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Abstract. This paper generalizes the exponential Runge-Kutta asymptotic preserving
(AP) method developed in [G. Dimarco and L. Pareschi, SIAM Numer. Anal., 49 (2011),
pp. 2057–2077] to compute the multi-species Boltzmann equation. Compared to the
single species Boltzmann equation that the method was originally applied on, this
set of equation presents a new difficulty that comes from the lack of local conserva-
tion laws due to the interaction between different species. Hence extra stiff nonlinear
source terms need to be treated properly to maintain the accuracy and the AP prop-
erty. The method we propose does not contain any nonlinear nonlocal implicit solver,
and can capture the hydrodynamic limit with time step and mesh size independent of
the Knudsen number. We prove the positivity and strong AP properties of the scheme,
which are verified by two numerical examples.
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1 Introduction

We are interested in developing efficient numerical methods for the nonlinear multi-
species Boltzmann equation [11]:

∂t fi+v·∇x fi =
1

ε
Qi( f , f ), t≥0, (x,v)∈R

d×R
d. (1.1)
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Here fi(t,x,v) represents the distribution function of the i-th species at time t, position

x and velocity v, and f =( f1, f2,··· , fN)
T, d is the dimensionality and N is the number of

species. The collision term is given by

Qi( f , f )=
N

∑
k=1

Qik( f , f ), (1.2a)

Qik( f , f )(v)=
∫

Sd−1

∫

Rd
( f ′i f ′k∗− fi fk∗)Bik(|v−v∗|,ω)dv∗dω

,Q+
ik− fiQ

−
ik , (1.2b)

where Bik is the symmetric collision kernel (i.e. Bik = Bki), v and v∗ are pre-collisional
velocities, v′ and v′∗ are post-collisional velocities, f ′i = fi(t,x,v′) and f ′k∗= fk(t,x,v′∗), ω is a
unit vector, and Sd−1 is the unit sphere defined in R

d space, g=v−v∗ is relative velocity.
There are many variations for the collision kernel Bik. One of the simple cases is the
Maxwell molecule when Bik=Bik

( g·ω
|g|
)

. The post-collisional velocities v′ and v′∗ satisfy:

v′=v− µik

mi
(g−|g|ω), v′∗=v∗+

µik

mk
(g−|g|ω), (1.3)

with µik =
mimk

mi+mk
being the reduced mass, and mi, mk being the mass for species i and k

respectively. This deduction is based on momentum and energy conservations:

miv+mkv∗=miv
′+mkv′∗, mi|v|2+mk|v∗|2=mi|v′|2+mk|v′∗|2.

Eq. (1.1) describes the evolution of rarefied gas that has more than two components
whose particles usually have different masses. It is often used in modeling the high
altitude gas, which is usually considered as a binary mixture of Oxygen and Nitrogen,
and the environment at the reentry to the earth of spacecrafts. In (1.2b), the gaining part
is marked as Q+

ik and the rest is the losing part marked as fiQ
−
ik with fi extracted out of the

integration. In (1.1), the ε is called the Knudsen number, indicating the ratio of mean free
path over the typical domain size. When ε=O(1), the equation is in kinetic (microscopic)
regime. As ε→0, one gets to fluid (macroscopic) regime with the Euler equations as the
first order approximation in Chapman-Enskog Expansion [?].

Numerical challenge comes from the time discretization due to the Knudsen number.
On the one hand, it is impractical to design an implicit method since it requires the inver-
sion of the nonlocal and nonlinear collision term. On the other hand, if explicit method
is used, the time step is limited by the smallest Knudsen number for stability reasons,
which usually leads to unaffordable computational cost.

There has been a great amount of literature on removing the numerical stiffness in
(1.1), many of which are based on domain decomposition [5, 8, 9, 16, 18, 25–27]. The idea
is to solve (1.1) when the Knudsen number is of O(1), and to solve its Euler limit when
the Knudsen number is small. Despite its success in theory, the method encounters two
difficulties in practice: 1. It is hard to identify how small the Knudsen number should
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be so that the Euler limit is a good approximation, hence the boundary that separates
the two domains is not clear; 2. Given the boundary, the coupling condition of the two
systems can not be easily derived (e.g. [2–4]).

An alternative approach, that we are going to pursue in this paper, is called the
asymptotic preserving (AP) method [21, 22]. It looks for fast and simple solvers for the
Boltzmann equation in all ranges of Knudsen number. When the Knudsen number gets
small, it automatically captures its macroscopic asymptotic limits without refining the
mesh. Compared to the multi-physics domain decomposition methods, this framework
only solves the microscopic equations, and thus avoids the complexity introduced by
switching back and forth to the macroscopic equations. There are several variations of
AP property, including weakly-AP, relaxed-AP, and strongly-AP defined respectively as
follows, given small ε:

• Weakly-AP. If the data are within O(ε) of the local equilibrium initially, they remain
so for all future time steps;

• Relaxed-AP. For non-equilibrium initial data, the solution will be projected to the
local equilibrium beyond an initial layer (after several time steps);

• Strongly-AP. For non-equilibrium initial data, the solution will be projected to the
local equilibrium immediately in one time step.

In general, the strongly-AP property is preferred, and is the designing principle for
most of the classical AP schemes [6, 20]. The relaxed-AP is a concept introduced recently
in [12], which was shown numerically sufficient in capturing the hydrodynamic limit.
The weakly-AP is often a necessary condition for the AP property. We refer to [12] for
more details.

Recently several AP methods are generated for the single species system. Based on
the fact that BGK operator is a good approximation to the collision term, Filbet and Jin
proposed a BGK penalization method [12]. It writes the collision term as a summation
of the BGK approximation, which is stiff and treated implicitly, and a remainder term,
which is not stiff and computed explicitly. The method enjoys two benefits: it is an AP
scheme and thus the time step is relaxed; although the BGK operator is treated implicitly,
there exists an explicit way to compute it [7]. Another major AP method was developed
by Pareschi and Dimarco in [10]. They used the time splitting method, and during the col-
lision step, they wrote the equation in an exponential way so that under mild conditions
on the Runge-Kutta (RK) method, the distribution function is forced to the equilibrium
numerically, which captures the asymptotic limit. This method was generalized in [29]
later on, where the time splitting was avoided so that the RK method could be applied to
the entire equation, and the numerical accuracy can reach up to an arbitrary order. Other
AP methods, e.g. the Wild Sum and micro-macro decomposition method, can be found
in [15] and [28] respectively.

However, one encounters essential difficulties in extending these AP methods to the
multi-species system (1.1). Since the species exchange momentum and energy [17,19], the
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conservation laws break down for each single species, and the associated macroscopic
quantities are hard to be obtained. Therefore it is hard to compute the local Maxwellian,
which the aforementioned AP methods highly rely on. In fact, the collision term (1.2) is
nonlinear and of O(ε−1), which brings up difficulties in computation. Besides that, theo-
retically, species should gradually share the common velocity and common temperature
as time evolves. Hence, to prove the AP property of numerical methods for multi-species
system, it is no longer enough to only prove the convergence to the equilibrium, which
is usually the case for the single species system.

In order to overcome these difficulties, we develop an exponential Runge-Kutta (Exp-
RK) method where a newly defined unified Maxwellian is embedded instead of the lo-
cal Maxwellian used in [10]. It reduces the complexity in the computation of the lo-
cal Maxwellian, while preserves the correct asymptotic limit. Compared to [23] where
relaxed-AP is achieved, this method is strongly AP, hence only one time step is needed
for arbitrary initial data to be projected to the unified Maxwellian. Moreover, it preserves
the positivity of the distribution function, which is usually hard for high-order accurate
schemes to maintain.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the
properties of the multi-species Boltzmann equation. The numerical method will be de-
scribed in details in Section 3, with the analysis of its properties given in Section 4. We
present two numerical examples to show the performance of the method in Section 5,
and make conclusive remarks in Section 6.

2 Properties of the multi-species Boltzmann equation

In this section, we briefly introduce the macroscopic quantities, conserved quantities, and
the Euler limit of the multi-species Boltzmann equation (1.1).

2.1 Macroscopic quantities and conservation

For the i-th species, the number density ni, the mass density ρi, the average velocity ui,
the total energy Ei, the specific internal energy ei, the temperature Ti, the stress tensor Si,
and the heat flux vector qi are defined by

ni=
∫

fidv, ρi =mini, ρiui =mi

∫

v fi dv, (2.1a)

Ei=
1

2
ρiu

2
i +niei =

1

2
mi

∫

|v|2 fi dv, ei =
d

2
Ti=

mi

2ni

∫

fi|v−ui|2dv, (2.1b)

Si=
∫

(v−ui)⊗(v−ui) fi dv, qi =
1

2
mi

∫

(v−ui)|v−ui|2 fi dv. (2.1c)



1000 Q. Li and X. Yang / Commun. Comput. Phys., 15 (2014), pp. 996-1011

The total mass density ρ, the total number density n, the mean velocity ū, the total energy
E, the internal energy nē and the mean temperature T̄ are defined by

ρ=∑
i

ρi, n=∑
i

ni, ρū=∑
i

ρiui, (2.2a)

E=∑
i

Ei =nē+
1

2
ρ|ū|2, T̄=

2ē

d
. (2.2b)

Eq. (1.1) implies, for each species, the mass is conserved, but not the momentum and
energy. On the other hand, the total momentum and energy is conserved. This means

∫

miQidv=∑
i

∫

miviQidv=∑
i

∫

1

2
miv

2
i Qi dv=0. (2.3)

2.2 The Euler limit

When the system reaches the local equilibrium, the gaining part balances the losing part,
i.e. Qi( f )=0 for each i. Therefore, by [1],

fi =Mi=ni

( mi

2πT̄

)d/2
exp

(

−mi|v−ū|2
2T̄

)

, (2.4)

where T̄ and ū are defined in (2.2). (2.4) is called the unified Maxwellian because ū and
T̄ are given by the quantities of the entire system instead of each single species. This is
different from the local Maxwellian where the velocity and temperature is used for each
species.

With (2.4), the first order Chapman-Enskog expansion gives the Euler limit for the
multi-species system [1],

∂tρi+∇x ·(ρiū)=0, (2.5a)

∂t(ρū)+∇x ·(ρū⊗ū+nT̄I)=0, (2.5b)

∂tE+∇x ·((E+nT̄)ū)=0, (2.5c)

where I is the identity matrix. Note that in (2.5a), the advection term is ρiū instead of
ρiui, since ui→ ū and Ti → T̄ as ε→0.

3 Exponential Runge-Kutta method

We systematically introduce the Exponential Runge-Kutta (Exp-RK) method to solve (1.1)
in this section. The algorithm consists of two parts for each time step:

Step 1. Solve the convection part,

∂t fi+v ·∇x fi =0. (3.1)
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Step 2. Solve the collision part,

∂t fi =
Qi

ε
. (3.2)

This is based on the Strang splitting algorithm, and thus the accuracy is second order
in time. The details of the numerical solvers for the two parts are shown below. Here
we only consider d= 1, and leave the high-dimensional case for future study since it is
technically more involved.

3.1 Convection part

We use the upwind scheme with the van Leer limiter to compute (3.1):

f
l+ 1

2
i = f l

i −∆tv·∇x f l
i , (3.3)

where ∆t is the time step. The flux term for the i-th species at grid point xj is discretized
as:

v∂x fi,j =ν( fi,j1 − fi,j1−1)−
∆x

2
ν
(

sgn(ν)−ν
)

(σi,j1 −σi,j1−1), (3.4)

where the index i stands for the i-th species, and the indexes j and j1 are for mesh grids.
In (3.4), ν=v/∆x, with ∆x being the mesh size. j1= j for v>0, j1= j+1 for v<0, and

σi,j =
fi,j+1− fi,j

∆x
φi,j, φ(θ)=

θ+|θ|
θ+1

, θi,j =
fi,j− fi,j−1

fi,j+1− fi,j
. (3.5)

3.2 Collision part

Since (3.2) is a stiff equation, the time step in explicit methods is limited by ε, while
implicit method has difficulties in directly inverting Q. In order to overcome these dif-
ficulties, one could use the Exp-RK method, and the idea is to reformulate (3.2) into the
exponential form, and then solve it by the Runge-Kutta scheme.

3.2.1 Reformulation

Define
µ=constant>supx,i|Q−

i |, Pi=Qi+µ fi, (3.6)

and rewrite (3.2) as:

∂t

(

( fi−Mi)e
µt/ε
)

=∂t fie
µt/ε+( fi−Mi)

µ

ε
eµt/ε =

1

ε
(Qi+µ fi−µMi)e

µt/ε

=
1

ε
(Pi−µMi)e

µt/ε, (3.7)

in which we have used the fact that dMi/dt= 0 since ρi, ū and T̄ do not change in the
collision step.
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Remark 3.1. 1. Eq. (3.7) describes the evolution of the difference between the distribution
function fi and its equilibrium Mi multiplied by an integration factor, and thus removes
the stiffness in (3.2) [10].

2. Eq. (3.7) holds for an arbitrary constant µ. The way we choose µ is to guarantee the
positivity of P; we refer to [29] for more details.

3.2.2 Runge-Kutta method

Applying the K-stage Runge-Kutta method to Eq. (3.7) gives























Stage α: ( f l,(α)−M)e
µ
ε cα∆t=( f l+ 1

2 −M)+
∆t

ε

α−1

∑
β=1

aαβ(Pl,(β)−µM)e
µ
ε cβ∆t,

Final stage: ( f l+1−M)e
µ
ε ∆t=( f l+ 1

2 −M)+
∆t

ε

K

∑
α=1

bα(Pl,(α)−µM)e
µ
ε cα∆t,

(3.8)

where ∑
α−1
β=1aαβ = cα, ∑α bα =1, and Yl,(β) stands for the estimate of Y at t= tl+cβ∆t. The

last equation implies

f l+1=

(

1−eλ−∑
α

bαλeλ(−1+cα)

)

M+e−λ f l+ 1
2 +∑

α

bαλeλ(cα−1) Pl,(α)

µ
, λ=

µh

ε
, (3.9)

where µ is given in (3.6), and f l+ 1
2 is obtained in (3.3). In this formulation, one needs to

compute M and P, both of which will be discussed in details below.

3.2.3 Computation of M

To get M defined in (2.4), we only need to compute the following quantities

nl+1
i =nl+1/2

i =nl
i−∆t

∫

v·∇x f l
i dv, (3.10a)

(ρū)l+1=(ρū)l+1/2=(ρū)l−∆t∑
i

mi

∫

v⊗v·∇x f l
i dv, (3.10b)

El+1=El+1/2=El−∆t∑
i

∫

mi

2
|v|2v·∇x f l

i dv, (3.10c)

T̄l+1= T̄n+1/2=
2El+1−(ρū2)l+1

nl+1
, (3.10d)

where the computation for the flux term is given in (3.4). The first equalities are due to
the invariance of these quantities in the collision step.

3.2.4 Evaluation of P

Since P = Q+µ f , we only need to show the computation of the collision term Q. The
spectral method for computing the collision term Q was first developed in [14, 30], and
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the fast version that reduces the computational cost to N log2(N) was found later on
in [13]. However, those schemes are mainly for the single-species systems, but in our
case, the system has more than one species. Due to the mass difference, the collision
term loses many symmetries, and thus the fast version could be easily carried through.
We follow the method introduced in [23] using the basic spectral method, and leave the
designing of the fast algorithm to further studies.

We use a ball B(0,S) to represent the domain, out of which f is negligible. We pe-
riodize f on v ∈ [−L,L]d with L ≥ (3+

√
2)S. L is chosen much larger than S to avoid

non-physical collision at different periods of the periodized f . Define the Fourier and
inverse Fourier transforms as:

f̂ (p)=
∫

f (v)e−ip·v dv, f (v)=
1

(2L)d ∑
p

f̂ (p)eip·v, (3.11)

where i=
√
−1 is the imaginary unit. Then Q+

ik in (1.2b) becomes

Q+
ik =

1

(2L)2d ∑
p,q

f̂i(p) f̂k(q)e
i(p+q)·v

∫ ∫

Bikeiη·g+i|g|γ·ω dv∗dω, (3.12)

where

η=
−mk

mi+mk
p+

−mk

mi+mk
q, γ=

mk

mi+mk
p− mi

mi+mk
q.

Particularly, when Bik is a constant (for Maxwell molecule),

v′=
mi−mk

mi+mk
v+

2mk

mi+mk
v∗, v′∗=

2mi

mi+mk
v−mi−mk

mi+mk
v∗.

Then (3.12) becomes

Q+
ik =

Bik

(2L)2 ∑
p,q

f̂i(p) f̂k(q)e
i
(

mi−mk
mi+mk

p+
2mi

mi+mk
q
)

v
∫

e
i
(

2mk
mi+mk

p− mi−mk
mi+mk

q
)

v∗ dv∗.

Therefore

Q̂+
ik(r)=

Bik

(2L)2 ∑
p,q

f̂i(p) f̂k(q)
∫

e
i
(

mi−mk
mi+mk

p+
2mi

mi+mk
q−r

)

v
dv
∫

e
i
(

2mk
mi+mk

p− mi−mk
mi+mk

q
)

v∗ dv∗

=Bik∑
p,q

f̂i(p) f̂k(q)sinc(a)sinc(b),

where

a=

(

mi−mk

mi+mk
p+

2mi

mi+mk
q−r

)

L, b=

(

2mk

mi+mk
p−mi−mk

mi+mk
q

)

L.

One can use FFT to compute f̂i(p) and f̂k(q), and get Qik by the inverse FFT.
The computation for fiQ

−
ik is much simpler,

fiQ
−
ik = fi

∫

Bik fk dvk = finkBik. (3.13)

Altogether, Qi =∑k Qik.
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4 Positivity and asymptotic preserving properties

In this section, we discuss the positivity and asymptotic preserving properties of the Exp-
RK method introduced in Section 3.

Theorem 4.1 (Positivity). The Exp-RK method described by (3.3) and (3.8) preserves the pos-
itivity property of fi, i.e. there exist h∗ > 0 and µ∗ > 0 such that f l+1 > 0 provided f l > 0, if
0<∆x<h∗ in (3.3) and µ>µ∗ in (3.8).

The proof of Theorem 4.1 is essentially the same as in [29, Theorem 1], and we omit the
details here.

In order to prove the AP property, we need the following assumption:

Assumption 1. The operator P satisfies

‖P( f , f )−P(g,g)‖.‖ f −g‖ .

Remark that this assumption is true for Maxwell molecule in the d2 norm defined in
Ps(Rd) space ( [31]). This can be easily seen by a similar argument that one of the authors
did in [29, Appendix].

Assume f l and gl are the initial conditions to (3.8). Define

d0=
∥

∥

∥
f l−gl

∥

∥

∥
, dα =

∥

∥

∥
f l,(α)−gl,(α)

∥

∥

∥
, α=1,··· ,K,

~d=(d1,d2,··· ,dK)
T, ~b=(b1,b2,··· ,bK)

T, ~e=(1,1,··· ,1)T,

and A is a K×K strictly lower triangular matrix and E is a diagonal matrix given by

Aαβ=
λ

µ
aαβe(cβ−cα)λ, β<α, and E=diag{e−c1λ,e−c2λ,··· ,e−cKλ}, (4.1)

where aαβ, bα and cα are the coefficients of the Runge-Kutta method in (3.8), λ is given
in (3.9) and ~e is a K-dimensional vector. Note that A is strictly lower triangular as the
Runge-Kutta method we use is explicit. Then we have the following contraction lemma.

Lemma 4.1. After one time step iteration in (3.8), the scheme satisfies:

∥

∥

∥
f l+1−gl+1

∥

∥

∥
≤R(λ)

∥

∥

∥
f l+ 1

2 −gl+ 1
2

∥

∥

∥
(4.2a)

with

R(λ)= e−λ

(

1+
Cλ

µ
~bT

E
−1(I−CA)−1

E~e

)

, (4.2b)

where I is the identity matrix, and C>0 is a constant.
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Proof. Eq. (3.8) implies, for α=1,··· ,K,

( f l,(α)−gl,(α))ecαλ=( f l+ 1
2 −gl+ 1

2 )+
α−1

∑
β=1

aαβ
λ

µ
ecβλ

(

P
l,(β)
f −P

l,(β)
g

)

. (4.3)

Using the triangle inequality and Assumption 1 produces

∥

∥

∥
f l,(α)−gl,(α)

∥

∥

∥
≤
∥

∥

∥
f l+ 1

2 −gl+ 1
2

∥

∥

∥
e−cαλ+

α−1

∑
β=1

aαβ
λ

µ
e(cβ−cα)λ

(

C
∥

∥

∥
f l,(β)−gl,(β)

∥

∥

∥

)

, (4.4)

which implies

~d≤d0E~e+CA~d and ~d≤d0(I−CA)−1
E~e, (4.5)

where we have used the fact that A is a strictly lower triangular matrix.

The final step in (3.8) yields

(

f l+1−gl+1
)

=
(

f l+ 1
2 −gl+ 1

2

)

e−λ+
K

∑
α=1

hbα

ε

(

P
l,(α)
f −P

l,(α)
g

)

e(cα−1)λ. (4.6)

Then (4.5) and Assumption 1 imply

∥

∥

∥
f l+1−gl+1

∥

∥

∥
≤d0e−λ+

Cλ

µ
e−λ~bT

E
−1~d≤d0e−λ

(

1+
Cλ

µ
~bT

E
−1(I−CA)−1

E~e

)

, (4.7)

which completes the proof.

Lemma 4.2. Under Assumption 1,
∥

∥ f l−M
l∥
∥=O

(

R(λ)
)

for each l.

Proof. Take g=M in (4.2) yields

∥

∥

∥
f l+1−M

l+1
∥

∥

∥
≤
∥

∥

∥

∥

f l+ 1
2 −M

l+ 1
2

∥

∥

∥

∥

R(λ).

By (3.3) and (3.10), one has

∥

∥

∥

∥

f l+ 1
2 −M

l+ 1
2

∥

∥

∥

∥

<

∥

∥

∥
f l−M

l
∥

∥

∥
+∆t

∥

∥

∥
v·∇x

(

f l−Ml
)∥

∥

∥
≤
∥

∥

∥
f l−M

l
∥

∥

∥
+O(∆t).

The above two inequalities imply the conclusion.

Theorem 4.2. The Exp-RK method defined in (3.3) and (3.8) is strong AP.
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Proof. By Lemma 4.2, it suffices to prove that R(λ)=O(ε) for small ε. Considering that A

is a strictly lower triangular matrix and is thus a nilpotent, one has

E
−1(I−A)−1

E=E
−1
(

I+A+A
2+···+A

K−1
)

E= I+B+B
2+···+B

K−1, (4.8)

where B=E
−1

AE, and we have used A
K =0. Further by (4.1), Bαβ = Aαβecαλ−cβλ = λ

µ aαβ.

Thus I+∑α B
α is a matrix with the elements of at most O(λK). Therefore, when ε≪1,

R(λ)= e−λ

(

1+
Cλ

µ
~b·E−1(I−A)−1

E ·~e
)

=O(e−λλK)<O(ε).

This completes the proof.

Remark 4.1. Note that in the derivation for (3.7), the only requirement on M is that it
does not change with respect to time in the collision part. Analytically, one can replace
this M by arbitrary function that does not has the time variable. However, the associated
numerics simply can not preserve the right asymptotic limit, as indicated in Lemma 4.2.

5 Numerical examples

We take the examples in [23, 24] for the convenience of comparisons. The BGK penaliza-
tion method for multi-species Boltzmann equation can be found in [12]. When ε is big,
we compute the reference solution using the forward Euler method with very small time
step and mesh size. For small ε, we directly compute the solution to the Euler equation
as the reference solution.

Example 5.1 (A Stationary Shock). We consider the two species model, i.e. N=2 in (1.1).
We choose the initial data for the macroscopic quantities so that a shock with zero speed
would form in its Euler limit:

{

m1=1, m2=1.5, n1=n2=1, u1=1.8, u2=1.3, T1=T2=0.325, if x<0,

m1=1, m2=1.5, n1=n2=1.401869, u1=u2=1.07, T1=T2=0.8605, if x>0.

The initial conditions for the distribution is chosen to be far away from the Maxwellian:

fi(t=0,x,v)=
2

∑
ℓ=1

Ai,ℓexp
(

−Bi,ℓ(v−Ci,ℓ)
2
)

, i=1,2,

where

Bi,ℓ=
ρi

4Ei−2ρiu
2
i (1+κ2)

, Ai,ℓ=
ni

2

√

Bi,ℓ

π
, Ci,1−ui=ui−Ci,2=κui, κ=0.2.
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Figure 1: Example 5.1, we compare the numerical results at t= 0.1 by the Exp-RK method (the dotted line),
the BGK penalization method (the circled line), and the reference solution (the solid line). The left figures are
for ε=1, and the right ones are for ε=0.1.
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Figure 2: Example 5.1, as ε goes to zero, the results get to the Euler limit, i.e. a stationary shock.
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Figure 3: Example 5.1, the velocities converge to the mean velocity at different rates for different ε at x=−1.
The circles and stars stand for the velocities of the first and second species respectively. The smaller ε gives the
faster convergence rate.

We choose ∆t=0.0005 and ∆x=0.01. In Fig. 1, we compare the numerical results given
by the Exp-RK method, the BGK penalization method, and the reference solution for ε=1
and 0.1. In Fig. 2, we verify the AP property of the Exp-RK method, i.e. as ε goes to zero,
the numerical results capture the stationary shock. We compare the convergence of the
velocities for two species in Fig. 3, where they gradually converge to the mean velocity
u, and the smaller ε gives the faster convergence rate.
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Example 5.2 (A Sod Problem). The macroscopic quantities are taken as

{

m1=m2=1, n1=1, n2=1.2, u1=0.6, u2=−0.5, T1=T2=0.709, if x<0,

m1=m2=1, n1=0.125, n2=0.2, u1=−0.2, u2=0.125, T1=T2=0.075, if x>0.

The initial conditions for fi, i=1,2 are

fi(t=0,x,v)=
2

∑
ℓ=1

Ai,ℓexp
(

−Bi,ℓ(v−Ci,ℓ)
2
)

,

where

Bi,ℓ=
ρi

4Ei−2ρiu
2
i (1+κ2)

, Ai,ℓ=
ni

2

√

Bi,ℓ

π
, Ci,1−ui=ui−Ci,2=κui, κ=0.2.

In this example, the two species have the same mass, therefore the results of comput-
ing this system as a mixture of two species should agree with those of a single species
system. We take ∆t=0.001 and ∆x=0.01. We show this indistinguishability in Fig. 4. In
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Figure 4: Example 5.2, indistinguishability. The solid lines are the results of treating the system as single species,
and they agree with the results given by the dashed lines, which are the results of a system that has two species
with the same mass.
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Figure 5: Example 5.2, at t= 0.1, we compare the results give by the Exp-RK method (the dotted line), the
BGK penalization method (the circled line) and the reference solution (the solid line). The left figures are for
ε=1, and the right ones are for ε=0.1.
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Figure 6: Example 5.2, as ε goes to zero, the numerical results by the Exp-RK method converge to the Euler
limit.
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Figure 7: Example 5.2, the velocities converge to the mean velocity at different rates for different ε at x=−1.
The circled line stands for species one, and the dotted line stands for species two. The smaller ε gives the faster
convergence rate.
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Figure 8: Example 5.2, f −M for ε=1 and ε=10−6 at t=0.1.

Fig. 5, we compare the numerical results of the Exp-RK method to those of the BGK pe-
nalization method and the reference solution for ε=1 and 0.1. In Fig. 6, we verify the AP
property by taking ε→ 0. As one can see, the numerical results capture the correspond-
ing Euler limit. In Fig. 7, we show that in the long time limit, the two species have the
same velocity, and the smaller ε gives the faster convergence rate. We show the difference
between f and local Maxwellian M at t=0.1 for ε=10−6 in Fig. 8.
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6 Conclusion

In this paper, we generalized the Exp-RK method in [10] to compute the multi-species
Boltzmann equation. Compared to the single species Boltzmann equation that was orig-
inally studies in [10], we need to embed the unified Maxwellian to the method in order
to overcome the difficulties from the lack of local conservation laws, which is due to the
interaction between different species. The method we propose does not contain any non-
linear nonlocal implicit solver, and we prove it is strongly AP and preserves the positivity,
which is usually hard for high-order accurate schemes to maintain. The numerical exam-
ples presented here are only in one dimension, and we leave the case of higher dimension
for future study since it is technically more involved.
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