear nodal basis
functions φi(x,y), i = 1,2,3 on T. For an interface element T with vertices Ai = (xi,yi)

T,
i = 1,2,3, without loss of generality, we assume that ∂T intersects with Γ at two points
D=(xD ,yD )

T and E=(xE ,yE)
T. There is only one type of triangle interface elements, see

the sketch in Fig. 4.
Then by using the interface conditions (1.2a)-(1.2b), a typical 2D linear immersed fi-

nite element function is defined as follows [53, 54]:

ψ(x,y)=



























ψ−(x,y)= a−x+b−y+c−, (x,y)∈T−,

ψ+(x,y)= a+x+b+y+c+, (x,y)∈T+,

ψ−(D)=ψ+(D), ψ−(E)=ψ+(E),

β−
∂ψ−

∂nDE
−β+ ∂ψ+

∂nDE
=0,

(2.2)

where nDE is the unit vector perpendicular to the line DE. We let ψi(X) be the linear IFE
function described by (2.2) such that

ψi(xj,yj)=

{

1, if i= j,
0, if i 6= j,
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for 1≤ i, j≤ 3, and we call them the 2D linear IFE nodal basis functions on an interface
element T. We then let Sint

h (T)= span{φi, i=1,2,3}. Then we can use the same way as in
the bilinear IFE space to define Sh(T), φi(X), SIFE

h (Ω) and SIFE
h,0 (Ω) for the 2D linear IFE

space.

3 The IFE-AMG algorithm

In this section we will first describe how to use the IFE function spaces and the alge-
braic multigrid method to solve the elliptic interface problems. And then we will apply
the same idea to a Crank-Nicolson-type IFE method for the parabolic moving interface
problem.

To formulate the linear system arising from the IFE method for the elliptic interface
problem, we will first briefly recall the weak formulation and the IFE formulation [35,54,
56]. The weak formulation for the elliptic interface problem is to find u∈H1(Ω) such that

∫

Ω
β∇u·∇vdxdy=

∫

Ω
f vdxdy, ∀v∈H1

0 (Ω),

u(X)= g(X), X∈∂Ω.

Then the IFE formulation is to find uh∈SIFE
h (Ω) such that

∑
T∈Th

∫

T
β∇uh ·∇vhdxdy= ∑

T∈Th

∫

T
f vhdxdy, ∀vh∈SIFE

h,0 (Ω), (3.1a)

uh(X)= g(X), X∈N b
h . (3.1b)

Based on the construction of the IFE space SIFE
h (Ω) and the given Dirichlet boundary

condition, the approximate solution to the elliptic interface problem (1.1)-(1.2b) is taken
in the following form:

uh(X)= ∑
k∈I o

h

ukφk(X)+ ∑
s∈I b

h

g(Xs)φs(X). (3.2)

Rewriting the above system in matrix formulation yields

Ah~uh=~bh, (3.3)

where

• Ah=(aij)n×n is the stiffness matrix with

aij = ∑
T∈Th

∫

T
β∇φki

·∇φk j
dX.
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• ~bh=(bi)n×1 is the source vector with

bi= ∑
T∈Th

∫

T
φki

f dX− ∑
s∈I b

h

(

∑
T∈Th

∫

T
β∇φki

·∇φsdX
)

g(Xs).

• ~uh=(uki
)n×1 is the unknown vector.

Remark 3.1. It is straightforward to see that the stiffness matrix Ah arising from the IFE
method is symmetric positive definite, which is critical to the algebraic multigrid method.
The optimal convergence rates are also expected for the IFE solutions uh, which are sec-
ond order in L2 norm and first order in H1 semi-norm for the linear and bilinear IFEs.
The numerical experiments in the next section will verify this expectation.

In the following we will introduce the AMG method [12,65,69] that is appropriate for
solving the linear system (3.3) which arises from the IFE method. Let A1

h = Ah, ~u1
h =~uh,

~b1
h=

~bh. Then in one V-cycle a sequence of linear systems

Am
h ~u

m
h =~bm

h , m=1,··· ,M,

can be generated from different grid levels. Here Am
h = (am

ij )nm×nm , ~bh = (bm
i )nm×1, ~uh =

(um
i )nm×1, and n = n1 > n2 > ···> nm. Now we discuss two main phases of the AMG

algorithm: setup phase and solution phase [12].
In the setup phase, let Ωm denote the set of unknowns um

i (1≤ i≤nm) of the mth grid
level. And the coarser grid Ωm+1 is chosen as a subset of Ωm, which is denoted as Cm in
the mth grid level. The remaining subset Ωm−Cm will be denoted by Fm. A point um

i is
said to be strongly connected to um

j provided there exists a positive constant (the strong

connection threshold) η∈ (0,1] such that

|am
ij |≥η · max

k 6=s
1≤k,s≤nm

|am
ks |, 0<η≤1. (3.4)

Let Sm
i denote the set of all strongly connected points of um

i and let the coarse interpo-
latory set be Cm

i =Cm∩Sm
i . In general, Cm and Fm are chosen by the following criteria:

(C1) For each um
i ∈ Fm, each point um

j ∈ Sm
i should be either in Cm

i itself or should be

strongly connected to at least one point in Cm
i .

(C2) Cm should be the subset of all points with the property that no two coarse points
are strongly connected to each other.

Define the set of points which are strongly connected to um
i to be

Sm,T
i ≡{um

j : um
i ∈Sm

j }. (3.5)

For a set P, let |P| denote the number of the elements in P. Then Algorithm 3.1 is pro-
posed by Ruge and Stüben in [65,67] can be used to chose the coarse grid Ωm+1=Cm and
Fm.
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Algorithm 3.1. The construction of coarse grid.

Input: Ωm.
Output: Cm and Fm.
Method:

1: Cm←∅, Fm←∅, ~um
h ←Ωm and λm

k = |Sm,T
k | (1≤k≤nm)

2: for (1≤ i≤nm) do
3: if (~um

h 6=∅) then
4: Pick the um

i ∈~u
m
h such that λm

i =max1≤k≤nm
λm

k , and set

Cm =Cm∪{um
i }, ~um

h =~um
h −{u

m
i }

5: for (all um
j ∈Sm,T

i ∩~um
h ) do

6: Set Fm =Fm∪{j} and ~um
h =~um

h −{j}
7: for (all um

l ∈Sm
j ∩~u

m
h ) do

8: set λm
l =λm

l +1
9: end for

10: end for

11: for (all um
j ∈Sm

i ∩~u
m
h ) do

12: set λm
j =λm

j −1

13: end for

14: else

15: Stop.
16: end if

17: end for

Once the coarse grid Ωm+1 is chosen, the interpolation operators Im
m+1, restriction op-

erators Im+1
m and the coarse grid equation can be constructed as follows. Let Nm

i ={um
j ∈

Ωm : j 6= i, am
ij 6=0} denote the neighborhood of a point um

i ∈Ωm, and Dm
i =Nm

i −Cm
i . Then

the set of the fine grid neighborhood points which are strongly connected to um
i will be

Dm,s
i =Dm

i ∩Sm
i , and the rest set of the neighborhood points which are weakly connected

(not strongly connected) to um
i will be Dm,w

i = Dm
i −Dm,s

i . Each um
i ∈Cm can be directly

interpolated from the corresponding variable in Ωm+1 with unity weight. Each um
i ∈ Fm

can be interpolated as a weighted summation of the points in the coarse interpolatory set
Cm

i . Assume um
i ∈Cm is corresponding to um+1

ki
∈Ωm+1. Ruge and Stüben proposed the

corresponding interpolation formula [65]:

Im
m+1{u

m+1
k }nm+1

k=1 =

{

um+1
ki

, ∀um
i ∈Cm,

∑{j:um
j ∈Cm

i }
wm

ij um+1
k j

, ∀um
i ∈Fm,

(3.6)

where

wm
ij =−

1

am
ii +∑{r:um

r ∈Dm,w
i }a

m
ir

[

am
ij +

∑{r:um
r ∈Dm,s

i }
am

ir am
rj

∑{l:um
l ∈Cm

i }
am

il

]

. (3.7)
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The Galerkin type method in [65] is a simple approach to define the restriction operator
Im+1
m

Im+1
m =(Im

m+1)
T (3.8)

and

Am+1
h = Im+1

m Am
h Im

m+1, ~bm+1
h = Im+1

m
~bm

h Im
m+1.

In the solution phase, the smoothing operator needs to be chosen with proper param-
eters ν1 and ν2, which are the number of the pre-smoothing and post-smoothing steps.
In the next section, we will investigate the influence of the type of the operator (Gauss-
Seidel and incomplete LU) and these two parameters. Furthermore, we will consider
V-cycle only with the maximum number of levels M in this article. Another critical com-
ponent of AMG is the stopping tolerance, which may have significant effect on the ac-
curacy. Our study in the next section shows that the tolerance needs to be small enough
for the chosen mesh size. Once all the above components are specified, the recursively
defined IFE-AMG algorithm (Algorithm 3.2) with V-cycle can be proposed in the usual
framework as follows [65].

Algorithm 3.2. The IFE-AMG algorithm of the elliptic interface problem.

Input: Model parameters and AMG parameters.
Output: IFE-AMG approximation solution ~uh.
Method:

1: Assemble the matrix from the IFE formulation: Ah=(aij)n×n with aij=∑T∈Th

∫

T β∇φki
·∇φk j

dX,

where φki
,φk j
∈SIFE

h,0 (Ω)

2: Assemble the vector from the IFE formulation: ~bh = ( fi)n×1 with fi = ∑T∈Th

∫

T φki
f dX−

∑s∈I b
h
(∑T∈Th

∫

T β∇φki
·∇φsdX)g(Xs), where φki

∈SIFE
h,0 (Ω) and φs∈SIFE

h (Ω)

3: relative residual=1, ~uh =0
4: while relative residual>tolerance do

5: m=1, A1
h =Ah, ~b

1
h =

~bh, ~u
1
h =~uh

6: Call algorithm MG(Am
h ,~um

h ,~bm
h ,Ωm,ν1,ν2,m) as follows:

7: Call Algorithm 3.1 with Ωm to obtain the Cm and Fm

8: Set Ωm+1=Cm

9: Define Im
m+1, Im+1

m =(Im
m+1)

T

10: Pre-smooth: ~um
h :=smooth(Am

h ,~um
h ,~bm

h ,ν1)

11: Residual: ~rm
h =~bm

h −Am
h ~u

m
h

12: Coarsening: ~rm+1
h = Im+1

m rm, Am+1
h = Im+1

m Am
h Im

m+1,
~bm+1

h = Im+1
m

~bm
h Im

m+1
13: If m=M
14: Solve: Am+1

h δm+1=~rm+1
h

15: Else
16: Recursion: δm+1=MG(Am+1

h ,0,~rm+1
h ,Ωm+1,ν1,ν2,m+1)

17: EndIf
18: Correction: ~um

h =~um
h + Im

m+1δm+1 Im+1
m

19: Post-smooth: ~um
h :=smooth(Am

h ,~um
h ,~bm

h ,ν2)
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20: END of MG
21: ~uh =~u1

h

22: relative residual =‖~bh−Ah~uh‖/‖~bh‖
23: end while

Now we discuss the parabolic moving interface problem (1.3)-(1.4b), for which we
will utilize a Crank-Nicolson-type IFE method [37] together with the above IFE-AMG
algorithm. The matrix formed at each time iteration step will be different from the one
from elliptic equation, but still symmetric positive definite.

At any time t, we defineN i,t
h to be the set of nodes of all interface elements at the time

t and letN n,t
h =Nh/N i,t

h denote the rest of the nodes. Let φt
j(X) denote the global bilinear

or linear IFE basis function, which has been discussed in Section 2, associated with the
node Xj ∈N

i,t
h at the time t while φt

j(X) is a standard global linear finite element basis

function for Xj ∈N
n,t
h . Then we look for an IFE approximate solution to the parabolic

interface problem (1.3)-(1.4b) in the following form:

uh(t,X)= ∑
Xj∈Nh

uj(t)φ
t
j(X). (3.9)

From the above definitions, we know that if Xj∈N
i,t
h , then φt

j(X) depends on the interface

location, hence depends on the time t. On the other hand, φt
j(X) is independent of the

time t for Xj∈N
n,t
h . Therefore,

∂uh(t,X)

∂t
= ∑

Xj∈Nh

∂uj(t)

∂t
φt

j(X)+ ∑
Xj∈N

i,t
h

uj(t)
∂φt

j(X)

∂t
. (3.10)

Based on the following standard weak form at a given time t:

∫

Ω
v

∂u

∂t
dX+

∫

Ω
∇v·(β∇u)dX=

∫

Ω
v f dX, ∀v∈H1

0(Ω),

which is equivalent to

∑
T∈Th

∫

T
v

∂u

∂t
dX+ ∑

T∈Th

∫

T
∇v·(β∇u)dX=

∫

Ω
v f dX, ∀v∈H1

0(Ω),

the following system can be obtained from the IFE semi-discretization [37]:

Mh(t)u
′(t)+Kh(t)u(t)+Ah(t)u(t)= f(t), (3.11)

where

• Mh(t)=(mij(t)) is the mass matrix with mij =
∫

Ω
φt

i φ
t
jdX.
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• Kh(t)=(kij(t)) with kij =
∫

Ω
φt

i ∂φt
j/∂tdX.

• Ah(t)=(aij(t)) is the stiffness matrix with aij =
∫

Ω
∇φt

i ·(β∇φt
j)dX.

• f(t)=( fi(t)) is the source vector with fi(t)=
∫

Ω
φt

i f dX.

• u(t) is the vector whose entries are uj(t), i.e., u(t)=(uj(t)).

For the time discretization, without loss of generality, we use a uniform partition
0= t0< t1< ···< tN =T in time, where tn=nτ with τ=Tend/N. Then we look for approx-
imations such that

un
h(X)= ∑

Xj∈Nh

un
j φtn

j (X)≈uh(tn,X).

In effect, we look for ~un=(un
j )≈~u(tn), for n=1,2,··· ,N. Then applying the idea of Crank-

Nicolson type discretization to (3.11) leads to the following algorithm [37]:
(

M
n+ 1

2 ,n+ 1
2

h +
τ

2
A

n+ 1
2 ,n+ 1

2 ,n+ 1
2

h +
τ

2
K

n+ 1
2 ,n+ 1

2

h

)

~un+1

=
(

M
n+ 1

2 ,n+ 1
2

h −
τ

2
A

n+ 1
2 ,n+ 1

2 ,n+ 1
2

h −
τ

2
K

n+ 1
2 ,n+ 1

2

h

)

~un+τ~f n+ 1
2 ,n+ 1

2 , (3.12)

where

• Mnv,nu

h =(mnv,nu
ij ) is the mass matrix, where mnv,nu

ij =
∫

Ω
φ

tnv

i φ
tnu

j dX.

• A
nβ,nv,nu

h =(a
nβ ,nv,nu

ij ) is the stiffness matrix, where a
nβ ,nv,nu

ij =
∫

Ω
∇φ

tnv
i ·(β

tnβ∇φ
tnu
j )dX.

• Knv,nu

h =(knv ,nu
ij ), where knv ,nu

ij =
∫

Ω
φ

tnv
i (∂/∂tφ

tnu
j )dX.

• fnv ,n f =( f
nv ,n f

i ) is right hand side vector, where f
nv,n f

i =
∫

Ω
φ

tnv

i f
tn f dX.

Here nv, nu, nβ, and n f denote the time levels for the test function v, trial function u,
coefficient function β, source function f , respectively.

The matrix Mn+1/2,n+1/2
h + τ

2 An+1/2,n+1/2,n+1/2
h + τ

2 Kn+1/2,n+1/2
h is not symmetric since

Kn+1/2,n+1/2
h is not symmetric. However, a simplified algorithm has been proposed based

on Theorem 3.1 in [37] and numerically illustrated to be optimally convergent in [37]:
(

M
n+ 1

2 ,n+ 1
2

h +
τ

2
A

n+ 1
2 ,n+ 1

2 ,n+ 1
2

h

)

~un+1

=
(

M
n+ 1

2 ,n+ 1
2

h −
τ

2
A

n+ 1
2 ,n+ 1

2 ,n+ 1
2

h

)

~un+τ~f n+ 1
2 ,n+ 1

2 . (3.13)

In this algorithm, the matrix Mn+1/2,n+1/2
h + τ

2 An+1/2,n+1/2,n+1/2
h is symmetric positive def-

inite matrix, which is critical to the AMG method. Then the IFE-AMG algorithm pro-
posed above can be utilized to solve the linear system at each time iteration step with

A1
h=M

n+ 1
2 ,n+ 1

2

h +
τ

2
A

n+ 1
2 ,n+ 1

2 ,n+ 1
2

h ,

~b1
h =

(

M
n+ 1

2 ,n+ 1
2

h −
τ

2
A

n+ 1
2 ,n+ 1

2 ,n+ 1
2

h

)

~un+τ~f n+ 1
2 ,n+ 1

2 .



W. Feng et al. / Commun. Comput. Phys., 15 (2014), pp. 1045-1067 1057

4 Numerical experiments

In this section, we present numerical examples to illustrate the features of bilinear and
linear immersed finite element methods with algebraic multigrid solvers for both the
stationary and moving interface problems. We set the initial vector u0 to be 0 and the
strong connection threshold η = 0.25. We denote number of V-cycles by V’s, the size of
the coarsest mesh by Nc, and the stopping tolerance on residual by tol. The Gauss-Seidel
(GS) and incomplete LU (ILU) iterations are compared as the pre-smoothing and post-
smoothing operations.

4.1 Numerical experiments for the steady interface problem

We consider the steady interface problem defined by (1.1)-(1.2b) on the typical rectangu-
lar domain Ω=[−1,1]×[−1,1].

4.1.1 Circular interface

The interface curve Γ is a circle with radius r0 =π/6.28 that separates Ω into two sub-
domains Ω− and Ω+ with Ω−={(x,y)|x2+y2≤ r2

0}. The coefficient function is

β(x,y)=

{

β−, (x,y)∈Ω−,

β+, (x,y)∈Ω+,

where β−=1 and β+=10 are chosen in this example. The boundary condition function
g(x,y) and the source term f (x,y) are chosen such that the following function u is the
exact solution

u(x,y)=











rα

β−
, if r≤ r0,

rα

β+ +
(

1
β−
− 1

β+

)

rα
0 , otherwise,

(4.1)

with α= 5, r=
√

x2+y2. We use the bilinear immersed finite elements in this numerical
experiment.

The errors of the IFE-AMG solutions with Gauss-Seidel smoother and various step
size for small circular interface jump are given in Table 1. Using linear regression, we can
also see that the errors in this table obey

‖u−uh‖L2≈0.4229h2.0022 ,

|u−uh|H1≈0.8957h0.9844 .

The errors of the IFE-AMG solutions with incomplete LU smoother and various step size
for small interface are given in Table 2. Using linear regression, we can also see that the
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Table 1: Errors of the bilinear IFE-AMG solution for the circular interface problem with GS smoother, tol=10−8,
β−/β+=1/10, and ν1 =ν2=2.

h Nc ‖u−uh‖L2 |u−uh|H1 ‖u−uh‖l∞ V’s

1/16 52 1.65383×10−3 5.88161×10−2 9.50035×10−4 7

1/32 262 4.09991×10−4 2.94836×10−2 4.85435×10−4 19

1/64 972 1.01487×10−4 1.48173×10−2 3.25996×10−4 19

1/128 3472 2.51954×10−5 7.52028×10−3 1.60087×10−4 39

1/256 12352 6.46598×10−6 3.84101×10−3 7.68170×10−5 130

Table 2: Errors of the bilinear IFE-AMG solution for the circular interface problem with ILU smoother, tol=10−8,
β−/β+=1/10, and ν1 =ν2=2.

h Nc ‖u−uh‖L2 |u−uh|H1 ‖u−uh‖l∞ V’s

1/16 52 1.65383×10−3 5.88161×10−2 9.50022×10−4 1

1/32 262 4.10048×10−4 2.94836×10−2 4.85274×10−4 2

1/64 972 1.01303×10−4 1.48173×10−2 3.26107×10−4 2

1/128 3472 2.51978×10−5 7.52028×10−3 1.59894×10−4 5

1/256 12352 7.04174×10−6 3.84099×10−3 7.79246×10−5 10

Table 3: Errors of the bilinear IFE-AMG solution for the circular interface problem with GS smoother, tol=10−8,
β−/β+=1/10000, and ν1 =ν2=2.

h Nc ‖u−uh‖L2 |u−uh|H1 ‖u−uh‖l∞ V’s

1/16 132 4.30316×10−4 2.14209×10−2 6.87757×10−4 92

1/32 432 1.14524×10−4 1.04928×10−2 2.41457×10−4 92

1/64 1422 2.83999×10−5 4.88765×10−3 8.59457×10−5 92

1/128 3822 6.81981×10−6 2.41970×10−3 3.39365×10−5 167

1/256 13272 1.57121×10−6 1.21438×10−3 1.77984×10−5 170

errors in this table obey

‖u−uh‖L2≈0.3882h1.9776 ,

|u−uh|H1≈0.8957h0.9844 .

These linear regressions indicate that the bilinear IFE-AMG solutions with Gauss-Seidel
or incomplete LU smoothers can converge with the optimal rates for small interface jump,
which are second order in L2 norm and first order in H1 semi-norm.

The errors of the IFE-AMG solutions for large interface jump are given in Table 3.
Using linear regression, we can also see that the errors in this table obey

‖u−uh‖L2≈0.1245h2.0265 ,

|u−uh|H1≈0.3801h1.0398 ,

which indicate that the bilinear IFE-AMG solutions can converge with the optimal rates
for large interface jump.
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Table 4: Number of V-cycles of the bilinear IFE-AMG solution for the circular interface problem with tol=10−8.

GS smoother ILU smoother

h ν1=ν2=1 ν1=ν2=2 ν1=ν2=3 ν1=ν2=1 ν1=ν2=2 ν1=ν2=3

1/16 9 7 6 2 1 1

1/32 22 19 17 3 2 1

1/64 22 19 18 4 2 2

1/128 45 39 36 7 5 4

1/256 148 130 117 16 10 8

Table 5: Errors of the bilinear IFE-AMG solution for the circular interface problem with GS smoother, tol=10−6,
β−/β+=1/10, and ν1 =ν2 =2.

h Nc ‖u−uh‖L2 |u−uh|H1 ‖u−uh‖l∞ V’s

1/16 52 1.65322×10−3 5.88161×10−2 9.51021×10−4 5

1/32 262 4.03984×10−4 2.94836×10−2 5.03028×10−4 12

1/64 972 9.35785×10−5 1.48173×10−2 3.56913×10−4 12

1/128 3472 6.39989×10−5 7.52157×10−3 2.28196×10−4 36

1/256 12352 2.04489×10−4 3.88786×10−3 3.58655×10−4 70

Table 6: Errors of the bilinear IFE-AMG solution for the circular interface problem with ILU smoother, tol=10−6,
β−/β+=1/10, and ν1 =ν2 =2.

h Nc ‖u−uh‖L2 |u−uh|H1 ‖u−uh‖l∞ V’s

1/16 52 1.65383×10−3 5.88161×10−2 9.50022×10−4 1

1/32 262 4.08628×10−4 2.94836×10−2 4.87086×10−4 1

1/64 972 1.01303×10−4 1.48173×10−2 3.26107×10−4 2

1/128 3472 7.94820×10−5 7.52023×10−3 2.26107×10−4 3

1/256 12352 2.18685×10−4 3.87460×10−3 2.67979×10−4 70

The smoother usually has significant impact on the efficiency and accuracy of the
solution. From Table 1 and Table 2, it can be also easily observed that the incomplete LU
smoother significantly reduces the number of V-cycles, which dramatically improve the
efficiency of the IFE-AMG method. Furthermore, from Table 4, we can also see that the
increase of the number of smoothing steps may decrease the number of V-cycles while it
increases the cost in smoothing phase. Hence the number of smoothing steps needs to be
chosen properly in order to balance the total cost. The errors for the bilinear IFE-AMG
solution with ν1 =ν2 =1 and ν1 =ν2 =3 are similar to those in Table 1 and Table 2. So we
omit the corresponding data to shorten the presentation of the article.

In the following we will investigate the influence of the tolerance on the convergence
of the IFE solutions for the interface problems. From Table 1 and Table 2, we can see that
the bilinear IFE-AMG solutions with both Gauss-Seidel and incomplete LU smoothers
converge in the optimal rates when tol = 10−8. However, from Table 5 and Table 6, we
can see that when tol = 10−6 the bilinear IFE-AMG solutions do not perform optimally
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any more. This indicates that the tolerance needs to be small enough for the chosen mesh
size in order to keep the optimal convergence.

4.1.2 Elliptical interface

The interface curve Γ is an ellipse with its center at (x0,y0), whose major and minor radius
are rx, and ry. The elliptical interface separates Ω into two sub-domains Ω− and Ω+ with
Ω− = {(x,y)|(x−x0)2/r2

x+(y−y0)2/r2
y ≤ 1} and we choose x0 = 0, y0 = 0.2, rx = 3r0/2,

ry =3r0/4, and r0=π/6.28 in our numerical example. The coefficient function is

β(x,y)=

{

β−, (x,y)∈Ω−,

β+, (x,y)∈Ω+,

where β−=1 and β+=10 are chosen in this example. The boundary condition function
g(x,y) and the source term f (x,y) are chosen such that the following function u is the
exact solution.

u(x,y)=















1

β−
r2

xr2
yrα, (x,y)∈Ω−,

1

β+
r2

xr2
yrα+

( 1

β−
−

1

β+

)

r2
xr2

y, otherwise,
(4.2)

where r=
√

(x−x0)2/r2
x+(y−y0)2/r2

y and α= 5. We use the linear immersed finite ele-

ments in this numerical experiment.
The errors of the IFE-AMG solutions with Gauss-Seidel smoother and various step

size for small interface jump are given in Table 7. Using linear regression, we can also see
that the errors in this table obey

‖u−uh‖L2≈2.3084h1.9992 ,

|u−uh|H1≈7.0284h0.9961 .

The errors of the IFE-AMG solutions with incomplete LU smoother and various step size
for small interface are given in Table 8. Using linear regression, we can also see that the
errors in this table obey

‖u−uh‖L2≈2.3063h1.9989 ,

|u−uh|H1≈7.0284h0.9961 .

These linear regressions indicate that the bilinear IFE-AMG solutions with Gauss-
Seidel or incomplete LU smoothers can converge in the optimal rates, which are second
order in L2 norm and first order in H1 semi-norm. Compared with the results of the above
circular interface problem, We have similar observations for the influence of the smoother
and tolerance on the convergence and efficiency. Hence we omit the corresponding data
to shorten the presentation of the article.
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Table 7: Errors of the linear IFE-AMG solution for the elliptical interface problem with GS smoother, tol=10−8,
β−/β+=1/10, and ν1 =ν2 =2.

h Nc ‖u−uh‖L2 |u−uh|H1 ‖u−uh‖l∞ V’s

1/16 242 9.0180×10−3 4.4409×10−1 2.6189×10−3 18

1/32 712 2.2670×10−3 2.2268×10−1 1.5906×10−3 19

1/64 2342 5.6605×10−4 1.1162×10−1 8.5101×10−4 39

1/128 7892 1.4123×10−4 5.5972×10−2 4.7140×10−4 97

Table 8: Errors of the linear IFE-AMG solution for the elliptical interface problem with ILU smoother, tol=10−8,
β−/β+=1/10, and ν1 =ν2 =2.

h Nc ‖u−uh‖L2 |u−uh|H1 ‖u−uh‖l∞ V’s

1/16 242 9.0180×10−3 4.4409×10−1 2.6189×10−3 1

1/32 712 2.2670×10−3 2.2268×10−1 1.5906×10−3 2

1/64 2342 5.6632×10−4 1.1162×10−1 8.4960×10−4 3

1/128 7892 1.4131×10−4 5.5972×10−2 4.6736×10−4 5

4.2 Numerical experiments for the moving interface problem

We consider the moving interface problem defined by (1.3)-(1.4b) on Ω×[0,Tend], where
Ω=(−1,1)×(−1,1) and Tend =1. The interface Γ(t) is a moving circle centered at origin
with radius r(t) which separates Ω into two sub-domains Ω−(t)= {(x,y)∈Ω : x2+y2 <

r(t)2}, and Ω+(t)={(x,y)∈Ω :x2+y2>r(t)2}. Let β−=1 and β+=10. The exact solution
is chosen as:

u(t,x,y)=















rα

β−
cos(t), r(t)∈Ω−(t),

rα

β+
cos(t)+

( 1

β−
−

1

β+

)

r(t)αcos(t), r(t)∈Ω+(t).
(4.3)

In all the numerical examples presented below, the radius change is governed by r(t)=
r0[(sin(t)+3)/4] with r0 = π/6.28, and we use triangular Cartesian meshes Th which
are formed by partitioning Ω with Ns×Ns rectangles of size h= 2/Ns and then cutting
each rectangle into two triangles along one of its diagonal line. For time discretization,
we denote its step size by τ and define tn = nτ, with n = 1,2,··· ,N. We use the linear
immersed finite elements in this numerical experiment.

The errors of the IFE-AMG solutions with Gauss-Seidel smoother and various step
size are given in Table 9. Using linear regression, we can also see that the errors in this
table obey

‖u−uh‖L2≈0.6882h1.9381 ,

|u−uh|H1≈0.6709h0.9234 .

The errors of the IFE-AMG solutions with incomplete LU smoother and various step size
are given in Table 10. Using linear regression, we can also see that the errors in this table
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Table 9: Errors of the linear IFE-AMG solution for the moving interface problem with GS smoother, tol=10−8,
and ν1 =ν2=2 at time t=Tend.

h Nc ‖u−uh‖L2 |u−uh|H1 ‖u−uh‖l∞ V’s

1/16 72 3.2659×10−3 5.2764×10−2 1.5801×10−3 6

1/32 152 8.1519×10−4 2.6920×10−2 9.2506×10−4 7

1/64 772 2.1175×10−4 1.4116×10−2 4.5706×10−4 14

1/128 2632 5.8132×10−5 7.7486×10−3 2.5078×10−4 18

Table 10: Errors of the linear IFE-AMG solution for the moving interface problem with ILU smoother, tol=10−8

and ν1 =ν2=2 at time t=Tend.

h Nc ‖u−uh‖L2 |u−uh|H1 ‖u−uh‖l∞ V’s

1/16 72 3.2659×10−3 5.2764×10−2 1.5801×10−3 1

1/32 152 8.1519×10−4 2.6920×10−2 9.2506×10−4 1

1/64 772 2.1175×10−4 1.4116×10−2 4.5711×10−4 1

1/128 2632 5.8122×10−5 7.7486×10−3 2.5078×10−4 2

obey

‖u−uh‖L2≈0.6883h1.9382 ,

|u−uh|H1≈0.6709h0.9234 .

These linear regressions indicate that the linear IFE-AMG solutions with Gauss-Seidel
or incomplete LU smoothers can converge in the optimal rates, which are second order in
L2 norm and first order in H1 semi-norm. From Table 9 and Table 10, it can be also easily
observed that the incomplete LU smoother significantly reduces the number of V-cycles,
which dramatically improve the efficiency of the IFE-AMG method.

It is also clearly showed in Fig. 5 that the algebraic multigrid solver is stable and effi-
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Figure 5: Relative residual of the iterations at t=1 for the linear IFE-AMG solution with h=1/128, GS smoother,

tol=10−8, and (ν1,ν2)=(2,2).
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Table 11: Number of V-cycles of the linear IFE-AMG solution at different time steps for the moving interface

problem with GS smoother and tol=10−8.

h t=∆t t= 1
4 t= 1

2 t= 3
4 t=1

1/32 8 8 13 8 7

1/64 8 8 12 8 14

1/128 9 13 19 15 18

Table 12: Number of V-cycles of the linear IFE-AMG solution at different time steps for the moving interface

problem with ILU smoother and tol=10−8.

h t=∆t t= 1
4 t= 1

2 t= 3
4 t=1

1/32 1 1 1 1 1

1/64 1 1 1 1 1

1/128 1 2 2 2 2

cient for the linear systems arising from the IFE methods since the residual error quickly
decreases to a small magnitude.

Furthermore, Tables 11 and 12 provide the number of V-cycles of the linear IFE-AMG
solution at different time steps when the interface locations are different. We observe
that the number of V-cycles for Gauss-Seidel smoother depend on the moving interface
locations but not very severely. The incomplete LU smoother may reduce the dependence
of the number of V-cycles on the moving interface since it needs much less number of V-
cycles than the Gauss-Seidel smoother.

5 Conclusions

In this article, we discussed the bilinear and linear immersed finite element (IFE) solu-
tions generated from the algebraic multigrid solver for both stationary and moving in-
terface problems. The feature of the symmetric positive-definite matrices from the IFE
methods naturally matches the corresponding need of the algebraic multigrid solver in
order to guarantee its efficiency. Furthermore, the combination of other features of the
algebraic multigrid method and the IFE methods, such as the preconditioning property,
the optimal convergence rates, and the flexibility to handle the interface on structured
meshes instead of body-fitting meshes, can dramatically improve the efficiency of the
proposed methods when the IFE-AMG method is applied to real world applications. Nu-
merical experiments are performed to demonstrate these features as well as the influence
of the tolerance and the smoother on the efficiency and convergence.
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