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Abstract. This paper investigates the chaotic lid-driven square cavity flows at ex-
treme Reynolds numbers. Several observations have been made from this study.
Firstly, at extreme Reynolds numbers two principles add at the genesis of tiny, loose
counterclockwise- or clockwise-rotating eddies. One concerns the arousing of them
owing to the influence of the clockwise- or counterclockwise currents nearby; the other,
the arousing of counterclockwise-rotating eddies near attached to the moving (lid) top
wall which moves from left to right. Secondly, unexpectedly, the kinetic energy soon
reaches the qualitative temporal limit’s pace, fluctuating briskly, randomly inside the
total kinetic energy range, fluctuations which concentrate on two distinct fragments:
one on its upper side, the upper fragment, the other on its lower side, the lower frag-
ment, switching briskly, randomly from each other; and further on many small frag-
ments arousing randomly within both, switching briskly, randomly from one another.
As the Reynolds number Re→∞, both distance and then close, and the kinetic energy
fluctuates shorter and shorter at the upper fragment and longer and longer at the lower
fragment, displaying tall high spikes which enlarge and then disappear. As the time
t → ∞ (at the Reynolds number Re fixed) they recur from time to time with roughly
the same amplitude. For the most part, at the upper fragment the leading eddy rotates
clockwise, and at the lower fragment, in stark contrast, it rotates counterclockwise. At
Re=109 the leading eddy — at its qualitative temporal limit’s pace — appears to rotate
solely counterclockwise.

AMS subject classifications: 76D99, 35Q30, 37N10
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1 Introduction

As the Reynolds number Re→∞ the temporal limit [13, p. 659] (at the Reynolds number
Re fixed and as the time t→∞) of the lid-driven square cavity flow evolves from station-
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ary to periodic and then to aperiodic, which means simply that it has definitely lost but
still resembles somewhat periodicity. Yet afterwards, it definitely looses aperiodicity and
becomes chaotic.

Specifically, for Re≤ 7,307.75, it is stationary; for 7,308≤Re≤ 13,393.5, periodic; for
13,393.75 ≤Re≤ 200,000, aperiodic. Yet afterwards, at Re= 500,000, it is chaotic. So it
switches from stationary to periodic somewhere between Re= 7,307.75 and Re= 7,308;
from periodic to aperiodic, somewhere between Re= 13,393.5 and Re= 13,393.75 [26];
from aperiodic to chaotic, somewhere between Re=200,000 and Re=500,000 [27].

Throughout, the moving (lid) top wall moves from left to right. And until Re=200,000
the leading eddy rotates solely clockwise. But at Re=500,000 it rotates sometimes clock-
wise and at other times counterclockwise, mostly equally, a competition for becoming the
leading eddy taking place before switching from each other [27].

A combination of known methods [25] is used to discretize and solve the Navier-
Stokes equations: the linear Linθ

∗-scheme [44] (a variant of the nonlinear θ-scheme [30],
[23, p. 460]), an orthogonal projection algorithm [38], the Conjugate Gradient method [12],
the Bi-CGSTAB method [50], the Fast Fourier Transform method [18,47,48], SuperLU [14]
— and the incremental unknowns method [4–11, 19–28, 31, 37, 45, 46, 49] as a spatial pre-
conditioner. The linear Linθ

∗-scheme is used for the temporal discretization — ∆t is the
time step — and a staggered marker-and-cell (MAC) mesh with finite-differences [32] is
used for the spatial discretization — h= 1/256= 0.00390625 is the spatial mesh size. At
each temporal iteration two generalized Stokes equations and two linear elliptic equa-
tions with variable coefficients must be solved.

Yet, how the temporal limit behaves for extreme Reynolds numbers — has it been
definitely reached — and what is the time needed to reach it?

To gain insight on these questions, let us consider the extreme cases Re=106, 108, 5·
108, 109. As before [26, 27], a Direct Numerical Simulation (DNS) which runs from t= 0
to a sufficiently long time t∞ simulates the flow, and then direct observations of it for the
most part past the time t∞ are at the core of the temporal limit’s study. At Re=106 as at
Re=500,000 the time step ∆t=2h=0.0078125 and t∞=150,000, a DNS involving a total of
19,200,000 temporal iterations. But at Re=108, 5·108, 109 the time step must be reduced to
∆t=h=0.00390625, and then because of computational costs, t∞ is reduced sometimes to
t∞ =50,000, a DNS involving a total of 12,800,000 temporal iterations. At each Reynolds
number two DNS are conducted: (1) fluid starting from data and (2) fluid starting from
rest. For fluid starting from data the initial condition is the numerical solution computed
at some time at a prior Reynolds number.

At extreme Reynolds numbers the flow is difficult to study mainly for two reasons.
First, for the leading eddy to switch from rotating counterclockwise to clockwise, the
DNS ought to run for a sufficiently long time interval, the switching occurring some-
where in between. But to determine what triggers the switching, it must be restarted
shortly before the switching and therefore run for a short time interval, highly likely
missing the switching. Second, all the restartings coincide at the beginning for a short
while, then progressively differ for a short while — and afterwards significantly differ,
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Re = 500,000

Figure 1: Kinetic energy from t=146,093.75 to t∞ =150,000.

making hard to retrieve any former simulation. At Re= 500,000 see Fig. 1 for several
restartings from t=146,093.75 to t∞ =150,000, each involving a total of 500,000 temporal
iterations; they coincide roughly from t= 146,093.75 to t= 146,117.25, each involving a
total of 3,000 temporal iterations.

Notwithstanding, the DNS’s allow to understand distinctive features of the flow.
In the first place, at extreme Reynolds numbers two principles add at the genesis of

tiny, loose counterclockwise- or clockwise-rotating eddies (cf. [27, p. 1741]):

Third principle The currents nearby within a clockwise- or counterclockwise-rotating
eddy eventually may create a bend which may then influence the globally clockwise-
or counterclockwise-rotating fluid inside the bend to whirl locally counterclockwise
or clockwise, a whirling which may further arouse deeper inside the bend a tiny,
loose counterclockwise- or clockwise-rotating eddy.

Fourth principle A strong, still clockwise-rotating eddy attached to the moving (lid) top
wall leaves it somewhere to turn away from it, arousing closely rightward, within
itself, near attached to the moving (lid) top wall, a tiny, loose counterclockwise-
rotating eddy — perhaps stirring this up.

Fig. 2 illustrates the third principle. The fluid surrounding the circle rotates clock-
wise (black streamlines). This includes two clockwise-rotating Bézier curves parts of two
clockwise-rotating eddies surfacing within a widespread clockwise-rotating eddy and a
clockwise-rotating bend created between both. Nevertheless, the currents nearby influ-
ence the fluid at and within the circle to whirl locally counterclockwise, giving rise to a
tiny, loose counterclockwise-rotating eddy (light-gray streamline). This principle flashes
out already at Re=30,000 [26, p. 564].

Fig. 3, the fourth. A clockwise-rotating eddy attached to the moving (lid) top wall,
a clockwise-rotating Bézier curve (black streamline) part of this, leaves it somewhere to
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Figure 2: Streamlines for a Third principle’s illustration.

Figure 3: Streamlines for a Fourth principle’s illustration.

turn away from it, arousing closely rightward, within itself, near attached to the moving
(lid) top wall, a tiny, loose counterclockwise-rotating eddy (light-gray streamline). This
principle resembles the First principle [27, p. 1741] but for a moving wall.

In the second place, unexpectedly, for fluid starting from data or from rest, from t=0
to t=t∞, the kinetic energy soon reaches the qualitative temporal limit’s pace, fluctuating
briskly, randomly inside the total kinetic energy range, fluctuations which concentrate
on two distinct fragments: one on its upper side, the upper fragment, the other on its
lower side, the lower fragment, switching briskly, randomly from each other; and further
on many small fragments arousing randomly within both, switching briskly, randomly
from one another.

When the kinetic energy’s lines for fluid starting from rest and from data display
together, a bold one means fluid starting from rest; a light one, fluid starting from data.

At Re=500,000 both fragments, scarcely its upper half and its lower half, barely over-



600 S. Garcia / Commun. Comput. Phys., 15 (2014), pp. 596-617

Re = 106

Re = 500,000

Figure 4: Kinetic energy from t=0 to t∞ =150,000.

lap, and the kinetic energy remains mostly equally at both (see Fig. 4). As the Reynolds
number Re→∞, both distance and then close, and the kinetic energy fluctuates shorter
and shorter at the upper fragment and longer and longer at the lower fragment, display-
ing tall high spikes which enlarge and then disappear. As the time t→∞ (at the Reynolds
number Re fixed) they recur from time to time with roughly the same amplitude.

For the most part, at the upper fragment the leading eddy rotates clockwise, and at
the lower fragment, in stark contrast, it rotates counterclockwise. For the kinetic energy
to switch from the lower fragment to the upper fragment and conversely, it must then
switch direction of rotation, switchings which occur from clockwise to counterclockwise
at the lower side of the upper fragment and from counterclockwise to clockwise at the
upper side of the lower fragment.

At Re=109 the leading eddy — at its qualitative temporal limit’s pace — appears to
rotate solely counterclockwise.

Yet, are the chaotic temporal limits distorted by the inherent numerical errors arising
from the use of a coarse spatial mesh size such as h=1/256=0.00390625 or a coarse time
step such as ∆t=2h=0.0078125 or ∆t=h=0.00390625?

First of all, let us observe that the chaotic temporal limits are sensitive to the variations
of the extreme Reynolds numbers, sensitivity detected by the variations of the tall high
spikes displayed by the kinetic energy.



S. Garcia / Commun. Comput. Phys., 15 (2014), pp. 596-617 601

Second, the effect of the spatial-mesh-size or time-step refining has been assessed for
stationary and periodic temporal limits [26]. Roughly, the conclusion is that the inherent
numerical errors arising from the use of a coarse spatial mesh size or a coarse time step
add to the Reynolds number. That is, the solution computed at a Reynolds number with
a coarse mesh size or a coarse time step predicts the one computed at a greater Reynolds
number with a finer mesh size or a finer time step. These computational experiments
hint at the persistence of the chaotic temporal limit’s qualitative behavior throughout the
spatial-mesh-size or time-step refining, computational experiments out of reach, how-
ever, for chaotic temporal limits because of computational costs.

Finally, it is not certain that the flow described actually represents the flow at the
Reynolds numbers Re=106, 108, 5·108, 109, but still appears an interesting dynamic to-
tally different from the dynamic observed [25–27] at Reynolds numbers consistent with
the spatial mesh size

(

Re=O( 1
h2 )

)

.

The lid-driven square cavity flow — an almost fictitious flow [42] — has already been
solved many times at many Reynolds numbers by many techniques [1–3,16,17,23,25–27,
29, 31, 34, 35, 39, 51], yet DNS’s at extreme Reynolds numbers appear scarce [4] — if not
absent.

This article is organized as follows. Section 2 deals with flows at extreme Reynolds
numbers: Re=106, 108, 5·108, 109. And Section 3 summarizes the main points.

2 Flows at extreme Reynolds numbers

First, let us consider the case Re=106; and then, together, the cases Re=108, 5·108, 109.

2.1 The case Re=106

At Re=106, for fluid starting from data and from rest, from t=0 to t∞=150,000, the kinetic
energy’s behavior resembles somewhat the corresponding one at Re=500,000 (see Fig. 4).

The differences. The lower fragment and the upper fragment distance: the lower frag-
ment settles down at the bottom; the upper fragment, up at the top. The kinetic energy
switches briskly, randomly from each other, and fluctuates less at the upper fragment and
more at the lower fragment, displaying tall high spikes which recur from time to time.

The similarities. For fluid starting from data and from rest, qualitatively the kinetic
energy soon fluctuates similarly.

Next, let us see how the kinetic energy’s fluctuations relate to the leading eddy’s
switching direction of rotation.

The kinetic energy increasing towards a tall high spike at the upper fragment, the
leading eddy — a widespread eddy attached somewhat to all walls — rotates clockwise.

Wide counterclockwise-rotating eddies loop clockwise. After a while, one stays put
for a while at the top right corner. And then, one standing out at the top left corner
catches this up. Afterwards, one merges downwards and leftwards with the amalgam,
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forming out a widespread counterclockwise-rotating amalgam stretching out from the
left wall’s downside to the left wall’s upside and from there to the right wall’s upside. It
is attached to the left wall nearly two-thirds and to the right wall somewhat a little bit
below the top right corner. Surrounding it downwards, stands out a strong clockwise-
rotating eddy which stretches out from most of the bottom wall to part of the left wall
and to a great extent of the right wall, filling out nearly one-half of the square cavity. As
a whole, it moves upwards and leftwards, detaches from the right wall, and then moves
further upwards, diminishes, and again attaches to the right wall. Yet, it is caught up
upwards the bottom left corner by one which has stood out for a while at the bottom left
corner, forming out again a widespread counterclockwise-rotating amalgam stretching
out from the bottom left corner to the top left corner and from there to the top right
corner. Surrounding it downwards and rightwards, stands out a clockwise-rotating eddy,
strong, attached to the bottom wall and to the right wall filling out a little bit more than
one-fourth of the square cavity: the leading eddy — staying put.

The widespread counterclockwise-rotating amalgam widens further. Just before the
kinetic energy reaches the top of the tall high spike, it becomes — for an instant — the
leading eddy. The former leading eddy, clockwise-rotating, moves upwards, detaching
it from the right wall. And then it diminishes. When the kinetic energy is at the top
of the tall high spike, the leading eddy rotates clockwise again and continues so, the
kinetic energy diminishing towards a low spike at the downside of the upper fragment.
Meanwhile, it merges and splits everywhere. Just before the kinetic energy reaches the
bottom of the low spike, it attains its maximum. When the kinetic energy is at the bottom
of the low spike, the leading eddy rotates counterclockwise. And then the kinetic energy
remains at the downside of the upper fragment, fluctuating briskly, randomly, the leading
eddy rotating alternatively counterclockwise or clockwise for a while.

For the most part, at the lower fragment the leading eddy rotates counterclockwise.

Next, let us see occurrences of the Third and Fourth principles.

In the first place, a bend may occur at the border of dissimilarly rotating eddies, be-
tween two or several similarly rotating eddies, in the wake of a counterclockwise- or
clockwise-rotating eddy looping clockwise or counterclockwise, providing occurrences
of the Third principle. Five instances display below.

First, a bend at the border of dissimilarly rotating eddies at the bottom left corner
(see Fig. 5). A small counterclockwise-rotating eddy and another to its right, both at-
tached to the bottom wall a little bit to the right of the bottom left corner, glide towards
the bottom left corner. The latter merges with the former as this reaches the bottom left
corner, forming out a small counterclockwise-rotating amalgam at the bottom left cor-
ner which arouses a tiny clockwise-rotating eddy exactly at the bottom left corner. A
wide counterclockwise-rotating eddy looping clockwise reaches the bottom left corner,
merges with the amalgam, and then merges with a small counterclockwise-rotating eddy
attached to the left wall a little bit below the center of the left wall, enclosing just below
this a small clockwise-rotating eddy attached to the left wall which detaches from the
left wall and — dwindling — loops counterclockwise within it, its remnant soon vanish-



S. Garcia / Commun. Comput. Phys., 15 (2014), pp. 596-617 603

Figure 5: A Third principle’s occurrence at the bottom left corner. Re=106.

ing. While moving upwards, it arouses a tiny clockwise-rotating eddy attached to the
left wall a little bit above the bottom left corner. The tiny clockwise-rotating eddy ex-
actly at the bottom left corner and this merge along the left wall, and then the amalgam
grows further upwards along the left wall. Reaching the tiny clockwise-rotating eddy
exactly at the bottom left corner, the surrounding counterclockwise-rotating fluid mov-
ing downwards progressively deviates horizontally rightwards and briskly turns down-
wards and leftwards, creating a bend which then arouses deeper inside the bend a tiny,
loose clockwise-rotating eddy. Afterwards, this merges with the tiny clockwise-rotating
eddy exactly at the bottom left corner, and then the amalgam merges rightwards with the
widespread clockwise-rotating leading eddy, detaching it from the bottom wall. Yet, as it
raises further upwards, the remnant before suddenly surfaces within it and soon merges
rightwards with the widespread clockwise-rotating leading eddy.

Second, a bend at the border of dissimilarly rotating eddies at the bottom right
corner (see Fig. 6). A small counterclockwise-rotating eddy stands out at the bot-
tom right corner, arousing exactly at the bottom right corner a tiny clockwise-rotating
eddy. A tiny counterclockwise-rotating eddy arouses attached to the right wall a lit-
tle bit above the bottom right corner, grows, glides downwards attached to the right
wall, and merges with the small counterclockwise-rotating eddy at the bottom right
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Figure 6: A Third principle’s occurrence at the bottom right corner. Re=106.

corner, forming out a small counterclockwise-rotating amalgam at the bottom right cor-
ner. A wide counterclockwise-rotating eddy looping clockwise reaches the bottom right
corner and merges with the amalgam, forming out a wide counterclockwise-rotating
amalgam looping clockwise. Reaching the tiny clockwise-rotating eddy exactly at the
bottom right corner, the surrounding counterclockwise-rotating fluid moving obliquely
upwards deviates slightly further upwards and then turns slightly downwards, cre-
ating a bend which slowly loops counterclockwise. The globally counterclockwise-
rotating fluid inside the bend whirls locally clockwise and then merges with the globally
counterclockwise-rotating fluid at the bend, creating a sharper bend which then arouses
deeper inside the bend a tiny, loose clockwise-rotating eddy. Shortly after, this merges
with the tiny clockwise-rotating eddy exactly at the bottom right corner. As the wide
counterclockwise-rotating amalgam looping clockwise leaves the bottom right corner,
the small clockwise-rotating amalgam stands out for a while at the bottom right corner.

Third, a bend between two counterclockwise-rotating eddies at the right wall’s lower
half (see Fig. 7). A wide clockwise-rotating eddy occupying nearly one-fourth of the
square cavity stands out attached to the moving (lid) top wall towards the top right cor-
ner, surrounded by a widespread counterclockwise-rotating eddy. A small one stands
out attached to the bottom wall towards the bottom right corner. Both merge towards
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Figure 7: A Third principle’s occurrence at the right wall’s lower half. Re=106.

the right wall’s mid-height. From there to the bottom wall, a wide counterclockwise-
rotating strip stands out attached to the right wall. A drop detaches from the strip’s up-
side. Within the strip just below the drop, vertically, two small counterclockwise-rotating
eddies form out. Between them, on their far side towards the right wall, the one be-
low makes the fluid nearby to turn leftwards; yet, the one above makes it to turn right-
wards, creating a bend between them which arouses deeper inside the bend a tiny, loose
clockwise-rotating eddy. Shortly after, this attaches to the right wall and then merges left-
wards with the surrounding widespread clockwise-rotating eddy. Attached to the right
wall, the one above detaches from the strip.

Fourth, a bend between several clockwise-rotating eddies at the top left corner (see
Fig. 8). Several small clockwise-rotating eddies merge towards the top left corner, form-
ing out a wide clockwise-rotating amalgam which stands out for a while attached to the
left wall a little bit below the top left corner. Several small clockwise-rotating eddies form
out within the amalgam. On its right side forms out a long one with two small ones sur-
facing vertically within. The one above is weak; the one below, strong. On its left side
form out vertically two small clockwise-rotating eddies equally strong but weaker than
the stronger one and stronger than weaker one on its right side. Towards the center of
the amalgam: on its right side, the strong clockwise-rotating eddy below makes the fluid
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Figure 8: A Third principle’s occurrence at the top left corner. Re=106.

nearby to turn upwards, but then its influence withers, and the one above, tame, do not
sway it anywhere; on its left side, meanwhile, the small clockwise-rotating eddy above
makes it to turn leftwards, and the one below, to turn downwards, creating a bend which
arouses deeper inside the bend a tiny, loose counterclockwise-rotating eddy. Shortly af-
ter, this merges upwards and then rightwards with the surrounding counterclockwise-
rotating fluid, detaching a drop from the amalgam. Finally, the amalgam burst out alto-
gether.

And fifth, a bend in the wake of a counterclockwise-rotating eddy looping clockwise
at the top right corner (see Fig. 9). A wide clockwise-rotating eddy looping counter-
clockwise attached to the right wall glides towards the top right corner and merges at
the top right corner with a small clockwise-rotating eddy standing out attached to the
moving (lid) top wall at the top right corner, looping clockwise around this. Within the
amalgam, between both, near to the moving (lid) top wall, a small clockwise-rotating
eddy surfaces and arouses closely rightwards, within itself, near attached to the mov-
ing (lid) top wall, a tiny, loose counterclockwise-rotating eddy. (This is an occurrence
of the Fourth principle.) To the left of it, the former detaches near to the moving
(lid) top wall a small counterclockwise-rotating drop from the surrounding widespread
counterclockwise-rotating leading eddy which progressively merges with it and then
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Figure 9: A Third principle’s occurrence at the top right corner. Re=106.

swings rightwards suspended of it. Shortly after, the amalgam loops clockwise around
the former, in the wake of which forms out a bend which arouses deeper inside the bend
a tiny, loose counterclockwise-rotating eddy. Afterwards, the amalgam splits out owing
to the influence to its right of another clockwise-rotating eddy attached to the right wall a
little bit below the top right corner, leaving behind a drop which merges behind with the
tiny, loose counterclockwise rotating eddy. The amalgam’s remnant merges below with
the surrounding widespread counterclockwise-rotating leading eddy.

In the second place, a strong, still clockwise-rotating eddy attached to the moving (lid)
top wall may occur anywhere along it, providing occurrences of the Fourth principle.
Two instances display below.

First, a small clockwise-rotating eddy’s turning away from the moving (lid) top wall
at the top left corner (see Fig. 10). A small clockwise-rotating eddy stands out attached
to the moving (lid) top wall at the top left corner, surrounded for the most part by a
wide counterclockwise-rotating eddy. It turns away from the left wall a little bit below
the top left corner, arousing nearby a tiny counterclockwise-rotating eddy attached to the
left wall. The interaction of the surrounding globally clockwise-rotating fluid with itself
detaches a drop from this which moves horizontally rightwards. Meanwhile, it turns
away from the moving (lid) top wall a little bit to the right of the top left corner, arousing
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Figure 10: A Fourth principle’s occurrence at the top left corner. Re=106.

closely rightwards, within itself, near attached to the moving (lid) top wall, a tiny, loose
counterclockwise-rotating eddy. It makes this to merge rightwards with the surrounding
wide counterclockwise-rotating eddy, the drop before to merge with this, and then the
tiny counterclockwise-rotating eddy attached to the left wall a little bit below the top
right corner, growing horizontally rightwards, to merge with the drop. It detaches from
the moving (lid) top wall. Yet, a drop near to fall from the moving (lid) top wall at
the top left corner catches it up. The amalgam sticks to the moving (lid) top wall for a
while, but then it detaches from the amalgam and, attached to the left wall, glides further
downwards.

Second, a widespread clockwise-rotating eddy’s turning away from the moving (lid
top wall at the top right corner (see Fig. 11). A widespread clockwise-rotating eddy oc-
cupying nearly one-fourth of the square cavity stands out attached to the moving (lid)
top wall at the top right corner. Thrice successively, it turns away from the moving (lid)
top wall progressively leftwards a little bit to the left of the top right corner, arousing
closely rightwards, within itself, near attached to but progressively approaching the top
(lid) moving wall, a tiny, loose counterclockwise-rotating eddy which quickly grows and
loops clockwise around it. The first one arouses a little bit below the moving (lid) top
wall, close to the right wall. Shortly after, the second one arouses and merges with the
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Figure 11: A Fourth principle’s occurrence at the top right corner. Re=106.

former. But the amalgam soon vanishes. And then, the third one arouses and merges
with the amalgam which suddenly surfaces. Yet, a tiny, loose counterclockwise-rotating
eddy arouses further leftwards and closer to the moving (lid) top wall, quickly grows,
loops clockwise around it, and merges with the amalgam which soon merges with a tiny
counterclockwise-rotating eddy arousing attached to the right wall a little bit below the
top right corner. Finally, the amalgam, attached to the right wall, glides further down-
wards.

2.2 The cases Re=108, 5·108, 109

At Re=108, 5·108, 109, for fluid starting from data and from rest, from t=0 to t∞=50,000,
the kinetic energy’s behavior resembles somewhat the corresponding one at Re=106 (see
Figs. 4 and 12). As the Reynolds number Re → ∞, the upper fragment and the lower
fragment distance and then close: the tall high spikes enlarge and then disappear —
while the lower fragment stays essentially the same. As the time t→∞ (at the Reynolds
number Re fixed) for fluid starting from data, from t=0 to t∞ =128,125, they recur from
time to time with roughly the same amplitude (see Fig. 13), a DNS involving a total of
32,800,000 temporal iterations.
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Re = 109

Re = 5 ⋅ 108

Re = 108

Figure 12: Kinetic energy from t=0 to t∞ =50,000.

Re = 108

Re = 5 ⋅ 108

Re = 109

Figure 13: Kinetic energy from t=0 to t∞ =128,125.

At Re=108 let us see an occurrence of the Fourth principle.
A small clockwise-rotating eddy’s turning away from the moving (lid) top wall

at the top right corner (see Fig. 14). A small clockwise-rotating eddy stands out at-
tached to the moving (lid) top wall at the top right corner, surrounded by a widespread
counterclockwise-rotating leading eddy. It turns away from the moving (lid) top wall a
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Figure 14: A Fourth principle’s occurrence at the top right corner. Re=108.

little bit to the left of the top right corner, arousing closely rightwards, within itself, near
attached to the moving (lid) top wall, a tiny, loose counterclockwise-rotating eddy which
altogether whirls and then — dwindling — loops clockwise around it. Its remnant soon
vanishes but then surfaces and again loops clockwise around it, merging below with the
widespread counterclockwise-rotating leading eddy.

Next, at Re=5·108 let us see how the kinetic energy’s fluctuations relate to the leading
eddy’s switching direction of rotation.

The kinetic energy increasing towards a tall high spike at the upper fragment, a
strong eddy occupying more than one-half of the square cavity, stretching out from
the left wall to the right wall and from most of the bottom wall to past all the square
cavity’s mid-height, the leading eddy, rotates clockwise. Upwards stands out a wide
counterclockwise-rotating eddy, stretching out from the left wall to the right wall just be-
low a slender clockwise-rotating strip attached to the moving (lid) top wall, which keeps
merging and splitting. Other counterclockwise-rotating eddies add to it downwards and
leftwards, forming out a widespread counterclockwise-rotating amalgam stretching out
from the bottom wall’s left side to sharply near the moving (lid) top wall’s left side and
from there to the right wall’s upside. Just before the kinetic energy reaches the top of
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Figure 15: A Fourth principle’s occurrence at the moving (lid) top wall’s left side. Re=5·108.

the tall high spike, it splits out downwards and leftwards, and when the kinetic energy
has just past the top of the tall high spike, another counterclockwise-rotating eddy adds
to it downwards and leftwards. And then — for an instant — it becomes the leading
eddy. For soon it splits upwards and rightwards and again downwards and leftwards,
and again a widespread clockwise-rotating eddy, strong, attached to the moving (lid) top
wall whose center displaces upwards and rightwards becomes the leading eddy. After a
while, it spreads out and attaches somewhat to each rigid wall, surrounding this down-
wards and leftwards. For a while, it merges and splits. But then it keeps together. Further,
the widespread clockwise-rotating leading eddy weakens, and the moving (lid) top wall
displaces this rightwards. Consequently, it widens further and thereafter becomes the
leading eddy — the kinetic energy diminishing.

At Re=5·108 let us see an occurrence of the Fourth principle.

A clockwise-rotating strip’s turning away from the moving (lid) top wall at the mov-
ing (lid) top wall’s left side (see Fig. 15). A widespread clockwise-rotating eddy, a strip
attached to the moving (lid) top wall, stretches out from the left wall to past the center
of the moving (lid) top wall with, horizontally, two clockwise-rotating eddies surfacing
within. Priory, the one on the left forms out by the merging of two clockwise-rotating
eddies: a wide clockwise-rotating drop near to fall from the moving (lid) top wall at the
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Figure 16: A Third principle’s occurrence at the top right corner. Re=109.

top left corner and a wide clockwise-rotating eddy looping counterclockwise attached
to the moving (lid) top wall gliding towards the top left corner. Suddenly, the glob-
ally clockwise-rotating fluid between both, near to the moving (lid) top wall, whirls lo-
cally counterclockwise, without arousing deeper inside any tiny, loose counterclockwise-
rotating eddy, a whirling which dwindles as both merge but which strengthens when the
merging is near completion, arousing deeper inside it a tiny, loose counterclockwise-
rotating eddy which grows but dwindles while looping softly around the clockwise-
rotating amalgam — the surfacing clockwise-rotating eddy on the left of the strip. As
both clockwise-rotating eddies surfacing within the strip approach each other, the one on
the left, complete, leaves the moving (lid) top wall a little bit to the right of the top left cor-
ner, arousing closely rightwards, within itself, near attached to the moving (lid) top wall,
a tiny, loose counterclockwise-rotating eddy which grows, loops clockwise around it,
and catches up the former whose remnant meanwhile has strengthened, forming out an
amalgam which then merges rightwards with the widespread counterclockwise-rotating
leading eddy.

At Re=109 let us see an occurrence of the Third principle.

A bend between two clockwise-rotating eddies at the top right corner (see Fig. 16).
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A small clockwise-rotating eddy stands out at the top right corner. A wide clockwise-
rotating eddy looping counterclockwise reaches the top right corner. Progressively both
merge side by side. And then, between both, the latter makes the globally clockwise-
rotating fluid on its right to turn downwards; the former, the one on its left to turn
upwards, making the globally clockwise-rotating fluid nearby to whirl locally coun-
terclockwise. As the looping progresses, a bend, which appears fleetingly but then
surfaces, embraces the fluid whirling locally counterclockwise, arousing deeper inside
the bend a tiny, loose counterclockwise-rotating eddy which successively merges be-
low with the widespread counterclockwise-rotating leading eddy and above with a
wide counterclockwise-rotating eddy near to the moving (lid) top wall. Both clockwise-
rotating eddies detach: the wide one attached to the moving (lid) top wall glides further
leftwards; the small one stands out for a while attached to the right wall a little bit below
the top right corner.

At Re=109, the leading eddy — at its qualitative temporal limit’s pace — appears to
rotate solely counterclockwise.

3 Summary

Firstly, at extreme Reynolds numbers two principles add at the genesis of tiny, loose
counterclockwise- or clockwise-rotating eddies. One concerns the arousing of them ow-
ing to the influence of the clockwise- or counterclockwise currents nearby; the other, the
arousing of counterclockwise-rotating eddies near attached to the moving (lid) top wall
which moves from left to right. Secondly, unexpectedly, the kinetic energy soon reaches
the qualitative temporal limit’s pace, fluctuating briskly, randomly inside the total ki-
netic energy range, fluctuations which concentrate on two distinct fragments: one on its
upper side, the upper fragment, the other on its lower side, the lower fragment, switch-
ing briskly, randomly from each other; and further on many small fragments arousing
randomly within both, switching briskly, randomly from one another. As the Reynolds
number Re→∞, both distance and then close, and the kinetic energy fluctuates shorter
and shorter at the upper fragment and longer and longer at the lower fragment, display-
ing tall high spikes which enlarge and then disappear. As the time t→∞ (at the Reynolds
number Re fixed) they recur from time to time with roughly the same amplitude. For the
most part, at the upper fragment the leading eddy rotates clockwise, and at the lower
fragment, in stark contrast, it rotates counterclockwise. At Re=109 the leading eddy —
at its qualitative temporal limit’s pace — appears to rotate solely counterclockwise.
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