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Abstract. A method for simulating acoustic wavefronts propagating under random
sound speed conditions is presented. The approach applies a level set method to solve
the Eikonal equation of high frequency acoustics for surfaces of constant phase, instead
of tracing rays. The Lagrangian nature often makes full-field ray solutions difficult to
reconstruct. The level set method captures multiple-valued solutions on a fixed grid.
It is straightforward to represent other sources of uncertainty in the input data using
this model, which has an advantage over Monte Carlo approaches in that it yields an
expression for the solution as a function of random variables.
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1 Introduction

Modeling and simulation of underwater sound propagation in shallow water environ-
ments is critical to the design of acoustic systems and system performance evaluation.
Although not a full substitute for in-water operational testing, access to high fidelity sim-
ulation can drastically reduce the need for expensive, risky, in-water experiments. One
such family of applications involves high frequency active arrays operating in environ-
ments where reverberation dominates the noise field. Transmit frequencies at least on the
order of 10 kHz render full wave equation simulations computationally impractical due
to the need for high mesh resolution in space and time.

∗Corresponding author. Email address: sheri martinelli@alumni.brown.edu (S. L. Martinelli)

http://www.global-sci.com/ 1081 c©2014 Global-Science Press



1082 S. L. Martinelli / Commun. Comput. Phys., 16 (2014), pp. 1081-1101

For this reason, it is common to apply the geometric acoustics (geometric optics) ap-
proximation, c.f. Chapter 3 in [1], to the linear wave equation for the acoustic pressure,

ptt−c(x)2△p=0, (1.1)

p(t,x)≈ eiωS(t,x)
∞

∑
k=0

Ak(t,x)(iω)−k, (1.2)

to yield an Eikonal equation for the acoustic phase:

S(t,x)±c|▽S(t,x)|=0, (1.3)

and a transport equation for the first amplitude term:

(A0)t+c(x)
▽S·▽A0

|▽S| +
c(x)2△S−Stt

2c(x)|▽S| A0=0. (1.4)

Eq. (1.2) is based on a WKB expansion about the large parameter ω. The standard com-
putational approach to solving the nonlinear equation (1.3) is ray tracing, which is based
on the method of characteristics. This is a Lagrangian method: the user specifies initial
conditions for a number of rays, i.e., location and starting angles from an initial wave-
front, and solves for the resulting trajectories defined by the system with Hamiltonian
H(x,k)=c(x)|k|, where k is the generalized momentum vector. Examples of applications
that rely on ray tracing for system design and performance prediction include acoustic
tomography [2] and underwater communications [3]. In acoustic tomography, accurate
travel time data between a source and receiver over long ranges are used to infer infor-
mation about ocean currents and temperatures. Both applications have a need for sorting
out multi-path time arrivals that occur as a result of ray bending, and surface and bottom
scattering. The ray approach has many known limitations. In particular, the Lagrangian
nature of the model leads to difficulty resolving wave arrivals at a fixed location in space
since the user does not have control over the spatial discretization beyond the source.
That is, small perturbations in the ray shooting angle can lead to significantly differ-
ing trajectories. This is especially true in range-dependent, shallow water environments
where reflections from rough surfaces may scatter the trajectories further. Hence there is
benefit to consider fixed frame of reference approaches. Toward that end, [4] proposes
applying the level set method [5, 6] to the problem of high frequency underwater acous-
tic propagation. The level sets approach solves the Eikonal equation (1.3) in the phase
space (x,k) by representing the initial wavefront as the zero level set of a vector-valued
function Φ(t,x,k) in the higher-dimensional space. The wavefronts propagate according
to the velocity field determined by the local ray direction, but on a fixed spatial grid. One
recovers the wavefront at time t by projecting the zero level set of Φ(t,x,k) back into the
physical space.

The intent of this work is to extend the method outlined in [4] to generate realiza-
tions of propagating wavefronts in the presence of random perturbations in the sound
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speed profile. In fact, existing simulations tend to treat the acoustic environment in a
deterministic manner, incorporating the uncertainty in post-processing. For example, a
point scattering approach to simulating reverberation takes the results of a deterministic
ray trace and adds randomness to the arrival times and arrival angles of the rays at the
receiver. The assumption these models make is that the variation in arrival time and an-
gle of a ray at the receiver due to unknown or un-modeled environment aspects is small.
However, even small perturbations can have a drastic effect on the resulting ray trajecto-
ries. It has been shown [7] that under weak sound speed fluctuations, wavefronts exhibit
greater stability than rays, in the sense that the significant ray perturbations tend to occur
along the wavefronts rather than across them. Thus a wavefront propagation algorithm
that incorporates uncertainty in the environmental parameters is potentially a very use-
ful tool for design and testing of acoustic systems. The present work seeks to incorporate
the uncertainty directly into the environment model and use this information to construct
solutions on a fixed grid. So two difficulties are addressed: first, the method solves the
relevant equations on a fixed grid to eliminate the need to interpolate over increasingly
sparse ray arrivals, and second, the model includes the uncertainty where it occurs (the
environment). Thus this type of approach offers improved simulation fidelity.

1.1 Related work

The work presented here is based on the foundation and results proposed in [4] and [8].
Those efforts explored the application of a level set method described in [6] to problems
in underwater acoustic propagation.

The approach to managing environmental uncertainty is based on the work of Xiu
and Hesthaven [9], which presents a stochastic collocation approach to solving partial
differential equations involving non-white processes. Stochastic collocation is built on
the framework of polynomial chaos expansions in terms of random variables. If the un-
certainty is in the form of a stochastic process, one first applies a Karhunen-Loève ex-
pansion to obtain an expression of the process in terms of independent (or uncorrelated
as it may be) random variables. Classical stochastic calculus approaches assume ide-
alized, white (uncorrelated) processes, whereas most physical processes do have some
manner of correlation that cannot be neglected. Monte Carlo techniques — the standard
for these types of problems — are effective and easy to implement, but suffer from slow
convergence. Stochastic collocation methods using deterministic sampling approaches
converge very fast for certain processes, though the performance depends on the dimen-
sion of the random space. Chauviere, Hesthaven and Lurati later applied the method
to computational electromagnetics in [10]. Nobile, Tempone and Webster undertook a
study of stochastic collocation on sparse grids for elliptic and diffusion equations [11].
The works of Preston, et al. [12], and later that of Pätz and Preusser [13] apply similar
techniques to related problems in biomedical engineering and image segmentation, re-
spectively. However their applications differ from the present work in the underlying
physics and the use of level set functions.
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1.2 Outline

In [4], a method is described for computing solutions to the deterministic transport (or
level set) equation,

ft+c(x,z)cos(θ) fx+c(x,z)sin(θ) fz+(cx sin(θ)−cz cos(θ)) fθ =0, (1.5)

alternately,

∂ f

∂t
=L f ,

L=−V·∇,
(1.6)

representing two-dimensional propagation in a water column with symmetry in the y-
direction, e.g. an infinite line source. Eq. (1.5) is a Liouville equation that evolves an
initial wavefront in the direction of its normal vector which is the local ray direction,
where c(x,z) is the wave speed in the medium. The Liouville equation is solved for a
vector level set function Φ(t,x,z,θ) with two components. The wavefront at a fixed time
t may be extracted as the intersection of the zero level sets of the two components.

This work addresses the case of a wave speed given by c(x,z;~ξ), with (x,z) ∈ D ⊂
R

2, and a random vector ~ξ taking values in a probability space (Ω,F ,P). In the usual
notation, Ω is the sample space, F is the σ-algebra of events in Ω, and P is the probability

measure on the space. Assume that c(x,z;~ξ) has the form

c(x,z;~ξ)= c0(x,z)+ǫc′(x,z;~ξ), (1.7)

with c′(x,z;~ξ) a zero-mean process, and ǫ is a small, non-negative constant used here to
illustrate that the uncertainty is a result of small perturbations to the sound speed.

Section 2 provides background on the tools applied in the proposed model. Section 3
derives the relevant expansions for a single parameter expansion where c′(x,z;ξ) is a

uniform random variable, then extends it to allow c′(x,z;~ξ) to be a zero-mean Gaussian
random field on the physical space. The Gaussian assumption is not a limitation, but
offers mathematical convenience. Finally we present some numerical examples in Sec-
tion 4 and conclude in Section 5. Although the work presented here limits its scope to
a single random input parameter, the sound speed, the approach is general and directly
applicable to other sources of uncertainty.

2 Background

2.1 The level set method

The level set method is derived from the Hamilton-Jacobi form of (1.3),

St(t,x)+H(x,k)=0, (2.1)

H(x,k)= c(x)|k|. (2.2)
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The momentum k is identified with ▽S. The Hamiltonian is conservative, i.e., H(x,k)
satisfies ∂H

∂t =0, thus H is constant so that (taking H≡1) |k|= 1
c . This allows one to reduce

the dimension of full phase space by one. If x∈R
2 for instance, then k=( cosθ

c , sinθ
c ) and

one need only consider θ as an independent variable in phase space. The bicharacteristic
strips, (x,k), satisfy the relations

ẋ(t)=▽kH(x,k)= c(x(t))
k(t)

|k(t)| , (2.3a)

k̇(t)=−▽xH(x,k)=−|k(t)|▽xc(x(t)). (2.3b)

Restricting to propagation in two-dimensional physical space with x=(x1,x2), Eqs. (2.3)
reduce to

ẋ1(t)= c(x1(t),x2(t))cosθ(t), (2.4a)

ẋ2(t)= c(x1(t),x2(t))sinθ(t), (2.4b)

θ̇(t)=
∂c

∂x1
sinθ(t)− ∂c

∂x2
cosθ(t). (2.4c)

Consider the zero level set of a function Φ(t,x1(t),x2(t),θ(t)) = 0. Differentiating with
respect to time shows that Φ satisfies a Liouville equation (c.f. Eq. (1.5))

Φt+V·▽Φ=0 (2.5)

with

V=





ẋ1(t)
ẋ2(t)
θ̇(t)



. (2.6)

This is the premise of the level set method. By embedding the initial wavefront in the
zero level set of a function defined in the reduced phase space, one may propagate the
surface using the first-order transport equation (2.5). The velocity field V is defined by
the ray equations (2.4).

2.2 Generalized polynomial chaos

The generalized Polynomial Chaos (gPC) expansion is a function expansion in terms of
an orthogonal polynomial basis on the probability space (Ω,F ,P) as follows. Let ξ be a
random variable, ξ :Ω→R with distribution function F(y)=P(ξ≤y) and finite moments
E
[

|ξ|2m
]

=
∫

|y|2m dF(y)<∞,m= 0,··· ,Np. The gPC expansion of a univariate function
f (s;ξ) dependent on the random variable ξ is then

fgPC(s;ξ)=
Np

∑
n=0

f̂n(s)ψn(ξ). (2.7)
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The orthogonality condition for the gPC basis functions is

E[ψn(ξ)ψm(ξ)]=
∫

ψn(ξ)ψm(ξ)w(ξ)dξ =γnδnm, (2.8)

where δnm is the Kronecker delta, w(ξ) is a weight function with respect to which the
basis functions are orthogonal, and γn=E[ψ2

n(ξ)]. Thus, a good choice of basis functions
are those satisfying (2.8) with respect to a weight function that corresponds to the distri-
bution F(ξ). That is, the weight function w(ξ) is related in form to the probability density
function (PDF) ρ(ξ) defined as dF(ξ)=ρ(ξ)dξ. The orthogonality condition leads to the
expression for the coefficients f̂n(s):

f̂n(s)=
1

γn

∫

f (s;ξ)ψn(ξ)ρ(ξ)dξ . (2.9)

2.2.1 Expansion in a uniform random variable

Let ξ ∼U[−1,1] be a uniformly distributed random variable on the interval [−1,1], with
PDF

ρ(ξ)=

{

1
2 , −1≤ ξ≤1,

0, otherwise.
(2.10)

One can always transform ξ to a U[a,b] random variable by ξ̃=
(

b−a
2

)

ξ+ b+a
2 . The require-

ment (2.8) then implies that an expansion in Legendre polynomials is appropriate, with
normalization constant γ̃n =

1
2n+1 which is scaled by a factor of 1

2 to account for the PDF
scaling.

2.2.2 Expansion in a Gaussian random variable

Let ξ ∼ N(0,1) be a standard Gaussian random variable (i.e., zero-mean and variance
σ2=1), defined on R, with PDF

ρ(ξ)=
1√
2π

e−ξ2/2. (2.11)

One can always transform ξ to a N(µ,σ2) random variable by ξ̃=σξ+µ. The orthogonal-
ity condition (2.8) then implies that an expansion in Hermite polynomials is appropriate,
with normalization constant γn=n!. As in [14], the definition of Hermite polynomials ap-
plied here is modified from the classical Hermite polynomials to account for the scaling
in the PDF. The modified Hermite polynomials satisfy the three-term recursion

H0(ξ)=1, (2.12a)

H1(ξ)= ξ, (2.12b)

Hn+1(ξ)= ξHn(ξ)−nHn−1(ξ), n=1,2,··· . (2.12c)
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2.2.3 Multivariate expansion

It is rarely the case that there is only one source of uncertainty in a system. Also many
sources of uncertainty are more realistically modeled as a random process and require
characterization in several random variables (c.f. Section 2.3).

Consider now a d-dimensional random vector with mutually independent compo-

nents~ξ=(ξ1,··· ,ξd). Independence ensures that the distribution Fξ(ξ1,··· ,ξd)=∏
d
i=1 Fξi

(ξi),
where Fξi

(ξi) is the marginal distribution of ξi. Let each ξi be associated with a gPC basis

{ψk(ξi)}Np

k=0 for PNp(ξi), the space of polynomials of degree at most Np in ξi. Define a

multi-index i=(i1,··· ,id) and let |i|= i1+···+id. Then a gPC basis for P
d
Np

, the space of

d-variate polynomials of degree at most Np, may be defined as
{

Ψ(~ξ)
}Np

|i|=0
where

Ψi(~ξ)=ψi1(ξ1)ψi2(ξ2)···ψid
(ξd). (2.13)

Again owing to the independence assumption, the orthogonality relation is

E

[

Ψi(~ξ)Ψj(~ξ)
]

=γiδij, (2.14)

where γi =γi1 ···γid
and δij = δi1 j1 ···δid jd . The space P

d
Np

has dimension (Np+d
Np

) [14]. The

generalization of (2.7) is then

fgPC(s;~ξ)=
Np

∑
|n|=0

f̂n(s)Ψn(~ξ). (2.15)

2.3 Karhunen-Loève expansion

To apply the techniques discussed in this work, it is necessary to express the uncer-
tainty in terms of a finite number of mutually independent random variables. Let X(s)≡
X(s;ω),ω∈Ω, be a random process on [0,S]×Ω with covariance Kx(r,s). Without loss of
generality, assume that X(s) is a zero-mean process to simplify notation.

The Karhunen-Loève (KL) expansion provides a partial characterization of the pro-
cess in terms of a series expansion in orthogonal functions,

X(s,ω)=mX(s)+
∞

∑
i=1

ϕi(s)Xi(ω), 0≤ s≤S. (2.16)

This provides only a partial characterization in the sense that it is a second moment char-
acterization; it is a full characterization for Gaussian processes however. The orthogonal-
ity corresponds to the condition that the Xi are uncorrelated, i.e.,

E
[

XiXj

]

=λiδij. (2.17)
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The λi correspond to the expected energy of the component ϕi(s). The random variables
are defined by

Xi=
∫ S

0
X(s,ω)ϕi(s)ds. (2.18)

The λi and ϕi(s) are eigenvalue - eigenfunction pairs that solve the integral equation [15]

λi ϕi(s)=
∫ S

0
Kx(r,s)ϕi(r)dr . (2.19)

It is worth noting that this expansion requires that the values of s be restricted to a com-
pact set.

We restrict our consideration to Gaussian processes for the following reasons:

1. The central limit theorem suggests that the Gaussian model is appropriate for many
physical systems [14].

2. The Xi in (2.18) are Gaussian by definition, if X(s,ω) is a Gaussian process.

3. Since the Xi are Gaussian and uncorrelated by design, they are independent; so the
multivariate gPC assumptions are satisfied.

In light of (2.17), one may express (2.16) in terms of standard N(0,1) random variables,

X(s,ω)=
∞

∑
i=1

√

λi ϕi(s)ξi(ω), 0≤ s≤S. (2.20)

It is not always the case that the Gaussian model is an appropriate one. For instance,
it may not always be realistic to model certain phenomena such as scattering to take
values over the real line. Even allowing the sound speed profile to satisfy the Gaussian
process model is unrealistic in the sense that c(x,z)> 0; it may be more appropriate to
use a truncated Gaussian or Beta distribution. However, the same techniques apply in
practice in the non-Gaussian case; only the mathematics are not as tidy since uncorrelated
random variables need not be independent.

Additionally, in practice one must truncate the expansion in (2.16) to include only a
finite number of terms. For a second order stationary process (i.e., Kx(r,s) depends only
on σ= r−s) the decay rate of the eigenvalues λi as i increases is related to the decay rate
of the spectrum Sx(ν)=

∫

Kx(σ)e−iνσ dσ. Alternately, the decay rate of the λi is inversely
related to the spread of the covariance function, Kx(r,s)=Kx(σ). For example, if X(s,ω)
is an uncorrelated (white) process, then Kx(r,s) is an impulse, and the eigenvalues are
all equal. In fact, the KL expansion does not converge in this case since the kernel is not
in L2(0,S). On the other hand, if Sx(ν) has compact support, i.e., X(s,ω) is band-limited
with bandwidth W, then the eigenvalues decay very rapidly, in fact only the eigenvalues
up to i=2WS+1 are significant [15]. More detailed estimates are available in [16].
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2.3.1 Rational spectrum

The rational spectrum case permits an expansion for which an analytical solution to (2.19)
is available. This choice is primarily for convenience and to show that the general tech-
niques apply within the level sets framework. The full derivation is given in [15]. Con-
sider the spectrum for a process X(s,ω),

SX(ν)=
2a

a2ν2+1
. (2.21)

The covariance function associated with (2.21) is

Kx(r,s)=exp(−|s−r|/a), (2.22)

and a is the correlation length. The correlation length will affect the eigenvalue decay
rate, as discussed above. The associated integral equation is

∫ S

0
exp(−|s−r|/a)ϕ(r)dr=λϕ(s), −S≤ s≤S. (2.23)

The eigenvalue solutions λj satisfy

λj =







2a
1+a2α2

j

, j odd,

2a
1+a2β2

j

, j even.
(2.24)

The αj and β j are solutions to the following transcendental equations:

{

1+aαj tan(αjS)=0, j odd,

aβ j+tan(β jS)=0, j even.
(2.25)

The associated eigenfunctions are

ϕj(s)=











cos(αjs)√
S+sin(2αjS)/(2αj)

, j odd,

sin(β js)√
S−sin(2β jS)/(2β j)

, j even.
(2.26)

For a process on [0,2S], substitute r= s+S into the above, and (2.23) is still satisfied for
ϕ̃j(r)≡ ϕj(r−S). The correlation length a controls the eigenvalue decay rate; if a is small,
the eigenvalues decay very slowly. For large a, they decay rapidly. For small a, any
truncation will result in significant error. Fig. 1 displays the eigenvalues as a function of
the number of expansion terms for a= 1,5,10,20. For a= 1, the eigenvalues decay quite
slowly.

The rational spectrum extends readily to two dimensions as well. Let

Kx ((r1,r2),(s1,s2))=exp(−|s1−r1|/a1−|s2−r2|/a2), (2.27)
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Figure 1: Eigenvalues for the exponential covariance function with correlation length a.

and assume that ϕ(s1,s2)= ϕ(1)(s1)ϕ(2)(s2). Then the analogue of (2.23) is

λϕ(1)(s1)ϕ(2)(s2)=
∫ ∫

Kx ((r1,r2),(s1,s2))dr1dr2

=
∫

exp

(

−|s1−r1|
a1

)

ϕ(1)(r1)dr1

∫

exp

(

−|s2−r2|
a2

)

ϕ(2)(r2)dr2

=λ(1)ϕ(1)(s1)λ
(2)ϕ(2)(s2). (2.28)

So if a1 6=a2, the eigenvalues and eigenfunctions are just products of the one-dimensional
eigenvalues and eigenfunctions. If a1 = a2, each eigenvalue corresponds to two eigen-
functions so the basis functions are

ϕk(s1,s2)=
1√
2

(

ϕ
(1)
i (s1)ϕ

(2)
j (s2)+ϕ

(1)
j (s1)ϕ

(2)
i (s2)

)

. (2.29)

3 Propagating acoustic wavefronts under random sound speed

conditions

An acoustic propagation algorithm requires input in the form of a Sound Speed Profile
(SSP) specifying c(x,z) which defines the velocity field V, bottom depth as a function of x
specifying zb(x), and a source location to initialize the level set functions. The amplitude
equation is neglected in this work in order to study geometric solutions produced by the
level set method. Focusing on the SSP, the profiles are often computed using empirical
models dependent on measurements of depth, salinity and temperature. Variation in x
and y coordinates of physical space is less significant and hence, frequently neglected.
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These quantities are typically available as measured data, subject to errors in the
equipment used to take the measurements, as well as the unknown variability in the
environment. For instance, the SSP varies not only in space, but with time of day. This is
especially true in shallow water where warming and cooling patterns in the atmosphere
have a predominant effect.

There are also effects of un-modeled (e.g., non-linear) processes on propagation to
consider, like internal waves and currents, which are of interest due to the fact, at least
for long range propagation, that these un-modeled effects can result in significant devi-
ations of ray paths [17, 18]. It is also common to ignore SSP variability in x (or range in
the azimuthal symmetry model), and the effects of many small scatterers on propagation,
e.g., bubbles. The method presented here is an application of uncertainty quantification
techniques to the level set method as a way to obtain wavefront solutions, in a proba-
bilistic sense, in the presence of uncertainty in the SSP. This capability is valuable since
the eigenray problem is highly sensitive to small perturbations in initial conditions. The
examples used here are simplified, serving to illustrate that these techniques are applica-
ble to the level set method. It is also worth noting that these techniques are not limited to
modeling wave speed uncertainty; the same methods apply to models involving multiple
random parameters. Other sources of uncertainty that one might wish to model include,
but are not limited to, source and receiver positions and rough surface scattering. The
result would be an increase in the dimension of the random space.

3.1 Stochastic collocation

Recall that the goal is to solve (1.6):

∂φl

∂t
=Lφl , (3.1a)

L=−V·∇, (3.1b)

for l=1,2 with V as in (2.6). Now φl =φl(t,x,z,θ;~ξ), with ~ξ =(ξ1,··· ,ξd) a random vector

with mutually independent components, ~ξ : Ω→R
d. The initial conditions are φl(0,·)=

φ0
l (·), and appropriate boundary conditions for (x,z,θ)∈ D×[−π,π) are available. For

example, to initialize a point source at (xs,zs), take

φ0
1(x,z,θ)= x−xs, (3.2a)

φ0
2(x,z,θ)= z−zs. (3.2b)

For a fixed ω0 ∈ Ω, φl is a deterministic function of (t,x,z,θ,~ξ(ω0)), with ~ξ(ω0) repre-
senting a set of input parameters. Thus one may solve (1.6) using the techniques pre-
sented in [4] and [19]. In the stochastic collocation method, one prescribes a set of nodes,

ΘM=
{

~ξ(k)≡~ξ(ω(k))
}M

k=1
and applies the deterministic solver to compute a corresponding

solution set,
{

φ
(k)
l (·;~ξ(k))

}M

k=1
, l = 1,2. Formally, the stochastic collocation problem is to
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find φ̃l(·;~ξ)∈P
d
Np

such that limNp→∞ ||φ̃l(·;~ξ)−φl(·;~ξ)||=0, where the norm is typically the

mean square norm. This implies an approximate representation of φ̃l via (2.15). There are
two methods for constructing the collocation solution: interpolation and discrete projec-
tion (pseudospectral) [14]. In the interpolation approach, one selects the node set ΘM and

constructs the coefficients φ̂l,n(t,x,z,θ) by requiring that φ̃l

(

·;~ξ(k)
)

=φ
(k)
l

(

·;~ξ(k)
)

at each of

the M nodes, ~ξ(k). In discrete projection, one applies quadrature techniques to evaluate
the integrals (2.9). Both are valid approaches. This work focuses on the discrete projection
approach (3.3), opting for high-dimensional quadrature rather than high-dimensional in-
terpolation. For an example that uses an interpolation approach to stochastic collocation
with a parabolic equation (PE) model, see [20]. Both approaches rely on high-dimensional
techniques that are still active areas of research.

3.2 Relation to Monte Carlo

Monte Carlo sampling methods are common techniques for solving systems that are de-
pendent on random parameters. The Monte Carlo method uses independent samples

drawn randomly from the distribution F~ξ(ξ1,··· ,ξd) to generate the ~ξ(k), k = 1,··· ,M.

That is, one generates the set of nodes ΘM by sampling from the random distri-
bution, then applies the deterministic solver at each node in the set. The sample

mean, φ̄l(t,x,z,θ) = 1
M ∑

M
k=1 φ

(k)
l (t,x,z,θ;~ξ(k)), and the sample variance, σ2

φl
(t,x,z,θ) =

1
M−1 ∑

M
k=1

(

φ
(k)
l (t,x,z,θ;~ξ(k))−φ̄l(t,x,z,θ)

)2
, provide estimates for the first and second mo-

ments. The advantages of using Monte Carlo are that it is very simple to implement,
and that its convergence rate is unaffected by the dimension d of the random space. The
disadvantage is that the convergence rate is very slow; the mean-square error decays
like 1√

M
. The stochastic collocation method on the other hand, uses a deterministic set

of nodes and offers spectral convergence, though convergence slows depending on the
smoothness of the underlying solutions and the dimension of the random space.

3.3 Discrete projection

Express φ̃l as the orthogonal gPC projection onto P
d
Np

, and drop the subscript l to simplify

notation:

φ̃=
Np

∑
|n|=0

φ̂nΨn(~ξ). (3.3)

The Ψn(~ξ) are the basis functions of the expansion as in (2.13); take them as scaled to
form an orthonormal basis. The φ̂n are the expansion coefficients,

φ̂n=
∫

φ(·;ξ)Ψn(ξ)dF~ξ (ξ) . (3.4)
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Computing the φ̂n yields an expression of the solution φ̃(·;~ξ) for any ~ξ. This is in con-
trast to a Monte Carlo procedure, which only provides estimates of moments. Since the
function values are only available as discrete samples, quadrature, or if d> 1, its multi-
variate extension cubature rule, approximates the integral (3.4). The term pseudospectral
often describes this technique since the optimal choice of nodes and weights makes this
the same as a Galerkin method [21].

The results presented in Section 4 applied Gauss quadrature to compute the inte-
grals (3.4) on a Smolyak [22] grid. For low dimensions, grids formed by taking a ten-
sor product of one-dimensional quadrature grids are adequate, however the number
of nodes in a tensor grid grows exponentially with the dimension (i.e., number of un-
correlated random variables in the process expansion). The Smolyak formulation com-
bines lower order tensor products so that the number of function evaluations grows more
slowly with dimension d. The Smolyak cubature of level ℓ is [23]

Qd
ℓ f = ∑

ℓ≤|m|≤ℓ+d−1

(−1)ℓ+d−|m|−1

(

d−1

|m|−ℓ

)

(

Q1
m1
⊗···⊗Q1

md

)

f , (3.5)

where m=(m1,··· ,md) is a multi-index and Q1
q represents a one-dimensional quadrature

using q nodes. The effect is to use only a subset of the nodes in the full d-dimensional
tensor grid. Fig. 2 compares a full tensor grid on [−1,1]×[−1,1] with a Smolyak sparse
grid. For further background on sparse quadrature, we refer the reader to [22–24] and
the references therein.

The Gaussian nature of the examples studied in this work requires cubature on un-
bounded intervals. One approach to this problem is to truncate the domain. Another
is to use a mapping to a bounded domain and use, for example, Legendre points. Do-
main truncation is not unreasonable for problems involving Gaussian PDFs due to the
exponential decay, though Gauss-Hermite quadrature appeared to offer improved per-
formance in our experiments. This work does not address domain mapping, but [25]
offers a recent review of the different approaches.

−1 −0.5 0 0.5 1
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Smolyak Quadrature: 112 nodes
−1 −0.5 0 0.5 1
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0

0.5

1

Tensor Quadrature: 256 nodes

Figure 2: Example of Smolyak sparse grid (left) and full tensor grid (right) in two dimensions.
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3.4 Computing the statistics

The stochastic collocation yields an approximate solution φ̃(·;~ξ) for any ~ξ in the ran-
dom space. The moments are then readily computed by passing the expectation over the
sum (3.3) and applying the orthogonality condition, e.g.,

E[φ̃]= φ̂0, (3.6)

Var[φ̃]=
Np

∑
|n|=1

φ̂2
n. (3.7)

Thus, convenient expressions are available for the study of errors and sensitivity anal-
ysis. These expressions provide a means for verification of the method when analytical
solutions are available for the level set functions, which may not have physical signifi-
cance away from the zero level sets. To extract physical meaning from these quantities,
one must consider moments of functions (or functionals) of the level set functions them-
selves. For example, one might study the wavefront normals derived from the gradients,
or extract information about the pressure amplitude which is related to the wavefront
curvature and can be tracked simultaneously using level-sets-based techniques similar to
those presented in [26–28]. The extraction of physically meaningful, statistical informa-
tion from the level set functions has not been fully studied (to the author’s knowledge).
Closely related work by Azaı̈s, León, and Wschebor [29, 30] on the application of Rice
formulae to study specular points and zero crossings might serve as a starting point in
this direction.

4 Results

4.1 Single uniform random variable

The first experiment performs a basic study using a single random parameter. For this,
let

c(x,z)= c0+ǫξ, (4.1)

where ǫ=0.3 and ξ is a uniform random variable on [−1,1] so that E[ξ]=0 and Var[ξ]= 1
3 .

This suggests that a Legendre polynomial chaos expansion is appropriate, and the sam-

ples
{

ξ(k)
}Np

k=0
are given by the Gauss-Legendre quadrature points. The model corre-

sponds to a case in which it is known that the sound speed is constant, but there is un-
certainty about what that speed is. This case allows for the computation of errors since
the solution is known given initial conditions for a point source,

φ1(t,x,z,θ;ξ)= x−(c0+ǫξ)tcosθ, (4.2)

φ2(t,x,z,θ;ξ)= z−zs−(c0+ǫξ)tsinθ. (4.3)
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Figure 3: Convergence of level set functions in mean as a function of the number of function evaluations,
computed at four separate times. Sound speed is a uniform random variable.

Figure 4: Convergence of level set functions in variance as a function of the number of function evaluations,
computed at four separate times. Sound speed is a uniform random variable.

The wavefront solutions correspond to circles of radius (c0+ǫξi)t for each random
sample ξi, at time t. A Monte Carlo sampling scheme applied to the same problem pro-
vides a comparison. Figs. 3 and 4 show the errors in computed mean and variance of Φ

respectively, computed using the L∞ norm for both the Monte Carlo and Stochastic Col-
location approaches at four fixed times. Since the gPC expansion is exact for the single
uniform random variable model, the stochastic collocation converges immediately, with
the error attributable to numerical quadrature and the error in the level set method solver
only. The Monte Carlo simulation requires about 1000 samples to converge to the same
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level. It is also noteworthy that the errors are time-dependent; this is a known result
of the application of gPC expansions to hyperbolic problems [14]. As the time at which
the errors are computed increases, so does the number of samples required for Monte
Carlo to match the errors in the stochastic collocation. For this simple case, the stochastic
collocation method has a distinct advantage.

4.2 Gaussian random field

Now let

c(x,z)= c0+X(x,z;ω), (4.4)

where X(x,z;ω) is a zero-mean, Gaussian random field with exponential covariance as
in (2.27). A KL expansion decomposes the process into independent, Gaussian random
variables. The techniques in this section then apply directly to the expansion. The corre-
lation lengths applied here are ax = 5.0 and az = 100.0. These values are large to ensure
the eigenvalues decay rapidly so as to limit the amount of computation. The number of
modes was limited by feasible computational time, yet the stochastic collocation result
appears to have converged (although only two terms are retained in the KL expansion),
whereas the Monte Carlo result does not, even with an order of magnitude more func-
tion evaluations. An optimization of the level sets code would be necessary to permit
larger expansions. For this example, eigenvalues less than 10−1 were neglected. Figs. 5
and 6 show how the results vary for fixed dimension d=2 (d corresponds to the number
of modes retained in the KL expansion) with the number of evaluations of the level set
method for the same scenario. The errors are clearly smaller for the collocation approach
at a comparable number of function calls. The result from Monte Carlo with Ns =50,000
serves as the point of comparison in the absence of exact solutions.

Figure 5: Convergence in mean for sound speed represented by a Gaussian process with constant mean versus
number of function evaluations, evaluated at time t=0.1 seconds
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Figure 6: Convergence in variance for sound speed represented by a Gaussian process with constant mean versus
number of function evaluations, evaluated at time t=0.1 seconds

The goal of this work is to apply stochastic collocation to the level set functions for
geometric acoustic wavefront tracing not only for analysis purposes, but also to simulate
the propagation of acoustic wavefronts in a medium with uncertain sound speed. The
final two examples in this section demonstrate this application. One first computes and
the gPC expansion coefficients, φ̂l,n(t,x,z,θ), l=1,2, for the level set functions via stochas-
tic collocation over the desired spatial and temporal domains. Then, an online simulation
procedure would only need to supply realizations of the expansion random variables to
compute an instance of a wavefront. Fig. 7 shows realizations of the extracted wave-
fronts from the computed coefficients of the level set function components provided by
a stochastic collocation formulation with d = 2 and Np = 4, for the above sound speed
process, i.e., constant with additive zero-mean Gaussian process.

The last example uses data processed at Woods Hole Oceanographic Institute (WHOI)
as part of the Shallow Water 2006 (SW06) experiment [8,31]. The data were preprocessed
and contain values at 15 depths over time; there is no range (or x) dependence and the
time variability is small. A cubic spline fit provides a smooth representation of the data,
providing estimates of ∂c

∂z . One time sample of the spline-fitted profile data is shown in
Fig. 8. This is a typical shallow water profile — the region of higher sound speed near
the surface (first ten meters) is a result of higher temperatures caused by, for example,
heating due to daylight. Below this region, the temperatures cool. Thus the sound speed
decreases, and becomes more stable with depth, appearing approximately constant at
the last ten meters. In deeper water, one would typically see a gradual cooling due to the
increased pressure. The effect this has on the propagation is to create faster spreading of
the wavefronts near the surface as opposed to near the sea bottom.

Fig. 9 shows realizations of the extracted wavefronts from the computed coefficients
of the level set function components provided by a stochastic collocation formulation
with d = 3 and Np = 3 using the sound speed profile c0(z) in Fig. 8 with an additive
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Figure 7: Time snapshots of wavefronts generated from random samples of level set functions for data with a
constant sound speed added to a Gaussian random process.
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Figure 8: Sound speed data versus water column depth from SW06 experiment.

Gaussian process. The subfigures show the wavefronts at different times. The results
are consistent with the mean sound speed profile shown in Fig. 8, with the wavefronts
spreading faster near the surface, and slower toward the bottom. However, each realiza-
tion has slightly different displacements at as a result of the random perturbations in the
sound speed.
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Figure 9: Time snapshots of wavefronts generated from random samples of level set functions for the SW06
SSP data with a Gaussian random process.

5 Conclusion

This work explored the application of stochastic collocation to a level set method in order
to simulate wavefronts propagating in uncertain environments. The particular approach
taken permits a functional representation of the wavefront solution in terms of indepen-
dent random variables. Thus in a simulation program, one could precompute the collo-
cation coefficients in order to generate realizations of wavefronts propagating in the pres-
ence of uncertainty. The stochastic collocation solutions also, under certain conditions,
converge to the true moments much faster than traditional Monte Carlo approaches. The
results are very promising, as the technique is general enough to apply readily to repre-
sent other random parameters. The complications of high dimensional representations
in random space do suggest that further work is needed. First, the implementation of the
level set method should be optimized so that it is more feasible to run the large number
of simulations required for larger expansions. It would also be reasonable to look at rep-
resenting band-limited processes using prolate spheroidal wave functions as a gPC basis
as described in [15,16]. These factors are important to consider, particularly if one wishes
to permit uncertainty from other sources such as boundary locations.
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