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Abstract. In [SIAM J. Sci. Comput., 35(2)(2013), A1049–A1072], a class of multi-domain
hybrid DG and WENO methods for conservation laws was introduced. Recent appli-
cations of this method showed that numerical instability may encounter if the DG flux
with Lagrangian interpolation is applied as the interface flux during the moment of
conservative coupling. In this continuation paper, we present a more robust approach
in the construction of DG flux at the coupling interface by using WENO procedures of
reconstruction. Based on this approach, such numerical instability is overcome very
well. In addition, the procedure of coupling a DG method with a WENO-FD scheme
on hybrid meshes is disclosed in detail. Typical testing cases are employed to demon-
strate the accuracy of this approach and the stability under the flexibility of using either
WENO-FD flux or DG flux at the moment of requiring conservative coupling.
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1 Introduction

To maintain reliability of solution, high order methods with low diffusion and low dissi-
pation have become necessary when the structure of solution is complex and the resolu-
tion of traditional second order methods is not satisfactory. With this regard, high order
methods have been widely developed in solving nonlinear hyperbolic conservation laws
in recent years.

The first type is the high order finite difference (FD) schemes, for instance, the
weighted essentially non-oscillatory finite difference (WENO-FD) schemes [7, 8]. The
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obvious advantages of a WENO-FD schemes are highly efficient and easy to achieve
high order accuracy in structure meshes. It has usually been used in the direct numeri-
cal simulation (DNS) of turbulence or in the area of computational aeroacoustics (CAA)
where high order accuracy plays a significant role. Nevertheless, the difficulty in han-
dling complex geometries for this type of schemes limits their practical application. The
second type of high order methods belongs to high order finite volume (FV) schemes,
such as the weighted essentially non-oscillatory finite volume (WENO-FV) schemes [9]
and high order k-exact finite volume methods [10]. This type of methods has flexibil-
ity in handling almost arbitrary mesh and geometry which makes them dominant in the
CFD community. However, when it extends to high order accuracy, the implementation
of a FV type schemes usually becomes much involved since the number of cells used
for reconstruction increases tremendously when the accuracy order goes higher. The last
type is the high order discontinuous Galerkin (DG) type methods, which include the tra-
ditional Runge-Kutta discontinuous Galerkin (RKDG) methods developed by Cockburn
and Shu [1–3], the Spectral volume/difference (SV/SD) methods introduced by Wang
et al. [19–21] and the correction procedure via reconstruction (CPR) schemes recently
introduced by Huynh [22]. The DG type methods can fit for complex geometries in a
more flexible way and are compact as each element only communicates with its imme-
diate face-neighbors through approximate Riemann solvers. In DG type methods, one
important component is the construction of nonlinear limiters, see related work [4–6] for
reference. Unfortunately, this type of methods also suffers some not well solved issues
and weaknesses, such as high computational cost and difficulties in developing more re-
liable nonlinear limiters. These become major bottlenecks for DG methods in practical
applications.

All of those high order methods mentioned above have their advantages and disad-
vantages. In order to overcome the disadvantages of a specific type of methods, hybrid
methods which combine the advantages of two different kinds of high order methods
have been proposed. There are mainly two kinds of hybrid approaches presented in lit-
eratures for solving Euler equations, one is based on local polynomial reconstruction, the
other is based on computational domain decomposition.

Balsara et al. [11] adopted the first approach and presented a novel class of hybrid
RKDG and Hermite WENO schemes on structured grids. Their hybrid algorithm stores
cell averages as well as slopes for each cell of the RKDG methods and reconstructs high
order degrees of freedom through Hermite reconstruction. Luo et al. [12, 13] introduced
a reconstructed DG method (RDG) for Euler equations on arbitrary grids. In contrast to
the traditional RKDG methods, RDG reconstructs high order degrees of freedom using
a least-squares technique. The idea behind this hybrid approach is to combine the effi-
ciency of the reconstruction methods widely used in FV methods and the accuracy and
robustness of DG methods. Dumbser et al. [14] presented a unified framework for con-
structing one step finite volume and discontinuous Galerkin schemes on unstructured
meshes, resulting in a class of PNPM schemes. This approach yields two special cases:
classical high order finite volume methods (N = 0) and DG methods (N = M). Very
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recently, Zhang et al. [15–17] introduced a hybrid DG/FV method based on hybrid re-
construction approaches which were named ‘dynamic reconstruction’ and ‘static recon-
struction’. In their hybrid DG/FV method, a DG method based on Taylor basis functions
was adopted to compute the low order degrees of freedom. A high order finite volume
method is then used to reconstruct high order derivatives with the known low order
derivatives.

Based on the approach of computational domain decomposition, a multi-domain hy-
brid spectral-WENO method was introduced by Costa et al. [23] for hyperbolic conser-
vation laws. The hybrid spectral-WENO method conjugates the non-oscillatory proper-
ties of the high order WENO schemes and the high efficiency and accuracy of spectral
methods in a multi-domain approach. Recently, Shahbazi et al. [24] introduced a multi-
domain Fourier-continuation/WENO hybrid solver for conservation laws. He et al. [18]
developed a hybrid FE/FV scheme which adopts a DG method near solid wall and a
traditional second order finite volume method elsewhere. In the area of CAA, Utzmann
et al. [26,27] and Léger et al. [28] developed a coupled DG/FD solver for linearized Euler
equations. The coupled DG/FD solver can approximate the solution in the close neigh-
borhood of complex obstacles on an unstructured DG mesh and compute the rest of the
field on a Cartesian FD grid in order to alleviate computational time and resources.

In our previous work [25], a class of multi-domain hybrid DG and WENO methods
for conservation laws was introduced. Two versions of the multi-domain hybrid DG and
WENO methods were developed: one version is the hybrid DG/WENO-FV method, the
other is the hybrid DG/WENO-FD method. It seems unusual to combine an averaged-
value based DG method with a point-value based WENO-FD scheme in a domain de-
composition approach. Theoretical analysis had shown that the conservative coupling
approach deteriorates the accuracy seriously and only the non-conservative coupling ap-
proach can preserve high order accuracy at the coupling interface. Thus, a special treat-
ment was developed in the previous work: the non-conservative coupling approach is
employed when the solution is smooth enough and it is replaced by the conservative
coupling approach when there are possible discontinuities passing through the interface.
In our previous work, we recommended WENO-FD flux as the sole interface flux dur-
ing the moment of conservative coupling. Recent applications showed that numerical
instability can occur if the DG flux presented in [25] is applied at the interface during the
moment of conservative coupling. The cause of this instability lies in the reconstruction
procedure based on a direct Lagrangian interpolation as proposed in our previous work.
The direct Lagrangian interpolation approach was found unable to provide reliable val-
ues in recovering the degrees of freedom for a DG solution in target cells if there is a
strong discontinuity in the interpolation stencil.

In this paper, we introduce a more reliable approach of reconstructing DG flux based
on WENO interpolation. Compared to the previous Lagrangian interpolation, the new
approach is more robust and stable. This also provides us a flexible choice of using either
WENO-FD flux or DG flux during the moment of conservative coupling. Numerical
results to be given later show there are indeed no much difference using either DG flux
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or WENO-FD flux with the new approach. In addition, we present in detail the concrete
implementation of the hybrid DG/WENO-FD method for hyperbolic conservation laws
on hybrid meshes for the convenience of potential users in this work.

The rest of this paper is arranged as follows. In Section 2, we give a brief introduction
of the traditional DG method and the WENO-FD scheme. In Section 3, we present the
multi-domain hybrid DG/WENO-FD method for two dimensional conservation laws on
hybrid meshes. To verify the performance of the multi-domain hybrid method, various
numerical tests are presented in Section 4. Finally, concluding remarks and suggestions
for future work are given in Section 5.

2 Brief review of DG method and WENO-FD scheme

In this section, we use the following two dimensional scalar hyperbolic conservation law
to give a brief review of the DG method and the WENO-FD scheme:

{
ut+ f (u)x+g(u)y =0,

u(x,y,0)=u0(x,y), (x,y)∈Ω×(0,T).
(2.1)

2.1 Review of DG method

Define a given domain Ω which is divided into a collection of non-overlapping cells Ωe.
For the traditional DG method, the space of solution as well as the test function is given
by Vk

h ={v(x,y) :v(x,y)|Ωe
∈Pk(Ωe)}, Pk(Ωe) denotes a set of polynomials of degree equal

or less than k. In each cell Ωe, the numerical solution can be expressed as a piecewise
polynomial consists of several specific basis functions:

uh(x,y,t)=
k

∑
l=0

u(l)(t)v(l)(x,y), (x,y)∈Ωe, (2.2)

where {v(l)(x,y),l = 0,··· ,k} are local basis functions in Ωe. A set of local orthogonal
basis [4] is adopted in this paper. With the orthogonality property of the basis, the degrees
of freedom u(l) in Ωe can be written as:

u(l)(t)=
1

wl

∫

Ωe

uh(x,y,t)v(l)(x,y)dxdy, l=0,··· ,k, (2.3)

where wl =
∫

Ωe
(v(l)(x,y))2dxdy.

In order to determine the approximate solution, the DG method evolves the degrees
of freedom u(l)(t) with following differential equation which is obtained by multiplying
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the origin equation (2.1) with v(l)∈Vk
h and integrating by parts:

d

dt
u(l)(t)=

1

wl

(∫

Ωe

(
f (uh(x,y,t))

∂

∂x
v(l)(x,y)+g(uh(x,y,t))

∂

∂y
v(l)(x,y)

)
dxdy

−
∫

∂Ωe

( f (uh(x,y,t)),g(uh(x,y,t)))T ·n∂Ωe
·v(l)(x,y)ds

)
, l=0,··· ,k, (2.4)

where n∂Ωe
is the outward unit normal of edge ∂Ωe.

In (2.4), the integral terms can be computed by suitable numerical quadratures up to
2k for the element volume integral and up to 2k+1 for the edge integral. As uh(x,y,t)
is discontinuous at cell interfaces of Ωe, the flux ( f (uh(x,y,t)),g(uh(x,y,t)))T ·n∂Ωe

is re-
placed by a monotone numerical flux h∂Ωe

(u−,u+). In this paper, we simply use the
following Lax-Friedrichs flux as follow:

h∂Ωe
(u−,u+)=

1

2

(
f(u−)·n∂Ωe

+f(u+)·n∂Ωe
−α∂Ωe

(u+−u−)
)

, (2.5)

where f(u)=( f (u),g(u))T and α∂Ωe,n= |∂f(u)/∂u·n∂Ωe
|.

If there are strong discontinuities in solutions, the method above generates significant
oscillation and even becomes nonlinearly unstable. To avoid such difficulties, a nonlin-
ear TVD(TVB) [3] or WENO type limiter [4–6] must be employed to suppress numerical
oscillation.

2.2 Review of WENO-FD scheme

The WENO-FD scheme for two dimensional conservation laws is based on conservative
approximation to derivatives from point values. Uniform grid is generally required and
spatial derivatives of (2.1) are approximated as follow:

dui,j(t)

dt
=− 1

∆x
( f̂i+ 1

2 ,j− f̂i− 1
2 ,j)−

1

∆y
(ĝi,j+ 1

2
− ĝi,j− 1

2
). (2.6)

The numerical fluxes f̂i+1/2,j and ĝi,j+1/2 are obtained by the one dimensional WENO-FD
reconstruction procedure. Next, we fix y=yj and give a review of the reconstruction pro-

cedure for f̂i+1/2,j in the x-axis direction. For convenience, subscript ‘j’ is omitted in the
following description. It should be noted that the reconstruction in the y-axis direction is
similar.

The spatial derivative in the x-axis direction of Eq. (2.1) can be replaced by the fol-
lowing divided difference exactly

∂ f (u)

∂x
|x=xi

=
1

∆x

(
h(xi+ 1

2
)−h(xi− 1

2
)
)
, (2.7)
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where the definition of h(x) is:

f (x)=
1

∆x

∫ x+∆x/2

x−∆x/2
h(ξ)dξ. (2.8)

The WENO-FD scheme approximates h(x) which is denoted by f̂ (x) through recon-
structing an interpolation polynomial with known point values of f (u). We use a fifth-
order WENO-FD scheme as an example to illustrate the procedure. In a fifth-order

WENO-FD scheme, the numerical flux f̂i+1/2 is built through a convex combination of
three quadratic interpolation polynomials qk(x),k=0,1,2 in three stencils S0,S1,S2, where
S0 = { fi−2, fi−1, fi}, S1 = { fi−1, fi, fi+1} and S2 = { fi, fi+1, fi+2}. The numerical flux is eval-
uated with

f̂i+ 1
2
=

2

∑
k=0

wkqk(xi+ 1
2
), (2.9)

where wk is the nonlinear weight of stencil k which satisfies

2

∑
k=0

wk=1, wk≥0, k=0,1,2. (2.10)

The fifth-order WENO-FD scheme uses the following form of nonlinear weights

wk =
αk

∑
2
s=0αs

, αk =
dk

(ε+βk)2
, k=0,1,2, (2.11)

where dk is the linear weight of stencil k and βk is the smoothness indicator [7]

βk =
2

∑
l=1

∫ x
i+ 1

2

x
i− 1

2

∆x2l−1

(
∂lqk(x)

∂l x

)2

dx, k=0,1,2. (2.12)

In regions of smooth solution, the interpolation polynomial at the cell interface xi+1/2

follows

f̂i+ 1
2
=

1

60
(2 fi−2−13 fi−1+47 fi+27 fi+1−3 fi+2)

=hi+ 1
2
+O(∆x5), (2.13)

in the stencil S = { fi−2, fi−1, fi, fi+1, fi+2} to achieve fifth order of accuracy. In regions
which contain discontinuities, the nonlinear weights are assigned to preserve that the
solution is essentially non-oscillatory. The numerical flux ĝi,j+1/2 in the y-axis direction
can be achieved in a similar approach.
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3 Multi-domain hybrid DG and WENO-FD method on hybrid

meshes

From now on, we start to introduce our multi-domain hybrid DG and WENO-FD
(DG/WENO-FD) method. In this section, we will focus on its implementation for the
two dimensional scalar conservation law:

{
ut+ f (u)x+g(u)y =0,

u(x,y,0)=u0(x,y), (x,y)∈Ω×(0,T).
(3.1)

For the domain decomposition, we give an example in Fig. 1(a). As in Fig. 1(a), the
computational domain is divided into two subdomains which the left subdomain is han-
dled by the unstructured DG method and the right is applied by the WENO-FD scheme.
At the coupling interface denoted by x= xI+1/2,J , we assume the boundary size of a tri-
angle element of the unstructured mesh is equal to the size of a rectangle element in the
structured mesh, as shown in Fig. 1(b).

(a) Sample hybrid mesh

DG cell WENO-FD cell

Coupling interface

(b) Zoom in hybrid interface

Figure 1: Multi-domain hybrid DG/WENO-FD method on hybrid meshes.

The key issue of the multi-domain hybrid DG/WENO-FD method is the treatment
of numerical fluxes at the coupling interface in order to preserve high order accurate
for smooth solutions as well as keep robustness in handling discontinuities, such as
shock waves. From our experience of previous work in one dimensional hybrid meth-
ods, we found that conservative coupling between an averaged-value based DG method
and a point-value based WENO-FD scheme deteriorates the order of accuracy seriously.
Here, the conservative coupling means that at the coupling interface there is an unique
numerical flux defined. Furthermore, we have shown that a conservative hybrid DG
and WENO-FD scheme is of first order accuracy for smooth solutions. Thus, non-
conservative hybrid approach has to be adopted in order to maintain high order accuracy,
we need to construct numerical fluxes for the DG method and the WENO-FD scheme at
the coupling interfaces, respectively. Next, we will use the multi-domain coupling of a
third-order DG method with a fifth-order WENO-FD scheme as an example to illustrate
the procedure.
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DG WENO-FD

ghost WENO-FD points

coupling interface x = xI+ 1

2
,J

(a)

DG WENO-FD

Gaussian quadrature points

coupling interface x = xI+ 1

2
,J

Ie II+1,J

(b)

Figure 2: Flux construction of hybrid DG/WENO-FD method on hybrid meshes.

First, we focus on the construction of a WENO-FD flux at the coupling interface in
the x-axis direction. To construct the numerical flux at the interface x= xI+1/2,J , the DG
subdomain can provide the appropriate point values for the WENO-FD scheme. More

specifically, for the construction of f̃
(weno)
I+1/2,J , we need point values u

(weno)
I−2,J , u

(weno)
I−1,J , u

(weno)
I,J

at ghost points xI−2,J , xI−1,J , xI,J inside the DG subdomain. In this work, u
(weno)
I−2,J , u

(weno)
I−1,J ,

u
(weno)
I,J are simply calculated from the approximate polynomials provided from the DG

method at those cells as shown in Fig. 2(a).

Next, we present the procedure of constructing a DG flux at the coupling interface
x = xI+1/2,J . In the construction of a DG flux, we need to get the values of three Gaus-
sian quadrature points at the edge of coupling interface in Fig. 2(b). At each Gaussian
quadrature point, we need u±, the u− can be calculated from the DG solutions.

The u+ was obtained via direct Lagrangian interpolation in our previous work [25].
Recently we found that such approach may generate numerical instability in some situ-
ation. In this work, we give a more robust and stable approach to obtain these Gaussian
quadrature point values through the idea of WENO interpolation. Below is the detailed
steps of obtaining u+ at these Gaussian quadrature points of the coupling interfaces:

Step 1: Choose a stencil S={ui,j : i= I−1, I,··· , I+3; j= J−2, J−1,···, J+2}.

Step 2: Perform two dimensional WENO interpolation in the stencil S through a dimension by di-

mension approach and get the three Gaussian quadrature point values respectively, at xG=x
I+ 1

2 ,J− 1
2

√
3
5

,

xG =xI+ 1
2 ,J and xG=x

I+ 1
2 ,J+ 1

2

√
3
5

of the coupling interface x=xI+1/2,J.

Here, we use an example to explain the two dimensional WENO interpolation in
detail. In order to get the point value at xG=x

I+ 1
2 ,J− 1

2

√
3
5

through dimension by dimension

implementation, we need to obtain the point values at xG=x
i,J− 1

2

√
3
5

, i= I−1, I,··· , I+3 in
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the x-axis direction, respectively. They are obtained by WENO interpolation along the y-
axis direction. Below is the detailed procedures of calculating each Gaussian quadrature
point value at xG = x

i,J− 1
2

√
3
5

, i= I−1, I,··· , I+3 through the WENO interpolation in the

y-axis direction.

Step (2.1): Identify the stencil Si = {ui,j : j = J−2, J−1,···, J+2} and divide it into three small

stencil S
(0)
i ={ui,j : j= J−2, J−1, J}, S

(1)
i ={ui,j : j= J−1, J, J+1} and S

(2)
i ={ui,j : j= J, J+1, J+2}.

Step (2.2): Construct interpolation polynomial p(r)(x) in each stencil S
(r)
i , r=0,1,2 which satisfies

p(r)(xi,j)=ui,j, for xG we have

p(0)(xG)=
43−6

√
15

40
ui,J−

6−8
√

15

40
ui,J−1+

3−2
√

15

40
ui,J−2, (3.2a)

p(1)(xG)=
3−2

√
15

40
ui,J+1+

34

40
ui,J+

43+6
√

15

40
ui,J−1, (3.2b)

p(2)(xG)=
3+2

√
15

40
ui,J+2−

6+4
√

15

40
ui,J+1+

43+6
√

15

40
ui,J. (3.2c)

Step (2.3): Calculate the linear weights λr, smoothness indicator βr and nonlinear weights wr for

each stencil S
(r)
i r=0,1,2 by following the procedures described in Section 2.2, here for the Gaussian

quadrature point xG, we have the linear weights

λ0=− 17(3+4
√

15)

240(3−2
√

15)
, λ1 =1.0−λ0−λ2, λ2=

17(−3+4
√

15)

240(3+2
√

15)
. (3.3)

Step (2.4): Get the WENO interpolation value at the target Gaussian quadrature point where

u+
G ≈

3

∑
r=0

wr p(r)(xG). (3.4)

Step 3: Obtain the DG flux f̂
(dg)
I+1/2,J using the formula Eq. (2.5).

Compared with the procedures based on the direct Lagrangian interpolation in our
previous work, this new approach based on WENO interpolation can provide the ap-
proximated Gaussian quadrature point values with essentially non-oscillatory property.
Thus, it is more robust and enhances the stability of the conservative coupling approach

when DG flux is adopted at the coupling interface. As a result, the DG flux f̂
(dg)
I+1/2,J

becomes a new possible choice for the conservative coupling at the coupling interface.
It should be noted that although the description of above procedures is based on two
dimensional scalar equation, we can extend the above procedures of WENO interpola-
tion to two dimensional Euler equations easily through a component-wise approach or a
characteristic-wise approach.

There are two numerical fluxes: f̃
(weno)
I+1/2,J and f̂

(dg)
I+1/2,J at the coupling interface. In gen-

eral, f̃
(weno)
I+1/2,J is not equal to f̂

(dg)
I+1/2,J , thus the scheme is non-conservative. Numerical re-

sults show that the non-conservative hybrid DG/WENO-FD method above can preserve
third order accuracy for smooth solutions.
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The non-conservative hybrid DG/WENO-FD method can handle smooth solutions
well, however, when a discontinuity passes through the coupling interface, the non-
conservative approach suffers a serious loss in conservation and leads to inaccurate re-
sults. Conservation must be preserved at this time in order to avoid such numerical
inaccuracy. In order to detect a possible discontinuity approaching the coupling inter-
face, a natural way is to use a so-called ‘trouble cell indicators’ in the interpolation stencil
S. Trouble cell is the cell which discontinuities may appear and limiting procedure is
needed. If the interpolation stencil contains a trouble cell, it is wise to use conservative
coupling approach instead of non-conservative one at the coupling interface. That means
the non-conservative hybrid method comes back to be conservative when discontinuities
are approaching the coupling interface. Here, we use a TVD(TVB) trouble cell indicator
to detect possible discontinuities and the details are as follow:

We denote ūe,ūI+1,J ,ūI+2,J as volume averaged values of the cells Ie, II+1,J , II+2,J as
shown in Fig. 2(b). Here, ūI+1,J ,ūI+2,J are got through the integration of p(x,y) and ūe

is the zero degree of freedom of DG solution at Ie. Define uG
I+1/2,J , G = 0,1,2 are the

Gaussian quadrature point values reconstructed using WENO-FD point values at the
coupling interface,

ũG
I+ 1

2 ,J
= ūI+1,J−uG

I+1/2,J , ∆u+
I+ 1

2 ,J
= ūI+2,J−ūI+1,J , ∆u−

I+ 1
2 ,J

= ūI+1,J−ūe. (3.5)

By applying a TVD(TVB) minmod function at the coupling interface

m(a1,a2,a3)=

{
s·min{|a1|,|a2|,|a3|}, if sign(a1)= sign(a2)= sign(a3)= s,

0, otherwise,
(3.6)

we can get the modified ũ
G(mod)

I+ 1
2 ,J

as

ũ
G(mod)

I+ 1
2 ,J

=m(ũG
I+ 1

2 ,J
,∆u+

I+ 1
2 ,J

,∆u−
I+ 1

2 ,J
). (3.7)

If ũ
G(mod)
I+1/2,J 6= ũG

I+1/2,J for any Gaussian quadrature point, then there is a possible discon-
tinuity approaching the coupling interface and the conservative coupling approach is
applied at this time.

Finally, we summary the procedure of the multi-domain hybrid DG/WENO-FD
method in following steps:

Step 1: Initialize degrees of freedom for the DG subdomain and point values for the WENO-FD
subdomain;

Step 2: Construct numerical fluxes f̃
(weno)
I+1/2,J and f̂

(dg)
I+1/2,J at the coupling interface for the DG and

the WENO-FD subdomain, respectively;

Step 3: Use discontinuity indicator to identify possible discontinuities at the coupling interface:

if ũ
G(mod)
I+1/2,J = ũG

I+1/2,J, G = 0,1,2, the non-conservative coupling approach is adopted at the coupling
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interface; otherwise, the conservative coupling method is applied and an unique numerical flux f̃
(weno)
I+1/2,J

or f̂
(dg)
I+1/2,J is used at the coupling interface;

Step 4: Form the space discretization for the DG and the WENO-FD subdomain.

As for time discretization, an explicit third-order TVD Runge-Kutta method is used:

u(1)=un+∆tL(un), (3.8a)

u(2)=
3

4
un+

1

4
u(1)+

1

4
∆tL(u(1)), (3.8b)

un+1=
1

3
un+

2

3
u(2)+

2

3
∆tL(u(2)). (3.8c)

As the CFL number of a third-order RKDG method and a fifth-order WENO-FD schemes
is required to be 0.18 and 0.6, respectively. Thus, we take the CFL number equal to 0.18
for our hybrid DG/WENO-FD method for the purpose of stability. In the next section,
we will demonstrate the performance of the hybrid DG/WENO-FD method for two di-
mensional conservation laws.

4 Numerical results

4.1 Two dimensional scalar cases

Example 4.1. We test the accuracy of the hybrid DG/WENO-FD method to solve a two
dimensional linear advection equation with the following initial and periodic boundary
conditions. The subdomain interface is set at x=0.5,0.0<y<1.0 where the unstructured
DG method is applied in [0.0,0.5]×[0.0,1.0] and the structured WENO-FD scheme is em-
ployed in [0.5,1.0]×[0.0,1.0]. The computing time is till 1.0. We display the L∞ and L1

errors of DG and WENO-FD subdomains, respectively. The computing result is shown
in Table 1 with excepted accuracy.

{
ut+ux+uy=0, (x,y)∈ (0,1)×(0,1),

u(x,0)=sin(2πx)sin(2πy).
(4.1)

Table 1: Accurate test for the hybrid DG/WENO-FD method (Example 4.1).

N L∞(DG) L∞(WENO) Order L1(DG) L1(WENO) Order

1/20 6.33E-04 6.17E-04 1.13E-04 1.99E-04

1/40 6.35E-05 4.08E-05 3.31 1.17E-05 9.16E-06 3.27

1/80 7.77E-06 5.07E-06 3.00 1.44E-06 7.24E-07 3.02

1/160 9.39E-07 7.51E-07 2.76 1.82E-07 7.41E-08 2.98
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(a) Hybrid mesh (h=1/20) (b) Shock capture (h=1/40)

Figure 3: Sample hybrid mesh and shock capture for two dimensional burgers’ equation.

Example 4.2. We further test the performance of the multi-domain hybrid DG/WENO-
FD method for solving two dimensional inviscid burgers’ equation with the follow-
ing initial and periodic boundary conditions. The subdomain interface occurs at x =
0.0,−1.0<y<1.0. The computing time is till 0.5/π and 1.5/π. At T=0.5/π, the solution
is still smooth. We display the L∞ and L1 errors of the DG and the WENO-FD subdomain,
respectively. Numerical results show that accuracy is of third order accuracy as shown in
Table 2. At T=1.5/π, the numerical results illustrate that shock waves can correctly pass
through the coupling interface in Fig. 3(b).

{
ut+( u2

2 )x+( u2

2 )y=0, (x,y)∈ (−1,1)×(−1,1),

u(x,0)=0.5sin(π(x+y))+0.25.
(4.2)

Table 2: Accurate test for the hybrid DG/WENO-FD method (Example 4.2).

N L∞(DG) L∞(WENO) Order L1(DG) L1(WENO) Order

1/20 4.19E-03 6.09E-03 1.52E-04 1.01E-04

1/40 8.11E-04 5.21E-05 2.37 1.42E-05 5.23E-05 3.42

1/80 6.09E-05 2.40E-06 3.73 1.67E-06 2.02E-06 3.08

1/160 4.97E-07 2.70E-07 3.15 2.16E-07 6.76E-08 2.95

4.2 Two dimensional Euler cases

We consider the two dimensional Euler equations:

Ut+F(U)x+G(U)y=0, (4.3)
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where U=(ρ,ρu,ρv,E)T, F(U)=(ρu,ρu2+P,ρuv,u(E+P))T, G(U)=(ρv,ρuv,ρv2+P,u(E+
P))T. The total energy E is expressed

E=
P

γ−1
+

1

2
ρ(u2+v2), (4.4)

with γ=1.4 for ideal gas.

Example 4.3 (Double mach reflection). This is a standard test case for high resolution
schemes. The computational domain for this problem is chosen to be [0,4]×[0,1]. Initially
a right-moving Mach 10 shock is positioned at x=1/6,y=0 and makes a 60o angle with
the x-axis. The artificial interface is located at y=0.2,0.0< x<4.0 with the unstructured
DG method computing 20% regions of total domain near the bottom. The numerical
results are presented in Fig. 4 with a comparison among the traditional 3rd-order RKDG
method, the hybrid 3rd-order DG/WENO-FD method using DG flux and the hybrid 3rd-
order DG/WENO-FD method using WENO-FD flux, respectively. A series of density
contours are shown in Fig. 4. The hybrid solver using DG flux and using WENO-FD flux
both get good resolution comparable with the 3rd-order RKDG method, but we note that
our hybrid method is more efficient than the traditional RKDG method which nearly 60%
CPU time is saved in this test case. It should be noted that the DG flux with Lagrangian
interpolation as proposed in our previous work did not work out for this case.

Example 4.4 (Interaction of isentropic vortex and weak shock wave). This problem de-
scribes the interaction between a moving vortex and a stationary shock wave. The com-
putational domain is taken to be [0,2]×[0,1]. A stationary shock wave is located at x=0.5
with a shock Mach number 1.1. An isentropic vortex is superposed to flow left to the
shock wave with the following conditions:

δu= ετeα(1−r2)sinθ, (4.5a)

δv=−ετeα(1−r2)cosθ, (4.5b)

δT=
(γ−1)ε2e2α(1−r2)

4αγ
, (4.5c)

δS=0, (4.5d)

where τ=r/rc, r=
√
(x−xc)2+(y−yc)2, (xc,yc)=(0.25,0.5). Here, ε describes the strength

of the vortex, α is the decay rate of the vortex and rc is the critical radius of maximum
strength. For this test we choose ε=0.3, α=0.204, rc=0.05. We compare the performances
among the traditional 3rd-order RKDG method, the 3rd-order hybrid DG/WENO-FD
method using DG flux and 3rd-order hybrid DG/WENO-FD method using WENO-FD
flux, respectively. The coupling interface is located at y = 0.5,0.0 < x < 2.0. Numerical
results in Fig. 5 show that the resolution of hybrid DG/WENO-FD of both using DG flux
and WENO flux is stable and comparable to the 3rd-order RKDG method. However, in
contrast to the 3rd-order RKDG method, the 3rd-order hybrid solver saves almost 45%
CPU time with employing the hybrid strategy.
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(a) Sample hybrid mesh, mesh size h=1/20.

(b) 3rd-RKDG method, density 30 contours from 1.731 to 20.92,
mesh size h=1/120, t=0.2, CPU time: 92743.4s.

(c) 3rd-hybrid DG/WENO-FD method (using DG flux), density
30 contours from 1.731 to 20.92, mesh size h=1/120, t=0.2, CPU
time: 39757.3s.

(d) 3rd-hybrid DG/WENO-FD method (using WENO-FD flux),
density 30 contours from 1.731 to 20.92, mesh size h=1/120, t=0.2,
CPU time: 39894.4s.

Figure 4: Double mach reflection (Example 4.3).

Example 4.5 (Incident shock past a cylinder). This example concerns the simulation of
an incident shock wave interaction with a circular cylinder. The computational domain
is a rectangle with length from x=−1.5 to x=1.5 and height for y=−1.0 to y=1.0 with a
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(a) Sample mesh, mesh size h =
1/20.

(b) 3rd-RKDG method, density 30
contours from 1.0 to 1.24, mesh size
h=1/100, t=0.4, CPU time: 4105.9s.

(c) 3rd-hybrid DG/WENO-FD
method (using DG flux), density 30
contours from 1.0 to 1.24, mesh size
h=1/100, t=0.4, CPU time: 2073.6s.

(d) 3rd-hybrid DG/WENO-FD
method (using WENO-FD flux),
density 30 contours from 1.0 to
1.24, mesh size h=1/100, t=0.4, CPU
time: 2148.7s.

Figure 5: Interaction of isentropic vortex and weak shock wave (Example 4.4).

cylinder at the center. The diameter of the cylinder is 0.25 and its center is located at (0,0).
The incident shock wave is of Mach number 2.81 and the initial discontinuity is placed at
x=−1.0. We apply the unstructured DG method to handle curve boundaries in the sub-
domain [−0.5,0.5]×[−0.5,0.5] with the structured WENO-FD scheme for other regions.
The numerical results are presented in Fig. 6 with a comparison among the traditional
3rd-order RKDG method, the hybrid 3rd-order DG/WENO-FD method using DG flux
and the hybrid 3rd-order DG/WENO-FD method using WENO-FD flux, respectively. We
can see both the hybrid solver with DG flux and the hybrid solver with WENO-FD flux
show good performances in this case compared to the RKDG method, however, it should
be noted that the CPU time of our hybrid method is only about 1/6 of the traditional
RKDG method.
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(a) Sample hybrid mesh, mesh
size h=1/20.

(b) 3rd-RKDG method, pressure
25 contours from 1.0 to 20.0,
mesh size h=1/100, t=0.5, CPU
time: 41266.7s.

(c) 3rd-hybrid DG/WENO-FD
method (using DG flux), pres-
sure 25 contours from 1.0 to
20.0, mesh size h=1/100, t=0.5,
CPU time: 7219.6s.

(d) 3rd-hybrid DG/WENO-FD
method (using WENO-FD flux),
pressure 25 contours from 1.0 to
20.0, mesh size h=1/100, t=0.5,
CPU time: 7100.6s.

Figure 6: Incident shock past a cylinder (Example 4.5).

Example 4.6 (Subsonic flow past a NACA0012 airfoil). To demonstrate the flexibility
in handling different geometries of the hybrid DG/WENO-FD method, we present a
test case which a NACA0012 airfoil in the flow field with Mach number 0.4 and at-
tack angle 5.0◦. In this test case, unstructured meshes are applied in the domain
[−0.4,1.4]×[−0.4,0.4] around the airfoil and structured meshes used other computational
domains. Fig. 7(a) demonstrates a sample mesh of this test case with mesh size h=1/10.
Fig. 7(b) and Fig. 7(c) show the pressure and density contours of the computational result
of our hybrid solver with the entropy production on the airfoil surface shown in Fig. 7(d).
Also, we present the Cp distribution and convergence history which are compared to the
traditional third-order RKDG method in Fig. 7(e) and Fig. 7(f). The contour and Cp re-
sults by both methods has no much difference, however, a faster convergence was gained
by the present hybrid method.
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(a) Sample hybrid mesh, mesh size
h=1/10.

(b) 3rd-hybrid DG/WENO-FD method,
pressure 20 contours from 0.82 to 1.1, mesh
size h=1/20.

(c) 3rd-hybrid DG/WENO-FD method,
density 24 contours from 0.86 to 1.07, mesh
size h=1/20.
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Figure 7: Subsonic flow past a NACA0012 airfoil (Example 4.6).
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5 Concluding remarks

A robust approach of reconstructing DG flux based on WENO interpolation has been
introduced. Numerical experiments show it is robust and stable when there is strong dis-
continuity passing through the coupling interface and can achieve good performance
compared with the traditional RKDG methods. This provides us a flexible choice of
selecting interface flux for the moment of conservative coupling. The resultant hybrid
solver has demonstrated its flexibility in handling complex boundary geometries than
a pure WENO-FD scheme and its capacity of saving computational cost compared with
a traditional RKDG method. The stability analysis and the extension of the method to
Navier-Stokes equations is undergoing.
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