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Abstract. A globally hyperbolic moment system upto arbitrary order for the Wigner
equation was derived in [6]. For numerically solving the high order hyperbolic mo-
ment system therein, we in this paper develop a preliminary numerical method for
this system following the NRxx method recently proposed in [8], to validate the mo-
ment system of the Wigner equation. The method developed can keep both mass and
momentum conserved, and the variation of the total energy under control though it
is not strictly conservative. We systematically study the numerical convergence of the
solution to the moment system both in the size of spatial mesh and in the order of
the moment expansion, and the convergence of the numerical solution of the moment
system to the numerical solution of the Wigner equation using the discrete velocity
method. The numerical results indicate that the high order moment system in [6] is
a valid model for the Wigner equation, and the proposed numerical method for the
moment system is quite promising to carry out the simulation of the Wigner equation.

AMS subject classifications: 82C10, 81-08, 47A57

Key words: Wigner equation, NRxx method, moment method.

1 Introduction

The Wigner equation was proposed by Wigner in 1932 to study the quantum corrections
of the quantum statistical mechanics [41]. For its strong similarity with the classical coun-
terpart of the Boltzmann equation, the Wigner equation has advantages in simulating the
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carrier transport in semiconductor devices [14]. Its applications are also found in quan-
tum chemistry and quantum optics. So there has been an increasing interest in the Wigner
equation.

The numerical methods for the Wigner equation have attracted many researchers
from different fields. In [15], Frensley applied the upwind finite difference method to
the Wigner equation, and successfully showed the negative differential resistance of the
resonant tunneling diodes (RTD). Further, the finite difference methods for the Wigner
equation have been used to investigate the Wigner-Poisson equations [23, 42]. Readers
may refer [24, 28] for the comparison study of different finite difference methods for the
Wigner equation. Besides the popular finite difference methods for the Wigner equation,
many other numerical methods have been proposed. For example, [35] has given a new
adaptive cell average spectral element method for the time-dependent Wigner equation.
An operator splitting [1], a Fourier spectral method [34], and a Monte Carlo method [32]
have also been put forward. Analysis and numerical solution for the discrete version of
the transient Wigner equation have been given in [17, 18].

Though the Wigner functions have been successfully used in simulating one-
dimensional devices, but are not expected to be directly used for the multi-dimensional
devices simulation using deterministic numerical methods due to its formidable expense
in memory storage and computation time. One practical approach to investigate higher
dimensional devices where the quantum effects are relevant is to use the quantum hydro-
dynamics models which are moment systems derived from the Wigner equation. Because
the close connection between the Wigner equation and the Boltzmann equation, many
moment methods devised for the Boltzmann equation have been extended to the Wigner
equation [13, 16]. The equations derived from the Wigner equation are called quantum
drift-diffusion equations, quantum Euler equations and quantum hydrodynamics equa-
tions. Moreover, the numerical simulations based on such moment equations are exten-
sively studied [12, 22, 26, 27, 43].

The moment method of the Boltzmann equation can be dated back to Grad [19] in
1940s. However, this 13-moment model proposed therein was soon found to be prob-
lematic [20]. Its major deficiencies include the appearance of subshocks in the structure
of a strong shock wave and the loss of global hyperbolicity. A number of regulariza-
tions were raised to solve or alleviate these problems [25,29,37–39]. However, due to the
complexity of the explicit expressions, systems with large number of moments are not
investigated until recently (see, for examples, [2, 40]). In [4, 5], a new regularized model
with global hyperbolicity is proposed by the correction of the characteristic speed and
numerical methods solving large moment systems were proposed in [7, 8, 10].

Recently, we have extended the method of the hyperbolic regularization in [4, 5] to
the Wigner equation, and obtained a new set of generalized quantum hydrodynamic
models [6]. In this paper, we are aiming at developing an effective numerical solver for
the quantum hydrodynamic models deduced therein. Since the quantum hydrodynamic
model is a moment expansion, which may be truncated up to any order, our method
can numerically solve it in a unified way which is actually able to be regarded as a kind
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of spectral method by expanding the Wigner function into the Hermite functions in the
microscopic velocity space. The method is basically following the techniques in [8]. The
appealing properties, including the numerical conservation of the total mass and the total
momentum, are proved in our numerical method, while the variation of the total energy
is under perfectly control. The numerical convergence in the number of moments indi-
cates that the moment system is a valid model for the Wigner equation. The numerical
efficiency is significantly improved compared to solving the Wigner equation using the
discrete velocity method since we can use only tens of moments to achieve enough nu-
merical accuracy. However, we have assumed that the potential is smooth enough.

The rest of this paper is arranged as follows: in Section 2 we introduce the moment
system derived in [6]. The numerical discretization scheme is proposed in Section 3 as
well as the proof of the conservative properties. Section 4 provides several numerical
results to show the numerical convergence. Concluding remarks are in the last section.

2 Hyperbolic moment system of the Wigner equation

Let f (t,x,p) denote the quasi-probability density function in the phase space (x,p). We
can write the Wigner equation in the 1D spatial space and 1D microscopic velocity space
(which will be called 1D-1D Wigner equation for short hereafter) with the scattering term
as follows

∂ f

∂t
+

p

m

∂ f

∂x
+Θ[V] f =

∂ f

∂t

∣

∣

∣

∣

Scat

, x∈R, p∈R, (2.1)

where the effective mass m is taken to be m=1 for convenience and the nonlocal Wigner
potential term Θ[V] f is a pseudo-differential operator. It is defined by

(Θ[V] f )(t,x,p)=
∫

R

Vw(t,x,p′) f (t,x,p−p′)dp′, (2.2)

and the Wigner potential Vw is given as

Vw(t,x,p)=
−i

2πh̄2

∫

R

[V(t,x+
y

2
)−V(t,x− y

2
)]eiyp/h̄ dy, (2.3)

where h̄ is the Planck constant, i is the complex unit and V(t,x) is the electric potential
energy (which will be called potential for short hereafter). The pseudo-operator Θ[V] f
can be written into an equivalent form

(Θ[V] f )(t,x,p)=− ∑
λ=1,3,5,···

(h̄/2i)λ−1

λ!

∂λV

∂xλ

∂λ f

∂pλ
, (2.4)

where λ is odd [6, 21].

Remark 2.1. The self-consistent electrostatic potential are added to V(x) in the simulation
of semiconductor devices [1]. But in the current framework of this paper the acceleration
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due to the potential involving its high order derivatives, it is not trivial to couple the
nonlinear effect into the system yet. With a second order numerical method solving the
Poisson equation numerically, only its first order derivative can still have a first order
accuracy. Thus in order to focus on showing the convergence of the numerical solution
to the solution of the Wigner equation as our main object in this paper, we assume that
V(x,t) is a given smooth function.

The time-relaxation approximation of the scattering term, which is the same as the
BGK scattering term used for the collision gas [3], is applied here [15]

∂ f

∂t

∣

∣

∣

∣

Scat

=
feq− f

τ
, (2.5)

where τ is the relaxation time and feq is the equilibrium distribution. For example, when
the density of the electrons is not extremely high, we can assume that the equilibrium
distribution is a Maxwellian distribution,

feq=
ρ(t,x)

(2πkBT(t,x))1/2
exp

(

− (p−u(t,x))2

2kBT(t,x)

)

, (2.6)

where ρ(t,x) is the number density of the particles at position x, kB is the Boltzmann
constant, T(t,x) is the particle temperature, and u(t,x) is the average momentum of the
particles. These macroscopic variables are related with the distribution function as below

ρ(t,x)=
∫

R

f (t,x,p)dp, (2.7a)

ρ(t,x)u(t,x)=
∫

R

p f (t,x,p)dp, (2.7b)

ρ(t,x)kBT(t,x)=
∫

R

(p−u)2 f (t,x,p)dp. (2.7c)

The conservation of mass, momentum and total energy can be derived from the Wigner
equation. Multiplying Eq. (2.1) by 1 and p respectively, then integrating with respect to x
and p, we have

d

dt

∫

R×R

f (t,x,p)dxdp=0, t∈R
+, (2.8a)

d

dt

∫

R×R

p f (t,x,p)dxdp=−
∫

R

ρ(t,x)
∂V(t,x)

∂x
dx, t∈R

+. (2.8b)

Multiplying Eq. (2.1) by p2 and integrating by parts, we get the conservation of the total
energy

d

dt

∫

R×R

p2 f (t,x,p)dxdp=−2
∫

R

ρ(t,x)u(t,x)
∂V(t,x)

∂x
dx, t∈R

+. (2.9)
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2.1 Moment expansion

Following the same method in [6,7,10], we expand the distribution function into Hermite
series as

f (t,x,p)= ∑
α∈N

fα(t,x)HT ,α

(

p−u(t,x)
√

T (t,x)

)

, (2.10)

where the basis functions HT ,α are the Hermite functions defined by

HT ,α(ξ)=
1√
2π

T − α+1
2 Heα(ξ)exp

(

− ξ2

2

)

, (2.11)

where Hen(x) is the Hermite polynomial of order n, and the parameter T in the expansion
is the scaled local temperature defined as

T (t,x)= kBT(t,x). (2.12)

Using the orthogonality properties of the Hermite polynomials, we can obtain that
ρ(t,x) = f0(t,x) from (2.7a) and (2.10). Direct calculation from (2.7b), (2.7c) and (2.10)
yields f1 =0 and f2 =0. Then from (2.6), (2.5) and (2.10), the time-relaxation approxima-
tion scattering term (2.5) can be expanded into Hermite series as [6, 15]

∂ f

∂t

∣

∣

∣

∣

Scat

=
1

τ
( feq− f )=− 1

τ ∑
α>3

fαHT ,α

(

p−u(t,x)
√

T (t,x)

)

. (2.13)

The heat flux q and the pressure P are defined as

q=
1

2

∫

R

(p−u)3 f dp, P=
∫

R

(p−u)2 f dp, (2.14)

and replacing f with (2.10) yields

q=3 f3, P=ρT . (2.15)

2.2 Moment closure

In this paper, we follow the method in [5, 6] to derive the moment system. The final
moment system for the 1D-1D Wigner equation is as below [6]:

∂ρ

∂t
+u

∂ρ

∂x
+ρ

∂u

∂x
=0, (2.16a)

ρ
∂u

∂t
+ρu

∂u

∂x
+

∂P

∂x
=−ρ

∂V

∂x
, (2.16b)

∂P/2

∂t
+u

∂P/2

∂x
+

3

2
P

∂u

∂x
+3

∂ f3

∂x
=0, (2.16c)
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∂ fα

∂t
+

(

P

ρ

∂ fα−1

∂x
+u

∂ fα

∂x
+(α+1)

∂ fα+1

∂x

)

+
∂u

∂x

(

P

ρ
fα−2+(α+1) fα−

P

ρ
fα−2

)

− fα−1

ρ

∂P

∂x
− 1

ρ
fα−2

∂q

∂x
+

(

− P

2ρ2

∂ρ

∂x
+

1

2ρ

∂P

∂x

)

(P

ρ
fα−3+(α+1) fα−1

)

=− 1

τ
fα− ∑

λ=1,3,···

(h̄/2i)λ−1

λ!

∂λV

∂xλ
fα−λ, α>3. (2.16d)

A closure of the above infinite set of equations is given in [5,6]. Picking an integer M>3,
we truncate the expansion (2.10) at order M. Then disregarding the equations which
contain ∂ fα/∂t with α> M, and adopting the regularization given in [5], we obtain the
closed final moment system as follows

∂w

∂t
+M̂(w)

∂w

∂x
=Gw+Sw, (2.17)

where w=(ρ,u,P/2, f3,··· , fM)T and M̂ is an (M+1)×(M+1) matrix given by

M̂(w)
∂w

∂x
=M(w)

∂w

∂x
−RM IM, (2.18)

where M(w) is an (M+1)×(M+1) matrix, whose entries are given as the coefficients of
the terms in (2.16a), (2.16b), (2.16c) and (2.16d) with derivatives of w, and RM IM is the
regularization term [6], with IM=(0,··· ,0,1)T ∈R

M+1 and RM defined as

RM =(M+1)

[

fM
∂u

∂x
+

1

2
fM−1

∂T
∂x

]

. (2.19)

Moreover, the entries of G arise from the non-local Wigner potential term (2.4) and the
explicit formula is

Gij =



























−1

ρ
∂V(t,x)

∂x , if i=2, j=1,

− (h̄/2i)i−j−1

(i− j)!

∂i−jV(t,x)

∂xi−j
, if 3≤ i≤M+1, i− j is odd, j 6=2,3,

0, otherwise.

(2.20)

The entry Sij of S arises from the scattering term (2.13) and it takes the nonzero value − 1
τ

only when i= j and i≥4.

We list the detailed moment system of (2.17) when M = 5 as an example. (2.16a),
(2.16b), and (2.16c) are the first three equations of this moment system, and the else three
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equations are

∂ f3

∂t
− P2

2ρ2

∂ρ

∂x
+4 f3

∂u

∂x
+

P

2ρ

∂P

∂x
+u

∂ f3

∂x
+4

∂ f4

∂x
=− 1

τ
f3+

h̄2

24

∂3V

∂x3
ρ,

∂ f4

∂t
− 5

2

P

ρ2
f3

∂ρ

∂x
+5 f4

∂u

∂x
− f3

ρ

∂P

∂x
+

P

ρ

∂ f3

∂x
+u

∂ f4

∂x
+5

∂ f5

∂x
=− f4

τ
,

∂ f5

∂t
− f4

ρ

∂P

∂x
− 3 f3

ρ

∂ f3

∂x
+

P

ρ

∂ f4

∂x
+u

∂ f5

∂x
=− f5

τ
+

h̄4

1920

∂5V

∂x5
ρ,

where
h̄2ρ
24

∂3V
∂x3 and

h̄4ρ
1920

∂5V
∂x5 are the quantum correction terms yielded by the non-local

Wigner potential term (2.4) [6].

Remark 2.2. By [5], the regularized moment system (2.17) is globally hyperbolic, thus is
locally well-posed for certain small initial value.

3 Numerical method

The numerical scheme for the regularized moment system (2.17) is a natural extension of
the first order method in [8, 11]. In this paper, we focus on our major effort of the vali-
dation of the model, saying to study if the high order moment system will successfully
provide a solution approaching the kinetic equation, we would rather adopt a reliable
numerical scheme than provide a high order numerical scheme with better efficiency. We
would like to give a simple comment on high-order methods here. There are actually
some essential difficulties in developing a high order scheme since we have no idea at
all for us to reconstruct a high order numerical approximation by the cell means. Just as
in numerically solving an Euler equation, one can reconstruct derivatives in a cell using
conservative variables, or using primitive variables, or some other possible approaches.
For the high order moment method, the amount of choices in the approaches to recon-
struct the high order approximation is even huge. This trapped us in the situation that
we do not know which choice is the best since there are too many candidates. We can not
provide any convincing arguments that one of these candidates is better than another yet.

By using a first order Strang-splitting method [36], we split the moment system into
the following parts:

• the convection step:
∂w

∂t
+M̂(w)

∂w

∂x
=0, (3.1)

• the acceleration and scattering step:

∂w

∂t
=(G+S)w. (3.2)
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A second order time splitting algorithm can be given by considering additional steps [30].
The numerical scheme adopted in the x-direction is the standard finite volume dis-

cretization. Suppose Γh to be a uniform mesh in R, and each cell is identified by an index
j. For a fixed x0∈R and ∆x>0,

Γh=
{

Tj= x0+(j∆x, (j+1)∆x) : j∈Z
}

. (3.3)

The approximation of the coefficients of the Hermite expansion of the distribution func-
tion f at t= tn is denoted as

f n
α (x)= f n

α,j, x∈Tj, (3.4)

where f n
α,j is the approximation over the cell Tj at the n-th time step and then the discrete

distribution function has the following Hermite expansion form

f n
h (x,p)= f n

j (p)= ∑
|α|6M

f n
α,jHT n

j ,α





p−un
j

√

T n
j



. (3.5)

3.1 The convection step

Following [6], we can find that the term M(w) comes from the conservative part in the
Grad-type moment system, while the term RM IM only revises fM. Therefore solving (3.1)
is equal to firstly solving the original form of the convection part of the Wigner equation,
which reads

∂ f

∂t
+p

∂ f

∂x
=0, (3.6)

and then applying the regularization in [5] on f . Here the distribution function f is
approximated as (3.5), and (3.6) is discretized as

f n+1,∗
j (p)= f n

j (p)+Kn
1,j(p)+Kn

2,j(p), (3.7)

where Kn
1,j is the contribution of the term M(w) in (2.18) and Kn

2,j is the contribution of

the term RM IM in (2.19). Here Kn
1,j is discretized in the conservative formation as

Kn
1,j(p)=−∆tn

∆x

[

Fn
j+ 1

2
(p)−Fn

j− 1
2
(p)
]

, (3.8)

where Fn
j+ 1

2

is the numerical flux between cell Tj and Tj+1 at tn. We use the HLL scheme

in our numerical experiments following [9], which reads:

Fn
j+ 1

2
(p)=































p f n
j (p), 06λL

j+ 1
2

,

λR
j+ 1

2

p f n
j (p)−λL

j+ 1
2

p f n
j+1(p)+λL

j+ 1
2

λR
j+ 1

2

[ f n
j+1(p)− f n

j (p)]

λR
j+ 1

2

−λL
j+ 1

2

, λL
j+ 1

2

<0<λR
j+ 1

2

,

p f n
j+1(p), 0>λR

j+ 1
2

,

(3.9)
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where λL
j+ 1

2

and λR
j+ 1

2

are defined in (3.16).

As for the regularization part, the DLM theory [31,33] is employed to define the weak
solution since it is non-conservative. The regularization term RM IM only revises the
coefficient fM, therefore, only when α=M, we have to calculate Kn

2,j. Here we follow the

method in [8]. Considering a non-conservative system as

∂q

∂t
+

∂F(q)

∂x
+N(q)

∂q

∂x
=0,

a cluster of integral paths Φ(s;·,·), where s∈ [0,1] is the parameter of the paths, has to be
additionally given in the phase space to define the shock condition (generalized Rankine-
Hugoniot condition)

F(qL)−F(qR)+
∫ 1

0
[vsI−N(Φ(s;qL,qR))]

∂Φ

∂s
(s;qL,qR)ds=0, (3.10)

where qL and qR are the left and right states connected by a shock wave with shock speed
vs, and I is the identity matrix. About other restrictions on the paths Φ(s;·,·), we refer the
readers to [33] for more information.

For the particular case under our consideration here, entries of N are all vanished
except for the last row to be

(

0,(M+1) fM,
M+1

2
fM−1,0,··· ,0

)

.

We take the integral path Φ(s;·,·) in the phase space to be linear, saying

Φ(s;wL,wR)=(1−s)wL+swR.

Thus Kn
2,j is chosen as the form below following [8]

Kn
2,j=− ∆t

∆x
(Ŵn−

j+1/2−Ŵn+
j−1/2)HT n

j ,M

(

p−un
j

T n
j

)

, (3.11)

where Ŵn±
j+1/2 is defined by

Ŵn−
j+1/2=















0, 06λL
j+1/2,

− λL
j+1/2

λR
j+1/2−λL

j+1/2

gn
j+1/2, λL

j+1/2<0<λR
j+1/2,

gn
j+1/2, 0>λR

j+1/2,

(3.12)

and

Ŵn+
j+1/2=















−gn
j+1/2, 06λL

j+1/2,

− λR
j+1/2

λR
j+1/2−λL

j+1/2

gn
j+1/2, λL

j+1/2<0<λR
j+1/2,

0 0>λR
j+1/2,

(3.13)
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where

gn
j+1/2=

∫ 1

0
(M+1)

(

(1−s) fM,j+s fM,j+1
1−s

2 fM−1,j+
s
2 fM−1,j+1

)T




∂[(1−s)uj+suj+1]
∂s

∂[(1−s)T j+sT j+1]
∂s



ds, (3.14)

which results

gn
j+1/2=(M+1)

[(

f n
M,j/2

f n
M−1,j/4

)

+

(

f n
M,j+1/2

f n
M−1,j+1/4

)]T(

un
j+1−un

j

T n
j+1−T n

j

)

. (3.15)

The λL
j+ 1

2

and λR
j+ 1

2

above are the greatest eigenvalues of M̂ (see [5]) as

λL
j+ 1

2
=min{un

j −CM+1

√

T n
j ,un

j+1−CM+1

√

T n
j+1}, (3.16a)

λR
j+ 1

2
=max{un

j +CM+1

√

T n
j ,un

j+1+CM+1

√

T n
j+1}, (3.16b)

where CM+1 is the greatest zero of HeM+1(x). The formula of the signal speed is also
used to determine the time step ∆tn by the CFL condition

∆tn

∆x
max

j
{|λR

j+1/2|,|λL
j+1/2|}<CFL. (3.17)

Remark 3.1. There are two points remaining unclear in calculation of the numerical flux
(3.9), one is how to calculate p f n

j (p) and the other is how to add up two distribution

functions with the expansion center (u1,T1) and (u2,T2) respectively. The techniques on
these two points have been clarified in detail in [11].

3.2 The acceleration and scattering step

With the coefficients wn+1,∗
j of f n+1,∗

j,α obtained from (3.7), we then solve (3.2) with wn+1,∗
j

as the initial value at tn for the acceleration and scattering step. Since G+S is a lower
triangular matrix, (3.2) can be easily solved using the implicit Euler method

wn+1
j −wn+1,∗

j

∆tn
=(G+S)jw

n+1
j , (3.18)

where (G+S)j is the volume average of (G+S) in the j-th cell. In (3.18), only one point
needs to be clarified. By the definition of G and S (see the context around (2.20)), it can
be seen that the first three rows of (G+S) in (3.2) exactly have only one non-zero entry
G2,1=− 1

ρ
∂V
∂x . Thus u can be updated before updating the else entries of wn+1,∗ by solving

∂u

∂t
=−∂V(t,x)

∂x
. (3.19)



R. Li et al. / Commun. Comput. Phys., 15 (2014), pp. 569-595 579

For the time step ∆tn, (3.19) is approximated as

un+1
j =un+1,∗

j −∆tnV ′
j , (3.20)

where V ′
j is the volume average of ∂V(t,x)

∂x in the j-th cell at tn.

Remark 3.2. Eq. (3.19) shows the effect of the first order derivative of the potential V(t,x)
on the momentum of the particles in the classical system. It is clear that the scattering and
the high-order derivatives of the potential V(t,x) only change fα with 36α6M, and does
not change the density ρ, the momentum u and the temperature T , which are determined
by the coefficients with α62.

3.3 Outline of the algorithm

Suppose the coefficient wn
j , j = 1,··· ,N, of f n

α,j has been obtained, we summarized the

overall numerical scheme for one time step as follows:

1. Calculate ∆tn according to the CFL condition using (3.17);

2. Obtain f n+1,∗
α,j by integrating the convection term using (3.7) and thus obtain wn+1,∗

j ;

3. Obtain un+1
j by computing the classical acceleration term using (3.20);

4. Obtain f n+1
α,j ,α ≥ 3 by computing the quantum acceleration and scattering term using (3.18).

Since ρn+1
j =ρn+1,∗

j and Pn+1
j =Pn+1,∗

j , we have obtained wn+1
j .

3.4 The conservative properties of the scheme

In this subsection, we will study the properties of the scheme. Let us denote the dis-
cretized mass as

Dh(tn)=
N

∑
j=1

∆x
∫

p∈R

f n
j (p)dp, (3.21)

the discretized momentum as

Mh(tn)=
N

∑
j=1

∆x
∫

p∈R

p f n
j dp, (3.22)

the total impulse due to the potential at the n-th time step as

Fh(tn)=−
N

∑
j=1

∆x∆tnV ′
j ρn+1

j , (3.23)
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the discretized total energy as

Eh(tn)=
N

∑
j=1

∆x
∫

p∈R

p2 f n
j dp, (3.24)

and the total work done by the potential at the n-th time step as

Wh(t
n)=−2

N

∑
j=1

∆x∆tnρn+1,∗
j un+1,∗

j V ′
j . (3.25)

Direct calculation gives us the following conclusion.

Theorem 3.1. The numerical solution f n
h (x,p) given by the scheme satisfies that:

1. Conservation of total mass: Dh(tn)=Dh(t0);

2. Conservation of total momentum: Mh(tn)=Mh(t0)+∑
n−1
k=0 Fh(tk);

3. Variation of total energy:

Eh(t
n+1)=Eh(t

n)+Wh(t
n)+O(∆t2), (3.26)

in the case of the periodic boundary condition.

Proof. We check these three items one by one.

1. Conservation of mass:

Noticing that the mass on each cell is not modified when we apply the regularization
term and in the acceleration and scattering step, the conservation of the mass is straight
forward based on results in [9].

2. Conservation of momentum:

For the momentum conservation, we need only verify

Mh(tn+1)=Mh(tn)+Fh(tn). (3.27)

In the calculation of the acceleration and scattering step, only the acceleration step (3.19)
changes the momentum. So we verify below that the momentum is conserved in the
acceleration step and the convection step, respectively.

(a) We first verify that the acceleration step keeps momentum to be conservative. From
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(3.22) and (3.20), we have

Mh(tn+1)=∆x
N

∑
j=1

ρn+1
j un+1

j

=∆x
N

∑
j=1

ρn+1
j

(

un+1,∗
j −V ′

j ∆tn
)

=∆x
N

∑
j=1

ρn+1
j un+1,∗

j −∆x∆tn
N

∑
j=1

V ′
j ρn+1

j

=∆x
N

∑
j=1

ρn+1
j un+1,∗

j +Fh(tn). (3.28)

Since ρn+1
j is the density after the n-th convection step, ∆x∑

N
j=1ρn+1

j un+1,∗
j is the total

momentum after the n-th convection step.

(b) Next we verify that the convection step does not change the total momentum.
Thanks to (2.7b) and (3.7), we have

∆x
N

∑
j=1

ρn+1
j un+1,∗

j =
N

∑
j=1

∆x
∫

p∈R

p f n+1,∗
j dp

=
N

∑
j=1

∆x
∫

p∈R

p[ f n
j +Kn

1,j+Kn
2,j]dp

=
N

∑
j=1

∆x
∫

p∈R

p f n
j dp+

N

∑
j=1

∆x
∫

p∈R

pKn
1,jdp+

N

∑
j=1

∆x
∫

p∈R

pKn
2,jdp

=
N

∑
j=1

∆x
∫

p∈R

p f n
j dp−∆tn

N

∑
j=1

∫

p∈R

p(Fn
j+1/2−Fn

j−1/2)dp+
N

∑
j=1

∆x
∫

p∈R

pKn
2,jdp

=Mh(tn)−∆tn
∫

p∈R

p(Fn
N+1/2−Fn

1/2)dp+
N

∑
j=1

∆x
∫

p∈R

pKn
2,jdp, (3.29)

which gives

∆x
N

∑
j=1

ρn+1
j un+1,∗

j =Mh(tn), (3.30)

because K2,j defined in (3.11) are orthogonal to p, and Fn
N+1/2=Fn

1/2 due to the peri-
odic boundary condition. With (3.28) and (3.30), we conclude the total momentum
conservation consequently

Mh(tn+1)=Mh(tn)+Fh(tn). (3.31)
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3. Variation of total energy:

For the total energy is only related to (ρ,u,T ), it is clear that the scattering term does
not change the total energy, and the potential term does not change ρ and T

ρn+1,∗
j =ρn+1

j , T n+1
j =T n+1,∗

j , (3.32)

where ρn+1,∗
j and T n+1,∗

j is the density ρ and the local temperature T at the j-th cell af-

ter the n-th convection step. Similar to the proof in the momentum conservation, the
variation of the total energy will be verified in the potential step and the convection step
respectively.

(a) We first compute the variation of the total energy in the potential step. Thanks to
(2.7c) and (3.20), we have

Eh(t
n+1)=

N

∑
j=1

∆x
∫

p∈R

p2 f n+1
j dp

=
N

∑
j=1

∆x
(

ρn+1
j (un+1

j )2+ρn+1
j T n+1

j

)

=
N

∑
j=1

∆x
(

ρn+1,∗
j (un+1

j )2+ρn+1,∗
j T n+1,∗

j

)

=
N

∑
j=1

∆xρn+1,∗
j

(

un+1,∗
j −∆tV ′

j

)2
+

N

∑
j=1

∆xρn+1,∗
j T n+1,∗

j

=
N

∑
j=1

∆x
(

ρn+1,∗
j (un+1,∗

j )2+ρn+1,∗
j T n+1,∗

j

)

−2
N

∑
j=1

∆x∆tnρn+1,∗
j un+1,∗

j V ′
j

+
N

∑
j=1

∆x(∆tn)2ρn+1,∗
j (V ′

j )
2,

=
N

∑
j=1

∆x
(

ρn+1,∗
j (un+1,∗

j )2+ρn+1,∗
j T n+1,∗

j

)

+Wh(t
n)+O(∆t2). (3.33)

Since

Eh(t
n+1,∗)=

N

∑
j=1

∆x
(

ρn+1,∗
j (un+1,∗

j )2+ρn+1,∗
j T n+1,∗

j

)

is the total energy after the n-th convection step, it is deduced that

Eh(t
n+1)=Eh(t

n+1,∗)+Wh(t
n)+O(∆t2). (3.34)
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(b) Then we show that the convection step does not change the total energy. Precisely,
we have

Eh(t
n+1,∗)=

N

∑
j=1

∆x
∫

p∈R

p2 f n+1,∗
j dp

=
N

∑
j=1

∆x
∫

p∈R

p2 f n
j dp+

N

∑
j=1

∆x
∫

p∈R

p2Kn
1,jdp+

N

∑
j=1

∆x
∫

p∈R

p2Kn
2,jdp

=Eh(tn)−∆tn
N

∑
j=1

∫

p∈R

p2(Fn
j+1/2−Fn

j−1/2)dp+
N

∑
j=1

∆x
∫

p∈R

p2Kn
2,jdp

=Eh(tn)−∆tn
∫

p∈R

p(Fn
N+1/2−Fn

1/2)dp+
N

∑
j=1

∆x
∫

p∈R

p2Kn
2,jdp. (3.35)

Making use of the orthogonality of p2 and K2,j, we have

Eh(t
n+1,∗)=Eh(t

n). (3.36)

Collecting (3.34) and (3.36), we then conclude the variation of the total energy conse-
quently is as

Eh(t
n+1)=Eh(t

n)+Wh(t
n)+O(∆t2). (3.37)

The proof is complete.

Remark 3.3. When V(t,x) is time-independent, i.e., V(t,x)=V(x), un+1 obtained by (3.20)
is exact, and the work done by the potential from tn to tn+1 defined in (3.25) can be revised
into

Wh(t
n)=−2

N

∑
j=1

∆x∆tnρn+1,∗
j V ′

j (u
n+1,∗
j −∆tnV ′

j /2).

The exact conservation of energy is obtained by comparison the extra term in the revised
definition with the error term in (3.33), thus

Eh(t
n+1)=Eh(t

n)+Wh(t
n).

4 Numerical examples

In this section, we study the numerical convergence of the scheme applied to the 1D-
1D Wigner equation (2.1) with a BGK scattering term (2.5). For simplicity, we take its
nondimensional form by taking the Planck constant h̄ = 1 and the Boltzmann constant
kB =1. The CFL number is always set as 0.45. Here we adopt the initial data as below

f0(x,p)= feq(x,p)=
ρ0(x)

√

2πT0(x)
exp

(

(p−u0(x))2

2T0(x)

)

, (x,p)∈ (Ll ,Lr)×R, (4.1)
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where ρ0(x), u0(x), and T0(x) are the initial density, momentum, and local temperature,
respectively. The initial data is chosen as below

ρ0(x)=exp(−(x−25)2)+0.1, u0(x)=10, T0(x)=0.5, (4.2)

and the potential is set to be

V=10exp(−x2/200), x∈ (−100,200).

The reference solution is provided by the discretized velocity method using ∆x=0.00625
as the spatial gird size, ∆v = 0.0125 as the velocity grid size on the velocity interval
[−20,20]. The numerical methods is the classical finite volume method using upwind-
ing numerical flux. The discretized velocity computation is very time consuming while
the accuracy of the solution on such a grid is comparatively reliable by our numerical
resolution study.

4.1 Numerical convergence study for classical system

In this subsection, we first will apply the numerical method we proposed to the Wigner
equation with only classical acceleration. That means, we first consider the Boltzmann
equation, which is the classical counterpart of the Wigner equation.

Firstly, we examine the numerical convergence with different spatial grid sizes. The
1D-1D Boltzmann equation with and without the scattering term is numerically solved.
We fix the number of moments to be 25 and use the spatial meshes with grid size ∆x=0.4,
0.2, 0.1, 0.05 and 0.025.

In the first example, the system without the scattering term is considered. In Figs. 1
and 2, the density ρ, macroscopic momentum u, local temperature T and heat flux q at
t = 3 and t = 6 are plotted. As the spatial grid size decreases, ρ, u and T obtained by
solving the moment system with M = 25 converge to the reference values given by the
discrete velocity method. In Fig. 3, the L1 error of ρ, u, T and q at t = 3 and t = 6 are
plotted, respectively. All errors are about linearly converging to zero with the decreasing
of the spatial grid size.

In the second example, we consider the system with a BGK scattering term (2.5) with
τ= 1/2. The results of ρ, u, T and q obtained with different grid sizes and the result of
the discrete velocity method at t=3 and t=6 are plotted in Figs. 4 and 5. Comparison of
it with Figs. 1 and 2 shows that the movement the scattering slows down the movement
of particles. At the same time, the results in Figs. 4 and 5 illustrate that ρ, u, T and q also
converge to the reference values obtained with the discrete velocity method, respectively.
Its L1 errors plotted in Fig. 6 also converge about linearly to zero with the decreasing of
the spatial grid size.

Secondly, let us turn to the study of the numerical convergence in terms of the number
of moments. We would like to point out that a scattering term generally gives a more
smooth distribution function and the numerical convergence with the increase of the
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Figure 1: The density ρ and macroscopic momentum u, local temperature T and heat flux q of the 1D-1D
Wigner equation with only the classical acceleration and without the scattering term on different spatial grids
at t=3. The thick dashed line is the reference solution.
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(a) ρ at t=6
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(c) T at t=6
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Figure 2: The density ρ, macroscopic momentum, the local temperature T and heat flux q of the 1D-1D Wigner
equation with only the classical acceleration and without the scattering term on different spatial grids at t=6.
The thick dashed line is the reference solution.
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Figure 3: The L1 error of the density ρ, macroscopic momentum u, local temperature T and heat flux q between
the moment method using different spatial grid sizes and the discrete velocity method in the case of the 1D-1D
Wigner equation with only the classical acceleration and without the scattering term at t= 3 and t= 6. The
x-axis is the spatial grid size ∆x and the y-axis is the L1 error. The right y-axis is for heat flux.
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Figure 4: The density ρ, macroscopic momentum u, local temperature T and heat flux q of the 1D-1D Wigner
equation with only the classical acceleration and with the relaxation time τ=1/2 on different spatial grid sizes
at t=3. The thick dashed line is the reference solution.

number of moments is a easier task than the one without a scattering term. So here we
would numerically solve the 1D-1D Wigner equation without the scattering term. We
use a fixed grid size and range the number of moments from 5 to 25. ρ, u, T and q
obtained by solving the moment system with different moments are plotted in Fig. 7.
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(a) ρ at t=6
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Figure 5: The density ρ, macroscopic momentum u, the local temperature T and heat flux q of the 1D-1D
Wigner equation with only the classical acceleration and with the relaxation time τ= 1/2 on different spatial
grid sizes at t=6. The thick dashed line is the reference solution.
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Figure 6: The L1 error of the density ρ, macroscopic momentum u, local temperature T and heat flux q between
the moment method using different spatial grid sizes and the discrete velocity method in the case of the 1D-1D
Wigner equation with only the classical acceleration and with the relaxation time τ = 1/2 at t= 3 and t= 6.
The x-axis is the spatial grid size ∆x and the y-axis is the L1 error.

Observing Fig. 7, we find out that if the number of moments is very small, significant
oscillations of ρ, u, T and q appear in part of the domain. But with the increasing number
of moments, the moment system can resolve the distribution function in the microscopic
velocity space, the oscillations are gradually alleviated, and the results of the moment
method converge to the solution obtained by the discrete velocity method.
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Figure 7: The density ρ, macroscopic momentum u, the local temperature T and heat flux q on different
number of moments M of the 1D-1D Wigner equation with only the classical acceleration and without the
scattering term at t=6. The thick dashed line is the reference solution.

4.2 Numerical convergence study for quantum system

As we have done to the Boltzmann equation in the previous section, we do the same
study to the Wigner equation in this subsection. The numerical convergence of the mo-
ment method is studied when it is applied on the 1D-1D Wigner equation with the quan-
tum acceleration term. We first examine the numerical convergence on different spatial
grid size. The same number of moments and grid size of mesh as in the classical system
are used here. The results of the density ρ, macroscopic momentum u, local temperature
T and heat flux q at t= 3 and t= 6 without and with the scattering term are plotted in
Figs. 8, 9, 11 and 12. Here, the same relaxation time τ=1/2 is chosen. From Figs. 8, 9, 11
and 12, we can find that the total effect of the potential on the particles in the quantum
system is smaller than that in the classical system. As to the convergence, it is obvious
that the results of the moment method is converging to the result of the discrete velocity
method with the decreasing of the spatial grid size. In Figs. 10 and 13, the L1 error of ρ,
u, T and q between the moment method and the discrete velocity method at t= 3, and
t=6 are plotted. The error is about linearly converging to zero with the decreasing of the
spatial grid size.
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Figure 8: The density ρ, macroscopic momentum u, local temperature T and heat flux q of the 1D-1D Wigner
equation with the quantum acceleration and without the scattering term on different spatial grids at t=3. The
thick dashed line is the reference solution.
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Figure 9: The density ρ, macroscopic momentum u, local temperature T and heat flux q of the 1D-1D Wigner
equation with the quantum acceleration and without the scattering term on different spatial grids at t=6. The
thick dashed line is the reference solution.
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Figure 10: The L1 error of the density ρ, macroscopic momentum u and the local temperature T between the
moment method using different spatial grid sizes and the discrete velocity method in the case of the 1D-1D
Wigner equation with the quantum acceleration and without the scattering term at t=3 and t=6. The x-axis
is the spatial grid size ∆x and the y-axis is the L1 error.
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Figure 11: The density ρ, macroscopic momentum u, local temperature T and heat flux q of the 1D-1D Wigner
equation with the quantum acceleration and with the relaxation time τ=1/2 on different spatial grids at t=3.
The thick dashed line is the reference solution.

The numerical convergence in terms of the number of moments is also studied then.
Again the 1D-1D Wigner equation without the scattering term is numerically solved. In
Fig. 14, the numerical results of ρ, u, T and q with the number of moments varying form
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Figure 12: The density ρ, macroscopic momentum u, local temperature T and heat flux q of the 1D-1D Wigner
equation with the quantum acceleration and with the relaxation time τ=1/2 on different spatial grids at t=6.
The thick dashed line is the reference solution.
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Figure 13: The L1 error of the density ρ, macroscopic momentum u, local temperature T and heat flux q
between the moment method using different number of the spatial grid size and the discrete method in the case
of the 1D-1D Wigner equation with the quantum acceleration and with the relaxation time τ=1/2 at t=3 and
t=6. The x-axis is the spatial grid size ∆x and the y-axis is the L1 error. The right y-axis is for heat flux.

5 to 25, and with fixed spatial grid size are plotted. Similar to the result in the classical
system, the oscillations are also appearing when the number of moments is small and are
disappearing with the increasing of the number of moments. Additionally, the results
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Figure 14: The density ρ, macroscopic momentum u, the local temperature T and heat flux q of the 1D-1D
Wigner equation with the quantum acceleration term and without the scattering term on different number of
moments at t=6. The thick dashed line is the reference solution.

of the moment method are also converging to the result of the discrete velocity method
with the increasing of the number of moments as well.

4.3 Total energy variation

It has been proved in Theorem 3.1 that the mass and the momentum are conserved by
our numerical scheme, while the total energy variation is of order O(∆t2) in one time
step. Thus, the variation of the total energy up to time scale O(1) is of order O(∆t). The
1D-1D Wigner equation with only the classical acceleration and without the scattering
term is computed here to examine the behavior of the total energy variation. The mesh
size ∆x = 0.4, 0.2, 0.05, 0.025 are used here. With a fixed CFL number, the time step
length ∆t are then used accordingly. The variation of the total energy in time in these
different setups are plotted in Fig. 15. It is clear that the variation of the total energy of
the numerical solution produced by our method is almost linear in time. For a fixed t, the
variation of the total energy is linear in terms of ∆t. The variation of the total energy for
the other computational configurations has the similar behavior. We omit these results to
avoiding redundancy.
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∑
k−1
j=1 Wh(t
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5 Concluding remarks

The NRxx method for the Boltzmann equation in [8] is extended to solve the moment
system of the Wigner equation. The numerical convergence of this method in terms of
both the spatial grid size and the number of moments is verified in the classical system
and the quantum system of the Wigner equation. It is validated by the numerical re-
sults that the moment system is an efficient model for the Wigner equation. With great
efficiency improvement achieved by the moment method compared with the discrete ve-
locity method, we are now on the way to carry out semiconductor device simulation
modelled by the Wigner equation.
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