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Abstract. In this paper, we present a new type of Hermite weighted essentially non-
oscillatory (HWENO) schemes for solving the Hamilton-Jacobi equations on the fi-
nite volume framework. The cell averages of the function and its first one (in one di-
mension) or two (in two dimensions) derivative values are together evolved via time
approaching and used in the reconstructions. And the major advantages of the new
HWENO schemes are their compactness in the spacial field, purely on the finite vol-
ume framework and only one set of small stencils is used for different type of the
polynomial reconstructions. Extensive numerical tests are performed to illustrate the
capability of the methodologies.
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1 Introduction

In this paper, we investigate using the finite volume Hermite weighted essentially non-
oscillatory (HWENO) reconstruction methodologies for directly solving the Hamilton-
Jacobi (H-J) equations:

{

φt+H(∇φ)=0, (x1,··· ,xn,t)∈Ω×[0,∞),
φ(x1,··· ,xn,0)=φ0(x1,··· ,xn), (x1,··· ,xn)∈Ω,

(1.1)

where ∇φ=(φx1
,··· ,φxn)

T.
The Hamilton-Jacobi equations are often used in geometric optics, computer vision,

material science, image processing and variational calculus [4, 13, 21]. Yet, the solutions
to (1.1) are continuous but their derivatives are discontinuous. And such solutions may
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not be unique unless using the physical implications and then getting the viscosity so-
lutions [1]. It is well known that the HJ equations are closely related to conservation
laws, hence we can obtain the exact solutions of HJ equations from those of conserva-
tion laws, respectively, and successful numerical methods for conservation laws can be
adapted for solving the HJ equations. Along this line we mention the early works, Os-
her and Sethian [14] proposed a second order essentially non-oscillatory (ENO) scheme
and Osher and Shu [15] presented high order ENO schemes to solve the Hamilton-Jacobi
equations. Then, a high order of Weighted ENO (WENO) scheme was proposed by Jiang
and Peng [7]. Recently, Qiu [16, 17] and with Shu [20] also proposed Hermite WENO
schemes for solving the Hamilton-Jacobi equations on structured meshes. In 1996, Lafon
and Osher [10] constructed the ENO schemes for solving the Hamilton-Jacobi equations
on unstructured meshes. Zhang and Shu [25], Li and Chan [12] further developed high
order WENO schemes for solving two dimensional Hamilton-Jacobi equations by using
the nodal based weighted essentially non-oscillatory algebraic polynomial reconstruc-
tions on triangular meshes. And some finite element methods for arbitrary triangular
meshes were developed in [2, 3, 6, 11]. Unlike the discontinuous Galerkin (DG) method
of Hu and Shu [6] which applied DG framework on the conservation law system satis-
fied by the derivatives of the solution, Cheng and Shu presented DG methods to directly
solve HJ equations (1.1) for φ in [5] and new flux was presented to keep stability of the
method. In [24], a new DG method to directly solve HJ equations (1.1) was presented, in
which local DG method was applied to approximate derivatives of φ.

This is a continuation paper for solving the Hamilton-Jacobi equations [7,16,17,20,25],
following the (H)WENO methodologies for the conservation laws [18, 19, 26, 27]. We
evolve both the cell averages of the viscosity solution φ and its derivatives over the target
cell. Both the cell average of the solution and the cell averages of its derivatives are used
to reconstruct the point values of the solution φ and its derivatives at different Gauss-
Lobatto quadrature points on the target cell and its boundaries, respectively. Comparing
with the original WENO schemes of Jiang and Peng [7], Qiu [16], Li and Chan [12], one
major advantage of HWENO schemes [17, 20] is its compactness in the reconstructions,
since both the solution and its derivatives are evolved in time. Also, the new HWENO
schemes are more compact than the original HWENO schemes, e.g., [17, 20], easily in
using the same one set of spacial stencils in the reconstructions and purely on the finite
volume framework.

The organization of this paper is as follows: in Section 2, we review and construct the
new finite volume HWENO schemes in 1D and 2D in detail for solving Hamilton-Jacobi
equations and present extensive numerical results in Section 3 to verify the accuracy and
stability of these approaches. Concluding remarks are given in Section 4.

2 The construction of HWENO schemes for the Hamilton-Jacobi

equations
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In this section, we give the framework for solving the Hamilton-Jacobi equations
briefly and then develop the procedures of the HWENO schemes for both one and two
dimensional Hamilton-Jacobi equations in detail.

2.1 The framework for one dimensional case

We take the control equations (1.1) in one dimension. For simplicity, we assume the
computational field Ω has been divided as an uniform mesh with cells Ii=[xi−1/2,xi+1/2],
Ii−1/2=[xi−1,xi], and Ii+1/2=[xi,xi+1], i=1,··· ,N. We denote xi=(xi−1/2+xi+1/2)/2 to be
the cell center and |Ii|=h to be the length of Ii, respectively. Let u(x,t)=φx(x,t). Taking
the x derivative of (1.1), we can obtain the conservation laws:







ut+H(u)x =0,

u(x,0)=
dφ0(x)

dx
.

(2.1)

We define the cell average φ̄i(t)= |Ii|−1
∫

Ii
φ(x,t)dx to be the numerical approximation to

the viscosity solution of (1.1) over the target cell Ii and the cell average of u as ūi(t) =
|Ii|−1

∫

Ii
u(x,t)dx. Integrate (1.1) and (2.1) over Ii, respectively, we obtain the equivalent

formulations of the Hamilton-Jacobi equations:














d

dt
φ̄i(t)=− 1

|Ii|
∫

Ii

H(u(x,t))dx,

d

dt
ūi(t)=− 1

|Ii|
(H(u(xi+1/2,t))−H(u(xi−1/2,t))).

(2.2)

The integrals in (2.2) can be discretized by the following schemes:














d

dt
φ̄i(t)=− 1

|Ii|
Ĥi,

d

dt
ūi(t)=− 1

|Ii|
(Ĥi+1/2−Ĥi−1/2),

(2.3)

where Ĥi (see in [5]) is defined by:

Ĥi =
∫

Ii

H(u(x,t))dx+
1

2

(

min
x∈Ii+1/2

H1(u(x,t))−
∣

∣

∣
min

x∈Ii+1/2

H1(u(x,t))
∣

∣

∣

)

[φ]i+1/2

+
1

2

(

max
x∈Ii−1/2

H1(u(x,t))+
∣

∣

∣
max

x∈Ii−1/2

H1(u(x,t))
∣

∣

∣

)

[φ]i−1/2, (2.4)

where we use the Gauss-Lobatto quadrature formula to calculate
∫

Ii
H(u(x,t))dx numer-

ically, denote [φ]i±1/2 =φ(x+i±1/2,t)−φ(x−i±1/2,t) to be the jump of φ(x,t) at the cell inter-
faces xi±1/2 and H1=∂H/∂u. And the simple Lax-Friedrichs flux is defined by:

Ĥi+1/2=
1

2

(

H(u−
i+1/2)+H(u+

i+1/2)−α(u+
i+1/2−u−

i+1/2)
)

, (2.5)
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where u±
i+1/2 are the numerical approximations to the point values of u(xi+1/2,t) from the

left and right, and α=maxu |H′(u)|, respectively.
We rewrite the ODEs (2.3) as the form:

Ut= L(U). (2.6)

Then we use third order version TVD Runge-Kutta time discrete method [23]:























U(1)=Un+∆tL(Un),

U(2)=
3

4
Un+

1

4
U(1)+

1

4
∆tL(U(1)),

Un+1=
1

3
Un+

2

3
U(2)+

2

3
∆tL(U(2)),

(2.7)

to obtain fully discrete scheme both in space and time. And we would like to omit vari-
able t in the following if not cause confusion.

The crucial procedures of the new HWENO scheme are proposed here, which use the
cell values {φ̄i} and the cell averages {ūi} to obtain the point values {φ∓

i±1/2} and {uGℓ
}.

These reconstructions should be both high order accurate in smooth regions and essen-
tially non-oscillatory adjacent to the discontinuities. We come up with the procedures of
the reconstructions on the same set of small stencils in the following.

Reconstruction of {φ∓
i±1/2} by HWENO from {φ̄i} and {ūi}

1. Given the small stencils S0 = {Ii−1, Ii}, S1 = {Ii, Ii+1}, S2 = {Ii−1, Ii, Ii+1} and the bigger
stencil T =∪2

n=0Sn, we construct Hermite cubic reconstruction polynomials pn(x), n =
0,1,2 and a fifth-degree reconstruction polynomial q(x) such that:

1

|Ii+n|
∫

Ii+n

p0(x)dx= φ̄i+n,
1

|Ii+n|
∫

Ii+n

p′0(x)dx= ūi+n, n=−1,0, (2.8a)

1

|Ii+n|
∫

Ii+n

p1(x)dx= φ̄i+n,
1

|Ii+n|
∫

Ii+n

p′1(x)dx= ūi+n, n=0,1, (2.8b)

1

|Ii+n|
∫

Ii+n

p2(x)dx= φ̄i+n, n=−1,0,1,
1

|Ii|
∫

Ii

p′2(x)dx= ūi, (2.8c)

and
1

|Ii+n|
∫

Ii+n

q(x)dx= φ̄i+n,
1

|Ii+n|
∫

Ii+n

q′(x)dx= ūi+n, n=−1,0,1. (2.9)

We only need the values of these polynomials at the points xi±1/2, which have the fol-
lowing polynomial expressions:

p0(x)=
(

−(h4(ūi−1+2ūi))+24(φ̄i−1−φ̄i)(x−xi)
3−3h3(φ̄i−1−5φ̄i+(ūi−1

−3ūi)(x−xi))+12h(x−xi)
2(3φ̄i−1−3φ̄i+(ūi−1+ūi)(x−xi))

+6h2(x−xi)(−φ̄i−1+φ̄i+2(ūi−1+2ūi)(x−xi))
)

/(12h3), (2.10a)
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p1(x)=
(

h4(2ūi+ūi+1)+24(φ̄i−φ̄i+1)(x−xi)
3+3h3(5φ̄i−φ̄i+1+3ūi(x−xi)

−ūi+1(x−xi))+12h(x−xi)
2(−3φ̄i+3φ̄i+1+(ūi+ūi+1)(x−xi))

−6h2(x−xi)(φ̄i−φ̄i+1+2(2ūi+ūi+1)(x−xi))
)

/(12h3), (2.10b)

p2(x)=
(

3h2(φ̄i−1−φ̄i+1)(x−xi)+12(−φ̄i−1+φ̄i+1)(x−xi)
3−h3(φ̄i−1−26φ̄i

+φ̄i+1−30ūi(x−xi))+12h(x−xi)
2(φ̄i−1−2φ̄i+φ̄i+1

−2ūi(x−xi))
)

/(24h3). (2.10c)

2. We compute the combination coefficients, the linear weights, denoted by γn(xi±1/2),
n=0,1,2, satisfying:

q(xi±1/2)=
2

∑
n=0

γn(xi±1/2)pn(xi±1/2), (2.11)

for all possible cell average values φ̄ and cell averages ū in the bigger stencil T . These
lead to:

γ0(xi+1/2)=
3

10
, γ1(xi+1/2)=

3

10
, γ2(xi+1/2)=

4

10
, (2.12a)

γ0(xi−1/2)=
3

10
, γ1(xi−1/2)=

3

10
, γ2(xi−1/2)=

4

10
. (2.12b)

3. For the smaller stencils Sn, n=0,1,2, we compute the smoothness indicators, denoted
by βn, which measure how smooth the functions pn(x) are in the target cell Ii. The smaller
these smoothness indicators, the smoother the functions are in the target cell Ii. We use
the similar recipe for the smoothness indicators as in [8]:

βn =
3

∑
η=1

∫

Ii

|Ii|2η−1
(dη pn(x)

dxη

)2
dx, n=0,1,2. (2.13)

The formulas are explicitly expressed as:

β0=
(

11712φ̄2
i−1+11712φ̄2

i −12hφ̄i(911ūi−1+1041ūi)−12φ̄i−1(1952φ̄i

−911hūi−1−1041hūi)+h2(2603ū2
i−1+5726ūi−1ūi+3443ū2

i )
)

/60, (2.14a)

β1=
(

11712φ̄2
i +11712φ̄2

i+1−12hφ̄i+1(1041ūi+911ūi+1)−12φ̄i(1952φ̄i+1

−1041hūi−911hūi+1)+h2(3443ū2
i +5726ūiūi+1+2603ū2

i+1)
)

/60, (2.14b)

β2=
(

2603φ̄2
i−1+1040φ̄2

i −1040φ̄iφ̄i+1+2603φ̄2
i+1−9372hφ̄i+1ūi+9612h2 ū2

i

−2φ̄i−1(520φ̄i+2083φ̄i+1−4686hūi)
)

/240. (2.14c)

4. Then we compute the nonlinear weights based on the linear weights and smoothness
indicators [22]:

ωn(xi±1/2)=
ωn(xi±1/2)

∑
2
k=0ωk(xi±1/2)

, ωn(xi±1/2)=
γn(xi±1/2)

∑
2
k=0(ε+βk)2

, n=0,1,2, (2.15)
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where γn(xi±1/2) are the linear weights determined in the above step, and ε is a small
positive number to avoid division by 0. In this paper, we use ε=10−6 in all computations.
The final approximations are given by:

φ∓
i± 1

2

≈
2

∑
n=0

ωn(xi± 1
2
)pn(xi± 1

2
). (2.16)

Reconstruction of {uGℓ
} by HWENO from {φ̄i} and {ūi}

1. Given the same stencils S0 = {Ii−1, Ii}, S1 = {Ii, Ii+1}, S2 = {Ii−1, Ii, Ii+1} and the big-
ger stencil ℵ=∪2

n=0Sn, we construct the same Hermite cubic reconstruction polynomi-
als pn(x), n= 0,1,2 and the same fifth-degree reconstruction polynomial q(x) satisfying
(2.8a), (2.8b), (2.8c) and (2.9). In this paper, we only need the values of the derivative of
these polynomials at different four Gauss-Lobatto quadrature points xGℓ

such as xi−1/2,
xi−

√
5/10, xi+

√
5/10 and xi+1/2, which have the following polynomial expressions:

p′0(x)=
(

−(h3(ūi−1−3ūi))+24(φ̄i−1−φ̄i)(x−xi)
2+12h(x−xi)(2φ̄i−1−2φ̄i(x−xi))

+(ūi−1+ūi)+2h2(−φ̄i−1+φ̄i+4(ūi−1+2ūi)(x−xi))
)

/(4h3), (2.17a)

p′1(x)=
(

h3(3ūi−ūi+1)+24(φ̄i−φ̄i+1)(x−xi)
2+12h(x−xi)(−2φ̄i+2φ̄i+1

−2h2(φ̄i−φ̄i+1+4(2ūi+ūi+1)(x−xi)))
)

/(4h3), (2.17b)

p′2(x)=
(

h2(φ̄i−1−φ̄i+1)+10h3 ūi+12(−φ̄i−1+φ̄i+1)(x−xi)
2

+8h(x−xi)(φ̄i−1−2φ̄i+φ̄i+1−3ūi(x−xi))
)

/(8h3). (2.17c)

2. We compute the linear weights by requiring:

q′(xGℓ
)=

2

∑
n=0

γx
n(xGℓ

)p′n(xGℓ
), ℓ=1,2,3,4, (2.18)

for all possible cell average values φ̄ and cell averages ū in the bigger stencil ℵ. These
lead to:

γx
0(xG1

)=
5

6
, γx

1(xG1
)=

1

18
, γx

2(xG1
)=

1

9
, (2.19a)

γx
0(xG2

)=
220−41

√
5

570
, γx

1(xG2
)=

220+41
√

5

570
, γx

2(xG2
)=

13

57
, (2.19b)

γx
0(xG3

)=
220+41

√
5

570
, γx

1(xG3
)=

220−41
√

5

570
, γx

2(xG3
)=

13

57
, (2.19c)

γx
0(xG4

)=
1

18
, γx

1(xG4
)=

5

6
, γx

2(xG4
)=

1

9
. (2.19d)

3. We compute the smoothness indicators [20, 25]:

βx
n =

3

∑
η=1

∫

Ii

|Ii|2η−1
( dη

dxη

dpn(x)

dx

)2
dx, n=0,1,2, (2.20)
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obtaining:

βx
0 =

(

192φ̄2
i−1+192φ̄2

i −12hφ̄i(15ūi−1+17ūi)+12φ̄i−1(−32φ̄i+15hūi−1

+17hūi)+h2(43ū2
i−1+94ūi−1ūi+55ū2

i )
)

/h2, (2.21a)

βx
1 =

(

192φ̄2
i +192φ̄2

i+1−12hφ̄i+1(17ūi+15ūi+1)+12φ̄i(−32φ̄i+1+17hūi

+15hūi+1)+h2(55ū2
i +94ūiūi+1+43ū2

i+1)
)

/h2, (2.21b)

βx
2 =

(

43φ̄2
i−1/4+4φ̄2

i −4φ̄iφ̄i+1+43φ̄2
i+1/4−39hφ̄i+1ūi+39h2ū2

i

+φ̄i−1(−4φ̄i−35φ̄i+1/2+39hūi)
)

/h2. (2.21c)

4. We compute the nonlinear weights by (2.15). The final HWENO reconstructions to uGℓ

are then given by:

uGℓ
≈

2

∑
n=0

ωx
n(xGℓ

)
d

dx
pn(xGℓ

), ℓ=1,2,3,4. (2.22)

2.2 The framework for two dimensional case

We take the control equations (1.1) in two dimensions. For simplicity, we also assume
Ω has been divided as an uniform mesh with cells Iij = [xi−1/2,xi+1/2]×[yj−1/2,yj+1/2],
Ji =[xi−1/2,xi+1/2], Kj =[yj−1/2,yj+1/2], Ji+1/2=[xi,xi+1] and Kj+1/2=[yj,yj+1], i=1,··· ,N,
j= 1,··· ,M. We denote (xi,yj)= ((xi−1/2+xi+1/2)/2,(yj−1/2+yj+1/2)/2), |Iij|=(xi+1/2−
xi−1/2)(yj+1/2−yj−1/2)=h2, |Ji|=xi+1/2−xi−1/2=h and |Kj|=yj+1/2−yj−1/2=h to be the
cell center, the area of Iij, the length of Ji and the length of Kj, respectively. Let u(x,y,t)=
φx(x,y,t) and v(x,y,t)=φy(x,y,t). Taking the x, y derivatives of (1.1), we can obtain the
conservation laws:







ut+H(u,v)x =0,

u(x,y,0)=
∂φ0(x,y)

∂x
,

(2.23)

and






vt+H(u,v)y=0,

v(x,y,0)=
∂φ0(x,y)

∂y
.

(2.24)

We define φ̄ij(t)= |Iij|−1
∫

Iij
φ(x,y,t)dxdy to be the numerical approximation to the viscos-

ity solution of (1.1) of the target cell Iij, the cell average of u as ūij(t)=|Iij|−1
∫

Iij
u(x,y,t)dxdy

and the cell average of v as v̄ij(t) = |Iij|−1
∫

Iij
v(x,y,t)dxdy. Integrate (1.1), (2.23) and

(2.24) over the target cell Iij, respectively, we obtain the equivalent formulations of the
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Hamilton-Jacobi equations:



































































d

dt
φ̄ij(t)=− 1

|Iij|
∫

Iij

H(u(x,y,t),v(x,y,t))dxdy,

d

dt
ūij(t)=− 1

|Iij|
(

∫

Kj

H(u(xi+1/2,y,t),v(xi+1/2,y,t))dy

−
∫

Kj

H(u(xi−1/2,y,t),v(xi−1/2,y,t))dy
)

,

d

dt
v̄ij(t)=− 1

|Iij|
(

∫

Ji

H(u(x,yj+1/2,t),v(x,yj+1/2,t))dx

−
∫

Ji

H(u(x,yj−1/2,t),v(x,yj−1/2,t))dx
)

.

(2.25)

The latter two integrals in (2.25) can be discretized by a four-point Gauss-Lobatto inte-
gration formula on every edge and we approximate (2.25) by the following schemes:



























































d

dt
φ̄ij(t)=− 1

|Iij|
Ĥij,

d

dt
ūij(t)=−|Kj|

|Iij|
4

∑
ℓ=1

σℓ(Ĥ(u(xi+1/2,yGℓ
,t),v(xi+1/2,yGℓ

,t))

−Ĥ(u(xi−1/2,yGℓ
,t),v(xi−1/2,yGℓ

,t))),

d
dt v̄ij(t)=− |Ji|

|Iij|
4

∑
ℓ=1

σℓ(Ĥ(u(xGℓ
,yj+1/2,t),v(xGℓ

,yj+1/2,t))

−Ĥ(u(xGℓ
,yj−1/2,t),v(xGℓ

,yj−1/2,t))),

(2.26)

where σl are the quadrature coefficients and Ĥij is a global numerical Hamiltonian [5]
and defined as:

Ĥij =
∫

Iij

H(u(x,y,t),v(x,y,t))dxdy+
1

2

∫

Kj

(

min
x∈Ji+1/2

H1(u(x,y,t),v(x,y,t))

−
∣

∣

∣
min

x∈Ji+1/2

H1(u(x,y,t),v(x,y,t))
∣

∣

∣

)

[φ](xi+1/2,y)dy

+
1

2

∫

Kj

(

max
x∈Ji−1/2

H1(u(x,y,t),v(x,y,t))

+
∣

∣

∣
max

x∈Ji−1/2

H1(u(x,y,t),v(x,y,t))
∣

∣

∣

)

[φ](xi−1/2,y)dy

+
1

2

∫

Ji

(

min
y∈Kj+1/2

H2(u(x,y,t),v(x,y,t))

−
∣

∣

∣
min

y∈Kj+1/2

H2(u(x,y,t),v(x,y,t))
∣

∣

∣

)

[φ](x,yj+1/2)dx
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+
1

2

∫

Ji

(

max
y∈Kj−1/2

H2(u(x,y,t),v(x,y,t))

+
∣

∣

∣
max

y∈Kj−1/2

H2(u(x,y,t),v(x,y,t))
∣

∣

∣

)

[φ](x,yj−1/2)dx, (2.27)

where
∫

Iij
H(u(x,y,t),v(x,y,t))dxdy is calculated numerically by using a two dimensional

Gauss-Lobatto quadrature formula, u(x,y,t)=(u+(x,y,t)+u−(x,y,t))/2, v(x,y,t)=( v+(
x,y,t) +v−(x,y,t))/2, [φ](xi±1/2,y)=φ(x+i±1/2,y,t)−φ(x−i±1/2,y,t) and [φ](x,yj±1/2)=φ(x,

y+j±1/2,t)−φ(x,y−j±1/2,t). And H1 and H2 are the partial derivatives of H with respect to

φx and φy, otherwise are the Lipschitz constants of H globally (if not differentiable). We

set α = max{αx,αy}= max{max|H1|,max|H2|}. Ĥ(u(xi±1/2,yGℓ
,t), v(xi±1/2,yGℓ

,t)) and

Ĥ(u(xGℓ
,yj±1/2,t), v(xGℓ

,yj±1/2,t)) are replaced by the numerical fluxes such as the Lax-
Friedrichs fluxes:

Ĥ(u(xi±1/2,yGℓ
,t),v(xi±1/2,yGℓ

,t))

=
1

2

{

H(u−(xi±1/2,yGℓ
,t),v−(xi±1/2,yGℓ

,t))+H(u+(xi±1/2,yGℓ
,t),v+(xi±1/2,yGℓ

,t))

−αx(u
+(xi±1/2,yGℓ

,t)−u−(xi±1/2,yGℓ
,t))

}

, ℓ=1,2,3,4, (2.28)

and

Ĥ(u(xGℓ
,yj±1/2,t),v(xGℓ

,yj±1/2,t))

=
1

2

{

H(u−(xGℓ
,yj±1/2,t),v−(xGℓ

,yj±1/2,t))+H(u+(xGℓ
,yj±1/2,t),v+(xGℓ

,yj±1/2,t))

−αy(v
+(xGℓ

,yj±1/2,t)−v−(xGℓ
,yj±1/2,t))

}

, ℓ=1,2,3,4. (2.29)

We rewrite the ODEs (2.26) as the form of (2.6).
Then we use third order version TVD Runge-Kutta time discrete method (2.7) to ob-

tain fully discrete scheme both in space and time.
Also, we use the cell values {φ̄ij}, {ūij} and {v̄ij} to reconstruct the point values

of {φ(x∓i±1/2,yGℓ
,t)}, {φ(xGℓ

,y∓j±1/2,t)}, {u(xGℓ
,yGℓℓ

,t)} and {v(xGℓ
,yGℓℓ

,t)}, respectively.

These reconstructions should be both high order accurate in smooth regions and essen-
tially non-oscillatory adjacent to the discontinuities. We would like to omit variable t in
the following if not cause confusion.

Reconstruction of {φ∓
i±1/2,Gℓ

} and {φ∓
Gℓ,j±1/2} by HWENO from {φ̄ij}, {ūij} and {v̄ij}

1. We construct Hermite cubic reconstruction polynomials pn(x,y), n=1,··· ,12, such that:

1

|Ik1 ,k2
|
∫

Ik1,k2

pn(x,y)dxdy= φ̄k1 ,k2
, n=1,··· ,12, (2.30a)

1

|Ik3 ,k4
|
∫

Ik3,k4

∂

∂x
pn(x,y)dxdy= ūk3 ,k4

, n=1,··· ,12, (2.30b)
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1

|Ik5 ,k6
|
∫

Ik5,k6

∂

∂y
pn(x,y)dxdy= v̄k5 ,k6

, n=1,··· ,12, (2.30c)

where

n=1,







(k1,k2)=(i−1, j−1),(i, j−1),(i−1, j),(i, j),
(k3,k4)=(i−1, j−1),(i−1, j),(i, j),
(k5,k6)=(i−1, j−1),(i, j−1),(i, j);

n=2,







(k1,k2)=(i, j−1),(i+1, j−1),(i, j),(i+1, j),
(k3,k4)=(i+1, j−1),(i, j),(i+1, j),
(k5,k6)=(i, j−1),(i+1, j−1),(i, j);

n=3,







(k1,k2)=(i−1, j),(i, j),(i−1, j+1),(i, j+1),
(k3,k4)=(i−1, j),(i, j),(i−1, j+1),
(k5,k6)=(i, j),(i−1, j+1),(i, j+1);

n=4,







(k1,k2)=(i, j),(i+1, j),(i, j+1),(i+1, j+1),
(k3,k4)=(i, j),(i+1, j),(i+1, j+1),
(k5,k6)=(i, j),(i, j+1),(i+1, j+1);

n=5,







(k1,k2)=(i−1, j−1),(i, j−1),(i+1, j−1),(i−1, j),(i, j),(i−1, j+1),
(k3,k4)=(i−1, j),(i, j),
(k5,k6)=(i, j−1),(i, j);

n=6,







(k1,k2)=(i−1, j−1),(i, j−1),(i+1, j−1),(i, j),(i+1, j),(i+1, j+1),
(k3,k4)=(i, j),(i+1, j),
(k5,k6)=(i, j−1),(i, j);

n=7,







(k1,k2)=(i−1, j−1),(i−1, j),(i, j),(i−1, j+1),(i, j+1),(i+1, j+1),
(k3,k4)=(i−1, j),(i, j),
(k5,k6)=(i, j),(i, j+1);

n=8,







(k1,k2)=(i+1, j−1),(i, j),(i+1, j),(i−1, j+1),(i, j+1),(i+1, j+1),
(k3,k4)=(i, j),(i+1, j),
(k5,k6)=(i, j),(i, j+1);

n=9,







(k1,k2)=(i−1, j−1),(i, j−1),(i+1, j−1),(i−1, j),(i, j),(i−1, j+1),
(k3,k4)=(i−1, j−1),(i, j),
(k5,k6)=(i−1, j−1),(i, j);

n=10,







(k1,k2)=(i−1, j−1),(i, j−1),(i+1, j−1),(i, j),(i+1, j),(i+1, j+1),
(k3,k4)=(i, j),(i+1, j−1),
(k5,k6)=(i+1, j−1),(i, j);

n=11,







(k1,k2)=(i−1, j−1),(i−1, j),(i, j),(i−1, j+1),(i, j+1),(i+1, j+1),
(k3,k4)=(i−1, j+1),(i, j),
(k5,k6)=(i, j),(i−1, j+1);
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n=12,







(k1,k2)=(i+1, j−1),(i, j),(i+1, j),(i−1, j+1),(i, j+1),(i+1, j+1),
(k3,k4)=(i, j),(i+1, j+1),
(k5,k6)=(i, j),(i+1, j+1).

2. We compute the cubic polynomials to obtain a fifth-order approximation of φ(x,y)
at the interfacial Gauss-Lobatto quadrature points (x∓i±1/2,yGℓ

) and (xGℓ
,y∓j±1/2), re-

spectively. If we choose the combination coefficients, the linear weights, denoted by
γn(xi±1/2,yGℓ

) and γn(xGℓ
,yj±1/2), n=1,··· ,12, satisfying:

φ(x∓i±1/2,yGℓ
)=

12

∑
n=1

γn(xi±1/2,yGℓ
)pn(xi±1/2,yGℓ

), ℓ=1,2,3,4, (2.31)

and

φ(xGℓ
,y∓j±1/2)=

12

∑
n=1

γn(xGℓ
,yj±1/2)pn(xGℓ

,yj±1/2), ℓ=1,2,3,4, (2.32)

are valid for any polynomial φ of degree at most five, then we can obtain a fifth-order
approximation of φ at different points for all sufficiently smooth functions. Notice that
(2.31) and (2.32) hold for any polynomial φ of degree at most three if ∑

12
n=1γn(xi±1/2,yGℓ

)=

1 and ∑
12
n=1γn(xGℓ

,yj±1/2) = 1, ℓ = 1,2,3,4, respectively. This is because each indi-
vidual pn(x,y) reconstructs cubic polynomials exactly. There are eleven other con-
straints on the linear weights from requiring (2.31) and (2.32) to hold for φ = ( x−xi

|Ji| )
5,

( x−xi

|Ji| )
4(

y−yj

|Kj| ), (
x−xi

|Ji| )
3(

y−yj

|Kj| )
2, ( x−xi

|Ji| )
2(

y−yj

|Kj| )
3, ( x−xi

|Ji| )(
y−yj

|Kj| )
4, (

y−yj

|Kj| )
5, ( x−xi

|Ji| )
4, ( x−xi

|Ji| )
3(

y−yj

|Kj| ),

( x−xi

|Ji| )
2(

y−yj

|Kj| )
2, ( x−xi

|Ji | )(
y−yj

|Kj| )
3 and (

y−yj

|Kj| )
4. Fortunately, these twelve parameters can be de-

termined by the twelve constraints mentioned above.

3. We compute the smoothness indicators, denoted by βn, which measure how smooth
the functions pn(x) are in the target cell Iij. The smaller these smoothness indicators,
the smoother the functions are in the target cell Iij. We use the similar recipe for the
smoothness indicators as in [8]:

βn =
3

∑
|η|=1

∫

Iij

|Iij||η|−1
( ∂|η|

∂xη1 ∂yη2
pn(x,y)

)2
dxdy, n=1,··· ,12. (2.33)

4. Then we compute the nonlinear weights (2.15) based on the linear weights and smooth-
ness indicators [22]. The final approximations are given by:

φ∓
i± 1

2 ,Gℓ

≈
12

∑
n=1

ωn(xi± 1
2
,yGℓ

)pn(xi± 1
2
,yGℓ

), ℓ=1,2,3,4, (2.34)

and

φ∓
Gℓ,j± 1

2

≈
12

∑
n=1

ωn(xGℓ
,yj± 1

2
)pn(xGℓ

,yj± 1
2
), ℓ=1,2,3,4. (2.35)
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Reconstruction of {uGℓ,Gℓℓ
} and {vGℓ ,Gℓℓ

} by HWENO from {φ̄ij}, {ūij} and {v̄ij}
1. Given the same polynomials pn(x,y), n=1,··· ,12. In this paper, we only need the val-
ues of the derivative of these polynomials at different sixteen Gauss-Lobatto quadrature
points (xGℓ

,yGℓℓ
), ℓ=1,2,3,4, ℓℓ=1,2,3,4, which are the tensor product of one dimensional

Gauss-Lobatto quadrature points.

2. We compute the linear weights by requiring:

u(xGℓ
,yGℓℓ

)=
12

∑
n=1

γx
n(xGℓ

,yGℓℓ
)

∂

∂x
pn(xGℓ

,yGℓℓ
), ℓ,ℓℓ=1,2,3,4, (2.36)

and

v(xGℓ
,yGℓℓ

)=
12

∑
n=1

γ
y
n(xGℓ

,yGℓℓ
)

∂

∂y
pn(xGℓ

,yGℓℓ
), ℓ,ℓℓ=1,2,3,4, (2.37)

are valid for any polynomial φ of degree at most five, then we can obtain fifth-order
approximations of u(x,y) and v(x,y) at different points for all sufficiently smooth func-
tions. Notice that (2.36) and (2.37) hold for any polynomial φ of degree at most three if

∑
12
n=1γx

n(xGℓ
,yGℓℓ

)=1 and ∑
12
n=1γ

y
n(xGℓ

,yGℓℓ
)=1, ℓ, ℓℓ=1,2,3,4, respectively. This is because

each individual pn(x,y) reconstructs cubic polynomials exactly. There are eleven other
constraints on the linear weights from requiring (2.36) and (2.37) to hold for φ=( x−xi

|Ji| )
5,

( x−xi

|Ji| )
4(

y−yj

|Kj| ), (
x−xi

|Ji| )
3(

y−yj

|Kj| )
2, ( x−xi

|Ji | )
2(

y−yj

|Kj| )
3, ( x−xi

|Ji| )(
y−yj

|Kj| )
4, (

y−yj

|Kj| )
5, ( x−xi

|Ji| )
4, ( x−xi

|Ji| )
3(

y−yj

|Kj| ),

( x−xi

|Ji| )
2(

y−yj

|Kj| )
2, ( x−xi

|Ji| )(
y−yj

|Kj| )
3 and (

y−yj

|Kj| )
4. Fortunately, these twelve parameters can be de-

termined by the twelve constraints mentioned above.

3. We compute the smoothness indicators, denoted by βx
n and β

y
n, which measure how

smooth the functions ∂pn(x)/∂x and ∂pn(x)/∂y are in the target cell Iij. The smaller
these smoothness indicators, the smoother the functions are in the target cell Iij. We use
the similar recipe for the smoothness indicators as in [20, 25]:

βx
n =

3

∑
|η|=1

∫

Iij

|Iij||η|−1
( ∂|η|

∂xη1 ∂yη2

∂

∂x
pn(x,y)

)2
dxdy, n=1,··· ,12, (2.38)

and

β
y
n =

3

∑
|η|=1

∫

Iij

|Iij||η|−1
( ∂|η|

∂xη1 ∂yη2

∂

∂y
pn(x,y)

)2
dxdy, n=1,··· ,12, (2.39)

where η=(η1,η2) and |η|=η1+η2.

4. Then we compute the nonlinear weights (2.15) based on the linear weights and smooth-
ness indicators [22]. The final approximations are given by:

uGℓ,Gℓℓ
≈

12

∑
n=1

ωx
n(xGℓ

,yGℓℓ
)

∂

∂x
pn(xGℓ

,yGℓℓ
), ℓ,ℓℓ=1,2,3,4, (2.40)



J. Zhu and J. Qiu / Commun. Comput. Phys., 15 (2014), pp. 959-980 971

and

vGℓ,Gℓℓ
≈

12

∑
n=1

ω
y
n(xGℓ

,yGℓℓ
)

∂

∂y
pn(xGℓ

,yGℓℓ
), ℓ,ℓℓ=1,2,3,4. (2.41)

3 Numerical tests

In this section, we set CFL number to be 0.6 and present the results of numerical tests of
the new HWENO schemes specified in the previous section both in one and two dimen-
sions on structured meshes.

Example 3.1. We solve the following nonlinear scalar one dimensional Burgers’ equation:

φt+
(φx+1)2

2
=0, −1< x<1, (3.1)

with the initial condition φ(x,0) =−cos(πx) and periodic boundary condition. When
t= 0.5/π2 the solution is still smooth. The errors and numerical orders of accuracy are
shown in Table 1. We can see the scheme achieves its designed order of accuracy in one
dimension.

Example 3.2. We solve the following nonlinear scalar one dimensional Hamilton-Jacobi
equation:

φt−cos(φx+1)=0, −1< x<1, (3.2)

with the initial condition φ(x,0)=−cos(πx) and periodic boundary condition. We com-
pute the result up to t=0.5/π2. The errors and numerical orders of accuracy are shown
in Table 2. Again, we can see the scheme achieves its designed order of accuracy in one
dimension on structured meshes.

Example 3.3. We solve the following nonlinear scalar two dimensional Burgers’ equation:

φt+
(φx+φy+1)2

2
=0, −2≤ x,y<2, (3.3)

with the initial condition φ(x,y,0)=−cos(π(x+y)/2) and periodic boundary conditions.
We compute the result to t=0.5/π2 and the solution is still smooth at that time. The errors
and numerical orders of accuracy by the HWENO scheme are shown in Table 3.

Example 3.4. We solve the following nonlinear scalar two dimensional Hamilton-Jacobi
equation:

φt−cos(φx+φy+1)=0, −2≤ x,y<2, (3.4)

with the initial condition φ(x,y,0)=−cos(π(x+y)/2) and periodic boundary conditions.
We also compute the result until t=0.5/π2. The errors and numerical orders of accuracy
by the HWENO scheme are shown in Table 4.
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Table 1: φt+(φx+1)2/2=0. φ(x,0)=−cos(πx). Periodic boundary conditions. t=0.5/π2.

HWENO

cells L1 error order L∞ error order
10 9.92E-5 3.66E-4
20 4.82E-6 4.36 2.72E-5 3.75
40 1.61E-7 4.90 1.15E-6 4.55
80 3.23E-9 5.64 2.82E-8 5.36

160 4.63E-11 6.12 4.83E-10 5.87
320 9.83E-13 5.56 6.77E-12 6.16

Table 2: φt−cos(φx+1)=0. φ(x,0)=−cos(πx). Periodic boundary conditions. t=0.5/π2.

HWENO

cells L1 error order L∞ error order
10 8.53E-5 2.10E-4
20 5.63E-6 3.92 2.83E-5 2.90
40 3.53E-7 4.00 3.73E-6 2.93
80 1.69E-8 4.38 2.70E-7 3.79

160 4.17E-10 5.34 7.28E-9 5.21
320 8.26E-12 5.65 2.31E-10 4.97

Table 3: φt+(φx+φy+1)2/2=0. φ(x,y,0)=−cos(π(x+y)/2). Periodic boundary conditions. t=0.5/π2.

HWENO

cells L1 error order L∞ error order
20×20 9.11E-5 4.70E-4
40×40 3.52E-6 4.69 1.78E-5 4.72
80×80 8.41E-8 5.39 5.91E-7 4.91

160×160 9.24E-10 6.51 7.21E-9 6.36
320×320 2.64E-11 5.13 1.47E-10 5.61

Table 4: φt−cos(φx+φy+1)=0. φ(x,y,0)=−cos(π(x+y)/2). Periodic boundary conditions. t=0.5/π2.

HWENO

cells L1 error order L∞ error order
20×20 3.85E-5 1.45E-4
40×40 3.73E-6 3.37 3.18E-5 2.20
80×80 1.48E-7 4.65 1.82E-6 4.12

160×160 4.44E-9 5.06 5.99E-8 4.93
320×320 1.33E-10 5.06 1.42E-9 5.40

Example 3.5. We solve the linear equation:

φt+φx=0, (3.5)

with the initial condition φ(x,0)=φ0(x−0.5) together with the periodic boundary condi-
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Figure 1: One dimensional linear equation. 100 cells. (a) t=2; (b) t=8. Solid line: the exact solution; square
symbols: HWENO scheme.

tions, where:

φ0(x)=−
(

√
3

2
+

9

2
+

2π

3

)

(x+1)+











































2cos
(3πx2

2

)

−
√

3, −1≤x<−1

3
,

3

2
+3cos(2πx), −1

3
≤x<0,

15

2
−3cos(2πx), 0≤x<

1

3
,

28+4π+cos(3πx)

3
+6πx(x−1),

1

3
≤x<1.

(3.6)

We plot the results with 100 cells at t=2 and t=8 in Fig. 1. We can observe that the results
by the HWENO scheme have good resolution for the corner singularity.

Example 3.6. We solve the one dimensional nonlinear Burgers’ equation:

φt+
(φx+1)2

2
=0, (3.7)

with the initial condition φ(x,0)=−cos(πx) and the periodic boundary conditions. We
plot the results at t=3.5/π2 when discontinuous derivative appears. The solutions of the
HWENO scheme are given in Fig. 2. We can see the scheme gives good results for this
problem.

Example 3.7. We solve the nonlinear equation with a non-convex flux:

φt−cos(φx+1)=0, (3.8)

with the initial data φ(x,0)=−cos(πx) and the periodic boundary conditions. Then we
plot the results at t= 1.5/π2 in Fig. 3 when the discontinuous derivative appears in the
solution. We can see that the HWENO scheme gives good results for this problem.
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Figure 2: One dimensional Burgers’ equation. (a) 40 cells; (b) 80 cells. t = 3.5/π2. Solid line: the exact
solution; square symbols: HWENO scheme.
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Figure 3: Problem with the non-convex flux H(φx)=−cos(φx+1). (a) 40 cells; (b) 80 cells. t=3.5/π2. Solid
line: the exact solution; square symbols: HWENO scheme.

Example 3.8. We solve the one-dimensional Riemann problem with a non-convex flux:






φt+
1

4
(φ2

x−1)(φ2
x−4)=0, −1< x<1,

φ(x,0)=−2|x|.
(3.9)

This is a demanding test case, for many schemes have poor resolutions or could even
converge to a non-viscosity solution for this case. We plot the results at t = 1 by the
scheme with 40, 80, 160, 320 and 640 cells to verify the numerical solutions’ convergent
property in Fig. 4. We can see that such scheme gives good results for this problem.

Example 3.9. We solve the same two dimensional nonlinear Burgers’ equation (3.3) as in
Example 3.3 with the same initial condition φ(x,y,0)=−cos(π(x+y)/2), except that we
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Figure 4: Problem with the non-
convex flux H(φx)=(φ2

x−1)(φ2
x−

4)/4. Form left to right and
top to bottom: 40, 80, 160, 320
and 640 cells. t = 1. Solid line:
the exact solution; square symbols:
HWENO scheme.

now plot the results at t=1.5/π2 in Fig. 5 when the discontinuous derivative has already
appeared in the solution. We observe good resolutions for this example.

Example 3.10. The two dimensional Riemann problem with a non-convex flux:

{

φt+sin(φx+φy)=0, −1≤ x,y<1,
φ(x,y,0)=π(|y|−|x|). (3.10)
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Figure 5: Two dimensional Burgers’ equation. 40×40 cells. t=1.5/π2. HWENO scheme. (a) Contours of the
solution; (b) the surface of the solution.
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Figure 6: Two dimensional Riemann problem with a non-convex flux H(φx,φy) = sin(φx+φy). 80×80 cells.
t=1. HWENO scheme. (a) Contours of the solution; (b) the surface of the solution.

The solution of the HWENO scheme is plotted at t=1 in Fig. 6. We can also observe good
resolutions for this numerical simulation.

Example 3.11. A problem from optimal control:







φt+sin(y)φx+(sin(x)+sign(φy))φy−
1

2
sin(y)2−(1−cos(x))=0, π≤ x,y<π,

φ(x,y,0)=0,
(3.11)

with periodic conditions, see [15]. The solution of the HWENO scheme is plotted at t=1
and the optimal control ω=sign(φy) is shown in Fig. 7.
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Figure 7: The optimal control problem. 60×60 cells. t=1. HWENO scheme. (a) The surface of the solution;
(b) the optimal control ω=sign(φy).
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Figure 8: Eikonal equation with a non-convex Hamiltonian. 80×80 cells. t = 0.6. HWENO scheme. (a)
Contours of the solution; (b) the surface of the solution.

Example 3.12. A two dimensional Eikonal equation with a non-convex Hamiltonian,
which arises in geometric optics [9], is given by:











φt+
√

φ2
x+φ2

y+1=0, 0≤ x,y<1,

φ(x,y,0)=
1

4
(cos(2πx)−1)(cos(2πy)−1)−1.

(3.12)

The solutions of the HWENO scheme are plotted at t=0.6 in Fig. 8. Good resolutions are
observed with the proposed scheme.
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Figure 9: Propagating surface. 60×60 cells. (a) ε=0; (b) ε=0.1. HWENO scheme.

Example 3.13. The problem of a propagating surface [14]:











φt−(1−εK)
√

φ2
x+φ2

y+1=0, 0≤ x,y<1,

φ(x,y,0)=1− 1

4
(cos(2πx)−1)(cos(2πy)−1),

(3.13)

where K is the mean curvature defined by:

K=−φxx(1+φy)2−2φxyφxφy+φyy(1+φ2
x)

(1+φ2
x+φ2

y)
3/2

, (3.14)

and ε is a small constant. A periodic boundary conditions are used. The approximation
of K is constructed by the methods similar to the first derivative terms and three different
second order derivatives of associated Hermite reconstruction polynomials are needed.
The results of ε= 0 (pure convection) and ε= 0.1 by the HWENO scheme are presented
in Fig. 9. The surfaces at t=0 for ε=0 and for ε=0.1, and at t=0.1 for ε=0.1, are shifted
downward in order to show the detail of the solution at later time.
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4 Concluding remarks

In this paper, we have constructed a new class of finite volume HWENO schemes for
solving the Hamilton-Jacobi equations in one and two dimensions. The main advantages
of such methodologies are their compactness in spacial field, only one set of small sten-
cils is needed on constructing different types of polynomials and are purely on the finite
volume framework (not like the finite difference framework specified in [7, 16] or the
nodal and cell average mixed model specified in [17, 20]). The constructions of such new
HWENO schemes are based on Hermite WENO interpolation in spatial field and then
Runge-Kutta discretization is used for the ODEs. In the new HWENO schemes, both the
cell averaged solution and its first one (in 1D) or two (in 2D) cell averaged derivatives are
evolved via time marching and used in the reconstructions and are more compact than
the original HWENO schemes [17, 20]. These schemes have high order accuracy for the
smooth regions, can obtain high resolutions for the singularities of the derivatives and
can converge to the physical viscosity solutions compactly and robustly. Extensive nu-
merical experiments are performed to illustrate the capability of these HWENO schemes.
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