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Abstract. This paper investigates the eigenmode optimization problem governed by
the scalar Helmholtz equation in continuum system in which the computed eigenmode
approaches the prescribed eigenmode in the whole domain. The first variation for the
eigenmode optimization problem is evaluated by the quadratic penalty method, the
adjoint variable method, and the formula based on sensitivity analysis. A penalty
optimization algorithm is proposed, in which the density evolution is accomplished
by introducing an artificial time term and solving an additional ordinary differential
equation. The validity of the presented algorithm is confirmed by numerical results of
the first and second eigenmode optimizations in 1D and 2D problems.
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1 Introduction

To investigate the structural dynamics characteristics of mechanical systems, the use of
modal analysis is widely applied. The modal pairs consist of eigenfrequencies and eigen-
modes are used to identify the cause of vibrational problems. By making use of the eigen-
pairs, one can evaluate the change of dynamical properties when mass and/or stiffness
is added or subtracted without changing the structure.
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The vibration control at low frequency is an important research field [25, 26]. To de-
sign devices with the specified dynamic structural optimization, various numerical opti-
mization algorithms are established with respect to the structure design variables such as
size, shape and topology [1, 8, 19, 30]. For avoidance of resonance, one effective method
is to maximize the lowest eigenfrequency to determine the shape of the vibrating mem-
brane composed of materials with different densities [6, 15, 41]. Osher and Santosa [28]
solve the model problem by the level set method [29], combining the variational level
set method [42] and the projection gradient method [31]. A monotonic algorithm [40],
based on resorting order, can efficiently deal with the eigenvalue optimizations of multi-
density materials. Another kind of eigenvalue optimization problems arises from a large
class of problems in the field of boundary control or reinforcement [5, 33]. Cox and Uh-
lig [7] analyze the existence and convergence of the eigenvalue boundary optimization,
establish the pointwise optimal condition, and test a pair of numerical methods. Zhang
and Cheng [39] propose a boundary piecewise constant level set method to parameterize
the boundary condition and convert the eigenvalue optimization problem to rely on a
parameter instead of the boundary geometry, which generalizes the classical piecewise
constant level set method [34].

Eigenmode optimization, another branch of vibration optimization problems, is of
great importance. Typical examples are mechanical resonators that are used as sensors,
oscillators, filters and actuators. In this type of resonator, the eigenmode that dominates
the shape of deformation against the external periodic load is an important design factor
in addition to the resonance frequency. One popular technique is the topology optimiza-
tion [8,19,21,23], based on homogenization theory proposed by Bendsøe and Kikuchi [2].
In this technique, the material distribution is formulated with parameters in periodic mi-
crostructures. Another currently used method is the SIMP (solid isotropic material with
penalization) method [9, 16, 18, 36]. The basic idea of SIMP is taking use of a fictitious
isotropic material whose elasticity tensor is expressed by an exponent parameter and
assumed to be a function of penalized material density. However, these topology opti-
mization methods cause numerical problems such as checkerboard patterns, grey scales
and artificial parameter dependance.

Sensitivity analysis is a fundamental tool for the optimization problems in both the
discrete form and the continuum form. For the eigenmode optimization problem, some
researchers use eigenmode sensitivity analysis of matrices, which are derived by the finite
element method (FEM) discretization of original continuum problem [10, 22, 38]. In [21],
vibrating structures with specified eigenfrequencies and eigenmode shapes are investi-
gated. Maeda et al. propose a new topology optimization method based on homoge-
nization theory and derive the sensitivity of the eigenvalue and eigenmode with respect
to design variable after FEM discretization is performed. In continuum form, to the best
of the authors’ knowledge, sensitivity analysis for eigenmode optimization problem are
reported by [17,35]. In [17], Inzarulfaisham and Azegami evaluate the shape gradient for
the boundary shape optimization problem with optimality conditions obtained by the
adjoint variable method, the Lagrange multiplier method and the formula for the mate-
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rial derivative. However, the derivative of the eigenmode optimization problem requires
higher order eigenfrequencies and eigenmodes, which imply the increasing computa-
tional cost. Takezawa and Kitamura [35] obtain the derivative of the objective functional
including the k-th eigenmode and the adjoint variable, which avoids the computation
of higher order eigenfrequencies and eigenmodes. In their numerical experiments, the
eigenmode approach the prescribed eigenmode convergently, but the optimal distribu-
tion of the design variable is a little jagged.

Taking advantage of the sensitivity analysis in the continuum form, we obtain the
derivative of the objective functional including the k-th eigenvalue and the k-th eigen-
mode and the adjoint variable, which excludes higher order eigenfrequencies and eigen-
modes. We further calculate the first variation of the k-th eigenvalue and avoid to cal-
culate the gradient of the k-th eigenmode and the adjoint variable in the derivative of
the objective functional. The quadratic penalty method [24] is applied to treat the lower
bound constraint and convert the constrained optimization problem to an unconstrained
one. The first variation of the penalty term with respect to the density function is also
calculated. The density function evolves in a dynamic way, where an artificial time term
is introduced and an ordinary differential equation (ODE) with respect to the time is con-
structed. A third-order Runge-Kutta method [12, 13] is applied to solve the ODE. Based
on the above strategies, we propose a penalty optimization algorithm. In our numeri-
cal experiments, the first and second eigenmode optimization problems in 1D and 2D
domains are considered. The penalty optimization algorithm performs effectively and
efficiently to match the target eigenmode without or with lower bound constraint. More-
over, the finial distribution of the density function is smooth.

This paper is organized as follows. In Section 2, the eigenmode optimization prob-
lem is described. The first variation of the eigenmode optimization problem is derived
in Section 3. In Section 4, we propose a penalty optimization algorithm. In Section 5,
we present the numerical results for the first two least eigenmodes optimization prob-
lems without and with constraints in 1D and 2D domains. The last section gives some
concluding remarks.

2 Problem statement

Consider the wave equation

ρ(x)
∂2U(x,t)

∂t2
=∆U(x,t), in Ω×[0,T], (2.1a)

U(x,t)=0, on ∂Ω×[0,T], (2.1b)

where Ω is a smooth, bounded and connected subset of Rn (n=1,2), ∂Ω is the boundary
of Ω and ρ(x) is the density of string or membrane with positive lower bound ρ1 and up-
per bound ρ2. Set U(x,t)=e−iωtu(x), where ω is the frequency and u(x) is the amplitude.
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Then Eqs. (2.1a) and (2.1b) are converted to the scalar Helmholtz equation

−∆u=λρu, in Ω, (2.2a)

u=0, on ∂Ω, (2.2b)

where λ is eigenvalue of −∆, satisfying λ=ω2. Using integration by parts, we have the
weak formulation

∫

Ω

∇u·∇vdx=λ
∫

Ω

ρuvdx, ∀v∈H1
0 (Ω), (2.3)

where H1
0(Ω) denotes Sobolev space of square integrable, until the first order derivative,

functions defined in Ω with zero boundary value on ∂Ω. Subsequently, the k-th least
eigenvalue λk is obtained by the Rayleigh quotient [14]

λk(ρ)=min
u∈Ak

∫

Ω
|∇u|2dx

∫

Ω
ρu2dx

, (2.4)

where

Ak =

{

u∈H1
0(Ω) :

∫

Ω

u2dx=1,
∫

Ω

uuldx=0, l=1, 2, ··· , k−1

}

(2.5)

and ul is the l-th eigenmode corresponding to the l-th eigenvalue. The minimizer in (2.4)
is the k-th eigenmode uk and the k-th least eigenvalue λk is assumed to be simple.

Given a target eigenmode ûk, one need to match the k-th eigenmode uk to the target
eigenmode while the eigenvalue λk is constrained to be greater than Λ. The eigenmode
optimization problem can be formulated as the minimization problem of the squared
error integral

min
ρ

F(ρ)=
∫

Ω

(uk−ûk)
2dx, (2.6)

such that

λk ≥Λ, (2.7a)

0<ρ1 ≤ρ(x)≤ρ2. (2.7b)

3 Sensitivity analysis

We attempt to solve the optimization problem (2.6)-(2.7) using gradient-type algorithms.
Therefore, the gradient of eigenmode optimization problem with respect to density func-
tion ρ is of practical interest. To do so, we first establish the differentiability of the k-th
eigenpair uk(ρ) and λk(ρ), the solutions to (2.2a) and (2.2b), by taking the first variation
on both sides of Eqs. (2.2a) and (2.2b) and defining the sensitivity problem:

−∆(u′
k(ρ)θ)=λ′

k(ρ)θρuk+λkθuk+λkρu′
k(ρ)θ, in Ω, (3.1a)

u′
k(ρ)θ=0, on ∂Ω, (3.1b)
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where u′
k(ρ)θ and λ′

k(ρ)θ represent the first variations of uk(ρ) and λk(ρ) with respect to ρ
in direction θ, respectively. The first variation of a functional J(y) is defined as the linear
functional J′(y) mapping the function h to

J′(y)h= lim
ε→0

J(y+εh)− J(y)

ε
,

where y and h are functions, and ε is a scalar [11]. The adjoint problem is introduced by

−∆w−λkρw=uk−ûk, in Ω, (3.2a)

w=0, on ∂Ω, (3.2b)

where w is the adjoint variable.

Using integration by parts, we have the weak formulations for (3.1a) and (3.1b)

∫

Ω

∇(u′
k(ρ)θ)∇vdx=λ′

k(ρ)θ
∫

Ω

ρukvdx+λk

∫

Ω

θukvdx

+λk

∫

Ω

ρu′
k(ρ)θvdx, ∀v∈H1

0(Ω) (3.3)

and for (3.2a) and (3.2b)

∫

Ω

∇w∇pdx−λk

∫

Ω

ρwpdx=
∫

Ω

(uk−ûk)pdx, ∀p∈H1
0(Ω). (3.4)

Set v=w in (3.3) and p=u′
k(ρ)θ in (3.4), then one can obtain

∫

Ω

(uk−ûk)u
′
k(ρ)θdx=λ′

k(ρ)θ
∫

Ω

ρukwdx+λk

∫

Ω

θukwdx. (3.5)

Again, set v=uk in (3.3) and apply the integration by parts, then we have

−
∫

Ω

u′
k(ρ)θ∆ukdx=λ′

k(ρ)θ
∫

Ω

ρu2
kdx+λk

∫

Ω

θu2
kdx+λk

∫

Ω

u′
k(ρ)θρukdx. (3.6)

Since the eigenpair (λk,uk) satisfies equation (2.2a), the left term and the third term on
the right side in (3.6) can be eliminated and (3.6) is simplified by

λ′
k(ρ)θ

∫

Ω

ρu2
kdx+λk

∫

Ω

θu2
kdx=0. (3.7)

That is,

λ′
k(ρ)θ=−

λk

∫

Ω
θu2

kdx
∫

Ω
ρu2

kdx
. (3.8)
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Substituting (3.8) into (3.5), we obtain

∫

Ω

(uk−ûk)u
′
k(ρ)θdx=−

λk

∫

Ω
θu2

kdx
∫

Ω
ρu2

kdx

∫

Ω

ρukwdx+λk

∫

Ω

θukwdx

=−λk

∫

Ω

[

∫

Ω
ρukwdx

∫

Ω
ρu2

kdx
u2

k−ukw
]

θdx. (3.9)

Taking the first variation of the objective optimization functional F(ρ) in (2.6) with respect
to ρ in direction θ and using (3.9), we obtain

F′(ρ)θ=2
∫

Ω

(uk−ûk)u
′
k(ρ)θdx

=−2λk

∫

Ω

[

∫

Ω
ρukwdx

∫

Ω
ρu2

kdx
u2

k−ukw
]

θdx. (3.10)

Thus, the derivative of F(ρ) with respect to ρ is evaluated by

F′(ρ)=−2λk

[

∫

Ω
ρukwdx

∫

Ω
ρu2

kdx
u2

k−ukw
]

. (3.11)

4 Algorithms

For the minimization problem (2.6) with constraints (2.7a) and (2.7b), one can use the
penalty method [3, 24, 32] and change the constrained optimization problem into an un-
constrained one. There are two wildly used penalty methods : the quadratic penalty
method and exact penalty method (see [24] and the references therein). In our algorithm,
we use the quadratic penalty method. To deal with the inequality constraint (2.7a), we
define the penalty function by

Q(ρ;µ)=F(ρ)+
1

µ

[

max(Λ−λk(ρ),0)
]2

, (4.1)

where µ>0 is the penalty parameter. To determine the derivative of Q(ρ;µ) with respect
to ρ, we first obtain the derivative of λk(ρ) with respect to ρ from (3.8) by

λ′
k(ρ)=−

λku2
k

∫

Ω
ρu2

kdx
. (4.2)

Combining (3.11) with (4.2), the derivative of Q(ρ;µ) with respect to ρ is calculated by

dQ(ρ;µ)

dρ
=



















−2λk

[

∫

Ω
ρukwdx

∫

Ω
ρu2

kdx
u2

k−ukw+
1

µ

(λk−Λ)u2
k

∫

Ω
ρu2

kdx

]

, λk <Λ,

−2λk

[

∫

Ω
ρukwdx

∫

Ω
ρu2

kdx
u2

k−ukw
]

, λk ≥Λ.

(4.3)
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Considering the stationary condition for (4.1), it is necessary to satisfy

dQ(ρ;µ)

dρ
=0. (4.4)

However, directly solving Eq. (4.4) is not an easy work. We introduce an artificial time
term and solve the following ordinary differential equation to the steady state [20, 34]

ρt+
dQ(ρ;µ)

dρ
=0, (4.5a)

ρ(0)=ρ0. (4.5b)

In this paper, we solve this ODE by a third-order Runge-Kutta scheme (cf. [12, 13] and
references therein):

ρ(1)=ρk−∆tk dQ

dρ
(ρk;µk), (4.6a)

ρ(2)=
3

4
ρk+

1

4
ρ(1)−

1

4
∆tk dQ

dρ
(ρ(1);µk), (4.6b)

ρk+1=
1

3
ρk+

2

3
ρ(2)−

2

3
∆tk dQ

dρ
(ρ(2);µk), (4.6c)

where ∆tk is the time step, which should be small enough to keep the iteration stability
of the scheme. It is heuristic to limit the time step to satisfy the following condition

∆tk
<h

/

max
x∈Ω

∣

∣

∣

dQ

dρ
(ρk(x);µk)

∣

∣

∣
, (4.7)

where h is the fineness of the spatial discretization (see [4, 27]). The penalty parameter
is updated adaptively, µk+1 ∈ (0,µk) (see [24]), based on the difficulty of minimizing the
penalty function at each iteration. If minimization of Q(ρ;µk) proves to be expensive for
some k, µk+1 is chosen to be only modestly smaller than µk; for instance µk+1 = 0.9µk.
When calculation of the minimizer of Q(ρ;µk) is cheap, a more ambitious reduction can
be chosen, for instance µk+1=0.1µk. In our algorithm, we set µk to be a constant.

For the constraint (2.7b), we define a project to let the density function ρ in the interval
[ρ1,ρ2], that is,

P[ρ1,ρ2]ρ=







ρ1, ρ<ρ1,
ρ, ρ1≤ρ≤ρ2,
ρ2, ρ>ρ2.

(4.8)

Now, the penalty optimization algorithm is presented as follows.

Algorithm 4.1. Initialize ρ0 in the whole domain. The constants ρ1, ρ2, Λ, µ and ûk are given.

Do for m=0,1,2,···
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STEP 1. Compute
(

λm
k ,um

k

)

by (2.2a) with boundary condition (2.2b).

STEP 2. Compute wm, the solution of adjoint problem (3.2a) and (3.2b) with λm
k , um

k and ρm.

STEP 3. Compute ρ∗, the solution of (4.5a) and (4.5b) with ρ(0)=ρm, by the third-order Runge-
Kutta scheme in (4.6a)-(4.6c).

STEP 4. Update ρm+1 by the projection defined in (4.8)

ρm+1=P[ρ1,ρ2]ρ
∗.

STEP 5. Check the convergence, if convergence, stop. Otherwise, m=m+1 and go to STEP 1.

Remark 4.1. In STEP 3, we use the third-order Runge-Kutta scheme in (4.6a)-(4.6c). For
the condition (4.7), we set the time step

∆tk =αh
/

max
x∈Ω

∣

∣

∣

dQ

dρ
(ρk(x);µ)

∣

∣

∣
, α∈ (0,1).

5 Numerical results

In this section, we present some numerical results on experiments of penalty optimiza-
tion algorithm for the eigenmode optimization problem (2.6)-(2.7) in both 1D and 2D do-
mains. We consider the 1D domain Ω=[0,1] and partition it by 100 line elements. In 2D
model, the domain is a rectangle, that is, Ω=[0,1]×[0,0.8] and we partition it by 50×40
square elements. To solve Helmholtz equation (2.2a) and (2.2b), we use finite element
method with piecewise linear bases. The penalty optimization algorithm runs in MAT-
LAB codes conducted by ourselves and the discretized Helmholtz equation is solved by
the eigs function found in MATLAB [37].

For the 1D problem, the target eigenmodes are set to be the following two cases: For
the first eigenmode optimization problem

û1=0.8304×ex sin(πx), 0≤ x≤1; (5.1)

For the second eigenmode optimization problem

û2=

{

0.8304×e2x sin(2πx), 0≤ x<0.5,
0.8304×e2−2x sin(2πx), 0.5≤ x≤1.

(5.2)

For the 2D problem, the target eigenmodes are set to be the following two cases: For the
first eigenmode optimization problem

û1=0.8619×exey sin(πx)sin(1.25πy), 0≤ x≤1, 0≤y≤0.8; (5.3)

For the second eigenmode optimization problem

û2=

{

1.3129×e2x sin(2πx)sin(1.25πy), 0≤ x<0.5, 0≤y≤0.8,
1.3129×e2−2x sin(2πx)sin(1.25πy), 0.5≤ x≤1, 0≤y≤0.8.

(5.4)

The coefficients are added to normalize ûk, that is,
∫

Ω
û2

kdx= 1, k= 1, 2. These functions
are plotted in Fig. 1. In all our numerical examples, we set ρ1=1 and ρ2=10.



784 Z. Zhang, W. Chen and X. Cheng / Commun. Comput. Phys., 15 (2014), pp. 776-796

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

 

 

û1
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Figure 1: The target eigenmodes. (a) The first eigenmode û1 and the second eigenmode û2 in 1D problem.
(b) The first eigenmode û1 in 2D problem. (c) The second eigenmode û2 in 2D problem.

5.1 Examples without lower bound Λ

We first study the numerical examples for the first and second eigenmodes matching
problems in 1D and 2D domains without lower bound Λ. Therefore, the penalty terms
in (4.1) and (4.3) are omitted. Algorithm 4.1 is adjusted accordingly.

Fig. 2 illustrates the evolution of density distribution and comparison of the com-
puted first eigenmode with the target first eigenmode in initial state and after 50, 100,
200, 500, 1000 iterations. Starting from the initial density distribution ρ0=2, as shown in
Fig. 2(a), the first eigenmode has a great deviation from the target eigenmode. As itera-
tions process, density distribution varies according to the shape of the target eigenmode.
Higher density materials are distributed in right-side interval (0.6,1). After 1000 iter-
ations, as illustrated in Fig. 2(f), the optimal eigenmode u1 (solid curve) achieves good
approximation to the target eigenmode û1 (dash curve). The iteration history of the objec-
tive functional F(ρ) and the squared error integral of the first eigenmode u1 and the target
eigenmode û1 are plotted in Fig. 3. The evolution of the least eigenvalue λ1 is shown in
Fig. 3 as well. We obtain the optimal F(ρ)= 4.9316E-4 and λ1 = 4.1971. Compared with
the numerical results in [35], where the optimal F(ρ)= 3.524E-3 and λ1 = 4.535 with the
same mesh size, the penalty optimization algorithm obtains 7 times smaller minimized
functional F(ρ). Thus, it is 7 times closer to the target first eigenmode for the optimal
computed first eigenmode by the penalty optimization algorithm than by the method
in [35]. Moreover, the distribution of the density ρ by the penalty optimization algorithm
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Figure 2: The evolution profiles of density distribution and the first eigenmode distribution in 1D problem.
(a) The initial density distribution (left) and the first eigenmodes (right), where the solid curve is the first
eigenmode u1 and the dash curve is the target eigenmode û1. (b)-(f) are density distributions (left) and the
first eigenmodes (right) after 50, 100, 200, 500 and 1000 iterations.
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Figure 3: The iteration histories of the objective functional F(ρ) and the first eigenvalue λ1 in 1D problem,
corresponding to evolutions of the density distribution in Fig. 2.

is smoother than the distribution of c, the reciprocal of the density (see Fig. 7(a) in [35]).

Another initial density distribution is conceived and illustrated in Fig. 4(a). That is,

ρ0(x)=

{

4, 0.2≤ x≤0.4,
1, 0≤ x<0.2, 0.4< x≤1.

(5.5)
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Figure 4: The evolution profiles of density distribution and the first eigenmode distribution in 1D problem.
(a) The initial density distribution (left) and the first eigenmodes (right), where the solid curve is the first
eigenmode u1 and the dash curve is the target eigenmode û1. (b)-(f) are density distributions (left) and the
first eigenmodes (right) after 50, 100, 200, 500 and 1000 iterations.
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Figure 5: The iteration histories of the objective functional F(ρ) and the first eigenvalue λ1 in 1D problem,
corresponding to evolutions of the density distribution in Fig. 4.

The high density materials are distributed in the left-side interval [0.2,0.4], which is op-
posite to the optimal density distribution as shown in Fig. 2(f). Therefore, the computed
first eigenmode u1 has more deviation from the target eigenmode û1 than the first case
as illustrated in Fig. 2(a). The evolutions of the density distribution and the first eigen-
mode u1 are shown in Fig. 4, after 50, 100, 200, 500 and 1000 iterations. The density in
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Figure 6: The evolution profiles of density distribution and the second eigenmode distribution in 1D problem.
(a) The initial density distribution (left) and the second eigenmodes (right), where the solid curve is the second
eigenmode u2 and the dash curve is the target eigenmode û2. (b)-(f) are density distributions (left) and the
second eigenmodes (right) after 50, 100, 200, 500 and 1000 iterations.
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Figure 7: The iteration histories of the objective functional F(ρ) and the second eigenvalue λ2 in 1D problem.

the left-side interval [0.2,0.4] is cutting down, while in the right-side interval [0.4,0.9], the
density is enlarging. The computed first eigenmode u1 is increasingly close to the target
first eigenmode û1. The optimal F(ρ) = 5.5651E-4 and λ1 = 4.1975 after 1000 iterations,
which are in accord with the optimal results of the first density initialization. Fig. 5 illus-
trates the iteration histories of the objective functional F(ρ) and the first eigenvalue λ1

corresponding to evolutions of the density distribution in Fig. 4.
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With different initial density distributions, however, the penalty optimization algo-
rithm obtains the similar optimal density distribution except for the subdomains close to
both ends. The density differences at both ends are caused by the homogenous Dirichlet
boundary condition (2.2b), which makes the derivatives in (4.3) become zero and keeps
the density function fixed at both ends. However, these little differences do not affect
the convergence of the computed eigenmode to the target eigenmode. Therefore, the ini-
tial density is uniformly ρ0 = 2 in the following numerical examples, unless otherwise
specified.

For the second eigenmode optimization in 1D problem, the penalty optimization al-
gorithm also performs successfully. The evolution profiles of density distribution and the
second eigenmode distribution are illustrated in Fig. 6. Fig. 7 illustrates the evolution of
the objective functional F(ρ) and the second least eigenvalue λ2. After 1000 iterations, we
obtain the optimal objective functional F(ρ)=4.5694E-4 and the second least eigenvalue
λ2=16.4333, corresponding to the density distribution and eigenmode shown in Fig. 6(f).

For 2D optimization problems, the density and eigenmode distribution vary similarly
to the 1D optimization problems. In Fig. 8, the evolution profiles of density distribution
and the first eigenmode distribution are illustrated. According to the shape of the target
eigenmode shown in Fig. 1(b), higher density materials are concentrated in the upper
right corner of the rectangle (see Fig. 8(f)). The iteration histories of objective functional

(a) iteration=0 (b) iteration=50

(c) iteration=100 (d) iteration=200

(e) iteration=500 (f) iteration=1000

Figure 8: The evolution profiles of density distribution and the first eigenmode distribution in 2D problem. (a)
The initial density distribution (left) and the initial first eigenmode (right). (b)-(f) are density distributions
(left) and the first eigenmode distributions (right) after 50, 100, 200, 500 and 1000 iterations.
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Figure 9: The iteration histories of the objective functional F(ρ) and the first eigenvalue λ1 in 2D problem.

F(ρ) and the first eigenvalue λ1 in 2D problem are shown in Fig. 9. The optimal objective
functional F(ρ) = 1.0056E-4, which is 78 times smaller than the optimal objective func-
tional F(ρ)=7.905E-3 in [35]. The final first eigenvalue λ1=10.6807, a little smaller than
the optimal first eigenvalue λ1 =12.055 in [35]. The results of the second eigenmode op-
timization problem are shown in Fig. 10 and Fig. 11 with the optimal objective functional
F(ρ)=1.0821E-3 and λ2=28.7245.

(a) iteration=0 (b) iteration=50

(c) iteration=100 (d) iteration=200

(e) iteration=500 (f) iteration=1000

Figure 10: The evolution profiles of density distribution and the second eigenmode distribution in 2D problem.
(a) The initial density distribution (left) and the initial second eigenmode (right). (b)-(f) are density distributions
(left) and the second eigenmode distributions (right) after 50, 100, 200, 500 and 1000 iterations.
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Figure 11: The iteration histories of the objective functional F(ρ) and the second eigenvalue λ2 in 2D problem.

5.2 Examples with lower bound Λ

In this section, we set lower bounds for eigenvalues. We investigate the first eigenmode
matching problem in 1D and 2D under the constraint that the first eigenvalue should be
larger than a given number Λ. The lower bounds of the first eigenvalue are chosen as
5, 6, 7, 8 for 1D problem and 14, 16, 18, 20 for 2D problem. The penalty parameters are
set to be µ=0.01 in 1D problem and µ=0.1 in 2D problem.

Fig. 12 illustrates the optimal results for first eigenmode optimization in 1D problem
with lower bounds 5, 6, 7 and 8. One can observe that the larger the value of the lower
bound is, the more deviation from the target eigenmode the optimal eigenmode has (see
Fig. 12(b), (d), (f), (h)). Moreover, to have a larger eigenvalue, the string must be as light
as possible. The increase of the density is weakened because the lower bound becoming
larger (see Fig. 12(a), (c), (e), (g)). Compared with the jagged distribution of c (see Fig. 11)
in [35], the reciprocal of the density, the penalty optimization algorithm obtains quite
smooth distributions of the optimal density ρ under the lower bound constraints for the
least eigenvalue.

In Table 1, the optimal objective functional F(ρ) and the least eigenvalue λ1 are listed,
for the first eigenmode optimization in 1D problem without or with lower bound con-

Table 1: Comparisons of penalty optimization algorithm (POA) and method in [35] for the first eigenmode
optimization in 1D problem with 100 elements.

POA method in [35]

Λ F(ρ) λ1 F(ρ) λ1

None 4.9316E−4 4.1971 3.524E−3 4.535

5 7.3989E−4 5.0064 null null

6 1.4330E−3 6.0462 4.931E−3 6.314

7 3.0823E−3 7.0109 1.035E−2 7.033

8 7.5381E−3 8.0131 2.600E−2 7.981
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û1

u1

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

x

ρ

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x
 

 

û1

u1

(c) (d)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

x

ρ

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x
 

 

û1
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Figure 12: Optimal results for the first eigenmode optimization in 1D problem. (a), (c), (e), (g) Optimal
distributions of density ρ with lower bound 5, 6, 7 and 8. (b), (d), (f), (h) Comparisons of optimal eigenmode
u1 and target eigenmode û1 with lower bound 5, 6, 7 and 8.
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straints 5, 6, 7 and 8. The inequality constraints on the first eigenvalue are successfully
satisfied, as shown in Table 1. However, the optimal objective functional F(ρ) becomes
larger because the constraint leads to a smaller solution space. The same phenomenon is
illustrated in [35]. As listed in Table 1, the penalty optimization algorithm obtains almost
3.5 times smaller optimal objective functional F(ρ) than the method in [35], satisfying the
lower bound constraint for the least eigenvalue. Furthermore, the optimal least eigenval-
ues λ1 are closer to their lower bounds by the penalty optimization algorithm than by the
method in [35], to obtain a more minimized objective functional F(ρ).

The numerical results of the first eigenmode optimization problem in 2D domain un-
der lower bound constraint are shown in Fig. 13 and Table 2. In Fig. 13, lower density
materials are distributed in the upper right corner of the rectangle domain as the lower
bound increasing. The deviation of the optimal eigenmode u1 from the target eigenmode
û1 is observed by comparing the eigenmode distribution in Fig. 13(b), (d), (f), (h) and in
Fig. 1(b). Compared with the optimal distribution of c in [35] (see Fig. 12), the penalty op-
timization algorithm obtains smoother optimal distribution of density. The quantitative
comparisons of the penalty optimization algorithm and the method in [35] are illustrated
in Table 2. Although the lower bound constraints 14, 16, 18 and 20 are satisfied, the op-
timal objective functional F(ρ) is becoming larger when the lower bound is increasing.
The penalty optimization algorithm obtains 25, 15, 9, 8 times smaller optimal objective
functional F(ρ) than the method in [35], under the lower bound constraints 14, 16, 18, 20,
respectively.

Table 2: Comparisons of penalty optimization algorithm (POA) and method in [35] for the first eigenmode
optimization in 2D problem with 40×50 elements.

POA method in [35]

Λ F(ρ) λ1 F(ρ) λ1

None 1.0056E−4 10.6807 7.905E−3 12.055

14 3.1487E−4 14.0815 7.912E−3 14.860

16 6.6264E−4 16.0122 9.633E−3 16.047

18 1.7069E−3 18.0567 1.572E−2 18.000

20 4.3957E−3 19.9882 3.455E−2 20.000

Our numerical tests are performed in Matlab 7.11.0 (R2010b) environment on a desk-
top PC equipped with Intel Core i5-2320 CPU at 3.00GHz and 8 GB of RAM memory. The
total CPU times (in seconds) for eigenmode optimization in 1D and 2D problems without
or with constraints are shown in Table 3. The total 1000 iterations of penalty optimiza-
tion algorithm cost CPU time of around 42 seconds for the first and second eigenmode
optimization in 1D problems with 100 elements. In 2D eigenmode optimization prob-
lems with 40×50 elements, the total 1000 iterations of penalty optimization algorithm
cost CPU time of around 304 seconds. Furthermore, the optimization problems with con-
straints take a little more CPU times than the unconstrained ones in 1D and 2D problems.
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Figure 13: Optimal results for the first eigenmode optimization in 2D problem. (a), (c), (e), (g) Optimal
distributions of density ρ with lower bound 14, 16, 18 and 20. (b), (d), (f), (h) Optimal distributions of first
eigenmode u1 with lower bound 14, 16, 18 and 20.
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Table 3: The total CPU times (in seconds) for eigenmode optimization in 1D and 2D problems.

1D 2D

eigenmode optimization Λ CPU time (s) Λ CPU time (s)

None 41.454 None 303.470

5 42.122 14 303.345

min
∫

Ω
(u1−û1)

2dx 6 41.955 16 303.072

7 42.138 18 304.791

8 42.169 20 306.175

min
∫

Ω
(u2−û2)

2dx None 42.721 None 304.352

6 Conclusion

This paper presents a penalty optimization algorithm for solving the eigenmode opti-
mization problem in which the eigenmode shape approaches the prescribed eigenmode
shape while the eigenvalue is constrained to be greater than Λ. We derive the first vari-
ation of the eigenvalue and eigenmode with respect to the density function. Thus the
derivative of the objective functional is obtained, which is including current eigenvalue
and eigenmode and adjoint variable. We avoid the calculation of the gradient of the
current eigenmode and adjoint variable, and exclude the higher order eigenfrequencies
and eigenmodes in the derivative of the eigenmode optimization problem. For the den-
sity evolution, we introduce an artificial time term and solve an ODE by a third-order
Runge-Kutta scheme. The scalar Helmholtz equation and the adjoint problem are solved
by finite element method. The first two eigenmodes matching problems in 1D and 2D
domains are considered in numerical experiments. We observe that penalty optimization
algorithm is effective to minimize the objective functional without or with lower bound
constraint and the optimal density distribution is smooth. Since the penalty optimiza-
tion algorithm is not restricted to 1D and 2D cases, it can be extended to 3D case. In
addition, we expect the penalty optimization algorithm and sensitivity analysis to solve
eigenmode optimization problems governed by vector Helmholtz equation.
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