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Abstract. Pyramidal elements are often used to connect tetrahedral and hexahedral
elements in the finite element method. In this paper we derive three new higher order
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1 Introduction

Let
K=

{

(x,y,z)∈R
3
∣

∣ |x|,|y|≤1−z, 0≤ z≤1
}

be the reference pyramidal element. For a continuous function f of K we shall look for
the numerical integration formulae

∫

K
f (x,y,z)dxdydz≈

n

∑
m=0

ωm f (Am), (1.1)

where weights ωm∈R
1 and at the same time positions of nodes Am∈K are appropriately

chosen so that Eq. (1.1) is exact for all polynomials of the highest possible degree.
Pyramidal elements are natural and useful for making face-to-face connections be-

tween tetrahedral and hexahedral elements in approximating the solutions of three-
dimensional initial and boundary value problems by the finite element method (see
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Figure 1:

Fig. 1). This often happens when one part of the solution domain is decomposed into
hexahedra and the other into tetrahedra (usually near a curved boundary).

In 1997 it was independently observed in [8] and [15] that a conforming finite ele-
ment method cannot be achieved with polynomial shape functions on pyramids. This
surprising statement was later exactly proved in [12] Liu et al., namely, that there is no
continuously differentiable function on the pyramid K that would be linear on its four
triangular faces and bilinear, but not linear, on its rectangular base. Therefore, in [12]
and [13] three symmetric composite finite elements with 5, 13, and 14 degrees of freedom
were introduced. Their piecewise polynomial shape functions on each pyramid yield a
conforming finite element space. Another way is to apply a nonconforming finite ele-
ment method (see, e.g., [2]), where finite element functions are, in general, discontinuous
on interior faces in a partition involving pyramidal elements. In this case we have to in-
tegrate polynomials and other smooth functions over pyramids to calculate the stiffness
matrix and the corresponding right-hand side (the load vector). For instance, the famous
discontinuous Galerkin method belongs to the class of nonconforming methods.

Numerical integration formulae on tetrahedra, prisms or hexahedra are very well
studied in the literature (see, e.g., [5, 7, 11]). However, up to the authors’s knowledge,
there are only a few papers dealing with numerical integration on pyramids. For in-
stance, nothing about this topic is mentioned in the encyclopedia [6]. Some special cu-
bature formulae on pyramids are treated in [9, 10, 14]. In [1] a bilinear surjective vector
mapping F from the unit cube to the reference pyramid K is proposed. The whole upper
face of the cube is mapped onto the upper vertex of K. Numerical integration on K is then
derived from the standard Gaussian formulae on the unit cube by means of the mapping
F. For instance, the numerical cubature formula that is exact for all cubic polynomials
has 8 nodal points inside the cube. Their images are inside of K, but the four upper
integration points are somewhat unnaturally accumulated near the top vertex (0,0,1).
Moreover, the corresponding numerical cubature formula (see Eq. (4.2)) is not exact for
all cubic polynomials. When solving nonlinear three-dimensional problems, numerical
cubature formulae usually cannot be avoided, since the entries of the stiffness matrix
and/or the right-hand side cannot be evaluated analytically.

In Sections 2 and 3, we derive new numerical cubature formulae which are exact
for all quadratic and cubic polynomials and they have only 5 and 6 integration points,
respectively. Our formulae are different from those presented in [1, 9, 10, 14]. Section
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4 is devoted to numerical tests, concluding remarks, and another higher order cubature
formula on pyramids. Our formulae have fewer integration points than the formulae of a
pyramid decomposed into two tetrahedra with the same approximation order applied to
each tetrahedron. For instance, our formula which is exact for all quadratic polynomials
on a pyramid has 5 integration points, whereas the use of the same order formula for two
tetrahedra (see, e.g., [11, p. 59]) requires evaluation at 2×4=8 points.

Now we introduce quite common formulae for the exact integration of monomial
functions over the reference pyramidal element K. For nonnegative integers i, j,k define

Iijk =
∫

K
xiyjzkdxdydz.

We observe that

Iijk =0 if i or j is odd. (1.2)

So let us calculate the integral of the monomial function xiyjzk when both i and j are even.
In this case

Iijk =
∫ 1

0

(

∫

|x|,|y|≤1−z
xiyjzk dxdy

)

dz

=
4

(i+1)(j+1)

∫ 1

0
(1−z)i+j+2zkdz=

4(i+ j+2)!k!

(i+1)(j+1)(i+ j+k+3)
, (1.3)

where the last equality was evaluated by means of the Bernoulli numbers.
To show the main idea of our approach in Sections 2-4, we first derive a very simple

numerical integration formula (1.1) which will be exact for all polynomials from the five-
dimensional space

Q(1)=span{1,x,y,z,xy}.

From Eq. (1.2) we see that it is enough to examine only two polynomial basis functions
from the set

P={1,z}.

We shall choose only one integration point A0=(0,0,z0) and solve the following equation
with two unknowns ω0>0 and z0∈ [0,1],

∫

K
p(x,y,z)dxdydz=ω0 p(A0), p∈P .

From this and Eq. (1.3) we get the system

ω0= I0,0,0=
4

3
, ω0z0= I0,0,1=

1

3
, (1.4)

yielding z0=
1
4 . Therefore, the resulting one-point numerical integration formula is

∫

K
p(x,y,z)dxdydz=

4

3
p(A0), ∀p∈Q(1),

where A0=(0,0, 1
4) is at the centre of gravity of K.
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2 Second order five-point numerical integration formula

Now we shall find numerical integration points and the corresponding weights so that
Eq. (1.1) is exact for all polynomials from the space

Q(2)=span{1,x,y,z,x2,y2,z2,xy,xz,yz,xyz,x2y,xy2,x2y2}.

Note that the dimension of Q(2) is the pyramidal number 14=1+4+9 which is the sum
of square numbers. In practice, shape functions of several kinds of often used pyramidal
finite elements are contained in this space. From Eq. (1.2) we observe that it is enough to
examine only the following 6 basis functions

P={1,z,x2,y2,z2,x2y2}.

As the pyramid K is symmetric with respect to the planes y=±x, we shall consider the
following five integration points A0=(0,0,z0)∈K and Am=(±a,±a,z1)∈K for m=1,2,3,4
with a>0 and the formula

∫

K
p(x,y,z)dxdydz=ω0 p(A0)+ω1

4

∑
m=1

p(Am), p∈P . (2.1)

Substituting all p∈P into Eq. (2.1) we get from Eq. (1.3) altogether six equations. Since
two of them (corresponding to x2 and y2) are the same, we obtain the following nonlinear
system of five algebraic equations for 5 unknowns

ω0+4ω1= I0,0,0=
4

3
, ω0z0+4ω1z1= I0,0,1=

1

3
, 4ω1a2 = I2,0,0=

4

15
,

ω0z2
0+4ω1z2

1= I0,0,2=
2

15
, 4ω1a4= I2,2,0=

4

63
.

From the third and fifth equation above we find that

a2 =
15

63
, a=

√

5

21
, ω1=

7

25
,

and from the first equation

ω0=
4

3
−4

7

25
=

16

75
.

From this, the second and fourth equation we obtain the following system

16z0+84z1 =25, 16z2
0+84z2

1 =10,

whose solution is z0 =(25−84z1)/16, where

z1=
35±2

√
35

140
.

In fact, we have got exactly two distinct solutions for z1, but the larger one yields a nega-
tive value of z0, so this case will be excluded. Thus, we get the following theorem about
the resulting five-point numerical integration formula.
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Theorem 2.1. Let K be the reference pyramid. Then

∫

K
p(x,y,z)dxdydz=

16

75
p(A0)+

7

25

4

∑
m=1

p(Am), ∀p∈Q(2), (2.2)

where A0=(0,0,z0), Am=
(

±
√

5/21,±
√

5/21,z1

)

,

z0=
70+21

√
35

280
=0.693705983732··· and z1=

35−2
√

35

140
=0.165484574527···. (2.3)

We see that Am∈K for m=1,··· ,4, since a<1−z1. Moreover, note that Eq. (2.2) is exact
particularly for all quadratic polynomials.

3 Third order six-point numerical integration formula

Finally, we propose numerical integration points and the corresponding weights so that
Eq. (1.1) is exact for all cubic polynomials from the space P3. This space is suitable for the
use of the famous Bramble-Hilbert Lemma (cf. [4]). Let us point out that the dimension
of P3 is the tetrahedral number 20=1+3+6+10 which is the sum of triangular numbers.
In practice, shape functions of several kinds of often used pyramidal finite elements are
contained in this space. According to Eq. (1.2), it is enough to examine only the following
8 basis functions

P={1,z,x2,y2,z2,x2z,y2z,z3}.

The pyramidal element K does not possess so many symmetries like the regular tetra-
hedron or cube. Therefore, our choice of integration points will be a bit artificial to
avoid an overdetermined or underdetermined nonlinear system of algebraic equations.
We shall consider similarly as in the previous sections the following integration points
A0=(0,0,z0)∈K, Am=(±a,±a,z1)∈K for m=1,2,3,4 with a>0, and the center of gravity
A5=G=

(

0,0,1/4
)

of K. We shall look for appropriate weights ω0,ω1,ω2 and coordinates
a,z0,z1 so that

∫

K
p(x,y,z)dxdydz=ω0 p(A0)+ω1

4

∑
m=1

p(Am)+ω2p(G), p∈P3. (3.1)

Substituting all p∈P into Eq. (3.1) we get from Eq. (1.3) altogether eight equations. Since
two equations corresponding to x2 and y2 and another two equations corresponding to
x2z and y2z are the same, we obtain the following nonlinear system of six algebraic equa-
tions for 6 unknowns

ω0+4ω1+ω2= I0,0,0=
4

3
, ω0z0+4ω1z1+

1

4
ω2= I0,0,1=

1

3
,

4ω1a2= I2,0,0=
4

15
, ω0z2

0+4ω1z2
1+

1

16
ω2= I0,0,2=

2

15
,

4ω1a2z1= I2,0,1=
2

45
, ω0z3

0+4ω1z3
1+

1

64
ω2= I0,0,3=

1

15
.
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From the third and the fifth equation above, we find that

z1=
1

6
. (3.2)

Hence, our system reduces to

ω0+4ω1+ω2=
4

3
, ω0z0+

2

3
ω1+

1

4
ω2=

1

3
, 4ω1a2 =

4

15
, (3.3a)

ω0z2
0+

1

9
ω1+

1

16
ω2=

2

15
, ω0z3

0+
1

54
ω1+

1

64
ω2=

1

15
. (3.3b)

Substituting ω2 from the first equation into the second, fourth, and fifth equation, we get
the following nonlinear system of three equations

3ω0z0−
3

4
ω0−ω1=0, (3.4a)

ω0z2
0−

1

16
ω0−

5

36
ω1=

1

20
, (3.4b)

ω0z3
0−

1

64
ω0−

19

432
ω1=

11

240
. (3.4c)

Now we substitute ω1 from the first equation into the second and third one to obtain

ω0

(

z2
0−

5

12
z0+

1

24

)

=
1

20
, ω0

(

z3
0−

19

144
z0+

5

288

)

=
11

240
. (3.5)

From this we get the cubic equation for z0

20
(

z2
0−

5

12
z0+

1

24

)

=
240

11

(

z3
0−

19

144
z0+

5

288

)

,

which can be rewritten as

z3
0−

11

12
z2

0+
1

4
z0−

1

48
=
(

z0−
1

6

)(

z0−
1

4

)(

z0−
1

2

)

=0,

i.e., all its roots are rational numbers.
By Eq. (3.5) the choice z0=1/6 or z0=1/4 yields an infinite value of ω0. The last value

z0=1/2 gives by Eq. (3.2)-Eq. (3.5) that ω0=3/5, ω1=9/20, ω2=−16/15, and a=
√

4/27.
Thus, we get the following theorem about the resulting six-point numerical integration
formula which is exact for all cubic polynomials.

Theorem 3.1. Let K be the reference pyramid. Then

∫

K
p(x,y,z)dxdydz=

3

5
p(A0)+

9

20

4

∑
m=1

p(Am)−
16

15
p(G), ∀p∈P3, (3.6)

where A0=
(

0,0, 1
2

)

, Am=
(

±
√

4/27,±
√

4/27, 1
6

)

and G=
(

0,0, 1
4

)

.
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We again see that Am∈K for m=1,··· ,4, as a<1−z1 =
5
6 .

A certain drawback is the negative value of ω2 =− 16
15 which may cause that the six-

point formula is sensitive to rounding errors in very large scale computations. On the
other hand, z-coordinates of all nodes are rational numbers, whereas in formula (2.2) all
z-coordinates are irrational numbers, see Eq. (2.3).

Remark 3.1. Numerical integration formulae on an arbitrary pyramidal element K′ can
be derived from Eqs. (1.4), (2.2) and (3.6) by means of an invertible affine mapping from
the reference pyramid K to K′.

Remark 3.2. To derive a numerical integration formula which would be exact for all
polynomial of the fourth degree, we should consider the set

P=
{

1,z,x2,y2,z2,x2z,y2z,z3,x4,y4,z4,x2y2,x2z2,y2z2
}

yielding a nonlinear system of 10 equations. For the time being, it is an open problem
how to choose an appropriate position of integration points in this case.

4 Numerical examples and concluding remarks

Numerical example. Let Ω=[0,1]×[0,1]×[0,1] be partitioned into N×N×N small sub-
cubes and let h=1/N. We decompose each subcube into six pyramidal elements contain-
ing a common vertex in the centre of each subcube (see Fig. 2). In this way we get the
partition Th of Ω into pyramids.

Figure 2:

For
f (x,y,z)= x3 sin(πy)sin(πz) on Ω,

define

E(h)=
∫

Ω
f (x,y,z)dxdydz− ∑

K′∈Th

n

∑
m=0

ωm f (AK′
m ),

where
∫

Ω
f (x,y,z)dxdydz=π−2 . By the Bramble-Hilbert Lemma (see [4,11]) we can estab-

lish that the error is of order E(h)=O(hd+1), where d is the maximal polynomial degree
for which the used numerical integration formula is exact.
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Table 1:

h−1 (1.4) Ratio (2.2) Ratio (3.6) Ratio (4.1) Ratio
4 -9.472e-4 None 4.595e-6 None 8.393e-7 None 5.238e-6 None
8 -2.266e-4 4.180 2.765e-7 16.621 2.331e-8 36.002 3.213e-7 16.303

16 -5.604e-5 4.044 1.712e-8 16.153 1.019e-9 22.881 1.999e-8 16.075
32 -1.397e-5 4.011 1.067e-9 16.038 5.690e-11 17.907 1.128e-9 16.019
64 -3.491e-6 4.002 6.666e-11 16.009 3.450e-12 16.490 7.796e-11 16.005

128 -8.725e-7 4.001 4.166e-12 16.002 2.140e-13 16.125 4.872e-12 16.001

From Table 1, we observe that the practical rate of convergence of the proposed
Eqs. (1.4), (2.2), and (3.6) seems to be O(h2), O(h4), and O(h4).

Why is the practical rate of convergence O(h4) of formula (2.2) one order higher than
its theoretical rate O(h3)? This remarkable superconvergence phenomenon can be ex-
plained as follows. The formula (2.2) integrates exactly not only all polynomials up to
the second degree, but also all cubic monomials xiyjzk when i or j is odd, i.e., x3, x2y, xy2,
y3, xyz, xz2, yz2. However, it integrates unexpectedly well also the cubic monomials x2z
and y2z that do not belong to Q(2). Namely, for ω1=

7
25 , a2 = 5

21 , and z1 given in Eq. (2.3)
we have

4ω1a2z1=0.04411··· ,

which is surprisingly very close to the value I2,0,1=
2

45 =0.04444··· with the relative error
less than 1%. For the remaining cubic monomial z3, we have by Eq. (2.3)

ω0z3
0+4ω1z3

1=0.07629··· ≈ I0,0,3=
1

15
=0.06666··· .

The difference between these two constants is again relatively small. Moreover, formula
(2.2) integrates exactly also the fourth order term x2y2. A further reason may be the
symmetry of the domain, of the partition, and of the function f , which may lead to can-
cellations of some numerical integration errors.

A further reason may be the symmetry of the partition, which leads to cancellations of
some numerical integration errors. In particular, we found that the monomials x2z, y2z,
and z3 are integrated exactly by Eq. (2.2) over the partition of Fig. 2. Note that formula
(2.2) does not have this superconvergence property on a single pyramidal element.

Remark 4.1. It seems from the numerical results of Eq. (3.6) in Table 1 that the error prac-
tically behaves like E(h)≈c1h4+c2h6 with c1≪c2, since the ratio E(2h)/E(h) is relatively
large for h=1/8 and h=1/16.

Remark 4.2. The space Q(2) from Section 2 can be expressed as follows

Q(2)=span
{

Q(1),x2,x2y,x2y2,xy2,y2,xz,yz,xyz,z2
}

,



C. Chen, M. Křı́žek and L. Liu / Adv. Appl. Math. Mech., 5 (2013), pp. 309-320 317

where Q(1)=span{Q(0),x,xy,y,z} with Q(0)=span{1}. Similarly, we can define the space

Q(3)=span
{

Q(2),x3,x3y,x3y2,x3y3,x2y3,xy3,y3,

x2z,x2yz,x2y2z,xy2z,y2z,xz2,yz2,xyz2,z3
}

,

which is more natural for the pyramidal element K than the space P3. Note that the
dimension of Q(3) is again equal to the pyramidal number 30=1+4+9+16.

Let A0 =(0,0,z0) with z0 ∈ [0,1], Am =(±a,±a,z1)∈K for m= 1,2,3,4 with a> 0 and
z1 >0, and let Am =(±b,±b,z2)∈K for m=5,6,7,8 with b>0 and z2 >0. Now consider a
nine-point integration formula so that

∫

K
p(x,y,z)dxdydz=ω0 p(A0)+ω1

4

∑
m=1

p(Am)+ω2

8

∑
m=5

p(Am), ∀p∈Q(3). (4.1)

In this case the corresponding set

P=
{

1,z,x2,y2,z2,x2z,y2z,z3,x2y2,x2y2z
}

contains 10 functions. However, the monomials x2 and y2 and also x2z and y2z produce
the same equations. So altogether we get a nonlinear system of 8 equations for 8 un-
knowns a,b,z0,z1,z2,ω0,ω1,ω2:

ω0+4ω1+4ω2= I0,0,0=
4

3
, ω0z0+4ω1z1+4ω2z2= I0,0,1=

1

3
,

4ω1a2+4ω2b2= I2,0,0=
4

15
, ω0z2

0+4ω1z2
1+4ω2z2

2= I0,0,2=
2

15
,

4ω1a2z1+4ω2b2z2= I2,0,1=
2

45
, ω0z3

0+4ω1z3
1+4ω2z3

2= I0,0,3=
1

15
,

4ω1a4+4ω2b4= I2,2,0=
4

63
, 4ω1a4z1+4ω2b4z2= I2,2,1=

1

126
.

Using substitutions r= a2, s= b2, and t=ω0/4, this nonlinear system can be simplified.
However, we were not able to solve it analytically like in Sections 1-3.

By means of a fixed-point based Homotopy Algorithm (see [3, p. 332]) we have got
the solution with accuracy 10−17 (see Table 2).

Table 2:

j ±xj, ±yj zj ωj

0 0 0.8602 7273 0595 7032 0.0381 9738 9067 2464
1 a=0.3358853513951881 0.4208 8174 7524 4836 0.1403 5406 0818 8171
2 b=0.5264217043960195 0.0874 7660 9247 1387 0.1834 2992 5247 7046

Notice that all weights are positive and the points Am are inside K. Since P3 ⊂Q(3),
the theoretical convergence rate of formula (4.1) is O(h4) which perfectly fits with the nu-
merical tests given in Table 1. We could, of course, consider another choice of integration
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points, e.g., A5 =(c,0,z2), A6 =(−c,0,z2), A7 =(0,c,z2) and A8 =(0,−c,z2). But this will
require a further research.

Comparison of (2.2) with other cubature formulae

Consider the Gaussian integration points Gm=(±
√

3/3,±
√

3/3,±
√

3/3), m=0,··· ,7, in-
side the cube C=[−1,1]3. It is known that the corresponding numerical cubature formula
on C is exact for all cubic polynomials (cf. [11, p. 59]). However, this positive property
will be negated by the surjective mapping F : C→K (proposed in [1]),

F(x,y,z)=
( x

2
(1−z),

y

2
(1−z),

1

2
(1+z)

)

,

which maps the whole upper face of C onto the upper vertex of the reference pyramid K.
The associated numerical cubature formula on K is given by

∫

K
f (x,y,z)dxdydz≈ω0

3

∑
m=0

f (Am)+ω1

7

∑
m=4

f (Am), (4.2)

where Am =F(Gm), for m=0,··· ,7, the z-coordinate of A0, A1, A2, A3 and A4, A5, A6, A7

is equal to z0=1/2−
√

3/6 and z1=1/2+
√

3/6, respectively. Solving the system

4ω0+4ω1=
4

3
, 4ω0z0+4ω1z1=

1

3
,

we find that ω0=(2+
√

3)/12 and ω0=(2−
√

3)/12 are such that Eq. (4.2) is exact for all
linear polynomials (but not quadratic).

In Table 3 we observe a quadratic rate of convergence of Eq. (4.2) for

f (x,y,z)=exy2z on Ω=[0,1]3 (4.3)

and the same families of decompositions as in the previous examples (see Fig. 2).
The exact value of the integral of f over Ω is (e−1)/6.

Table 3:

h−1 (4.2) Ratio (4.4) Ratio (2.2) Ratio
4 1.354e-3 None -4.701e-7 None 3.434e-7 None
8 3.390e-4 3.996 -2.953e-8 15.919 2.145e-8 16.013
16 8.477e-5 3.999 -1.848e-9 15.980 1.340e-9 16.003
32 2.119e-5 4.000 -1.155e-10 15.995 8.376e-11 16.001
64 5.299e-6 4.000 -7.221e-12 15.999 5.235e-12 16.000

128 1.325e-6 4.000 -4.513e-13 15.999 3.272e-13 16.000

Each pyramid can be bisected into two tetrahedra (even though it represents a certain
asymmetry of the resulting tetrahedralization). Let T be an arbitrary tetrahedron with
vertices V0,V1,V2,V3. Set

Am=αVm+β ∑
k 6=m

Vk
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for every m=0,1,2,3, where

α=(5+3
√

5)/20, β=(5−
√

5)/20.

According to [11, p. 59], the following cubature formula

∫

T
f (x,y,z)dxdydz≈ 1

4
measT

3

∑
m=0

f (Am) (4.4)

is exact for all f ∈P2(K). However, numerical results corresponding to Eq. (4.3) in Table
3 indicate that the rate of convergence seems to be O(h4) as for formula (2.2). The reason
for this high convergence rate is again a special structure of the partition of Fig. 2 which
leads to cancellations of some errors. Note that formula (2.2) requires only 5 function
evaluations on each pyramid, whereas Eq. (4.4) requires 8 evaluations.
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