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Abstract. Various works from the literature aimed at accelerating Bayesian inference
in inverse problems. Stochastic spectral methods have been recently proposed as sur-
rogate approximations of the forward uncertainty propagation model over the support
of the prior distribution. These representations are efficient because they allow afford-
able simulation of a large number of samples from the posterior distribution. Unfor-
tunately, they do not perform well when the forward model exhibits strong nonlinear
behavior with respect to its input.

In this work, we first relate the fast (exponential) L2-convergence of the forward
approximation to the fast (exponential) convergence (in terms of Kullback-Leibler di-
vergence) of the approximate posterior. In particular, we prove that in case the prior
distribution is uniform, the posterior is at least twice as fast as the convergence rate of
the forward model in those norms. The Bayesian inference strategy is developed in the
framework of a stochastic spectral projection method. The predicted convergence rates
are then demonstrated for simple nonlinear inverse problems of varying smoothness.

We then propose an efficient numerical approach for the Bayesian solution of in-
verse problems presenting strongly nonlinear or discontinuous system responses. This
comes with the improvement of the forward model that is adaptively approximated by
an iterative generalized Polynomial Chaos-based representation. The numerical ap-
proximations and predicted convergence rates of the former approach are compared
to the new iterative numerical method for nonlinear time-dependent test cases of vary-
ing dimension and complexity, which are relevant regarding our hydrodynamics mo-
tivations and therefore regarding hyperbolic conservation laws and the apparition of
discontinuities in finite time.
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1 Introduction

Nowadays, the development of efficient computational tools to support decision-making
and risk analysis under uncertainty is critical for the design and operation of engineered
systems and more generally for reliable predictive science. An open question with a huge
significance for uncertainty quantification (UQ) is the problem of realistic representation
of input uncertainty (initial/operating/boundary conditions, model parameters, source
terms, ···) to the model. A quick survey of the UQ literature shows that research in this
area has been accustomed to the development of the propagation step and quantifica-
tion of the response, with improvement on the efficiency, implementation, performance,
··· . In many works, the quantification of input uncertainty is often rudimentary, asso-
ciating a random variable to each of the random parameter, and often making a priori
choice on the distributions, relying for instance on labelled distributions, such as uniform
distributions, due to a lack of knowledge. Another weakness is the assumption of ran-
dom parameters independence. Indeed, the gold rush for the development of suitable and
efficient stochastic representations of ever increasing larger data sets (e.g., hundreds of
random parameters) relies heavily on the assumption of independent random dimen-
sions which is most of the time not justified for engineering systems. In fact the effective
stochastic dimensionality of the system depends strongly on the appropriate represen-
tation of the correlations existing between the dependent random variables representing
the inputs. This mathematical description is particularly difficult when data is gathered
from different sources, let say from both experiments and simulations, or when direct
observations/measurements are not possible or too costly. Several methodologies for the
identification of representations of random variables/processes from experimental data
for instance have been proposed, such as the method of moments [2], maximum likeli-
hood [8, 17], maximum entropy [7] or Bayesian inference [16, 77]. Inverse problems (IP)
usually refer to the estimation of model parameters or inputs from indirect observations.
While the resolution of a forward model predicts the system outputs given the inputs
by solving the governing equations, the IP reverses this relationship by seeking to esti-
mate uncertain inputs from measurements or observations. The IP is often formulated
as a (large) deterministic nonlinear optimization problem that minimizes the discrepancy
between the observed and predicted outputs in some appropriate norm while also min-
imizing a regularization term that penalizes unwanted features of the inputs [27, 65].
Following this procedure, a set of best inputs, i.e., fitting the data and minimizing the
regularization penalty term, are obtained. Nevertheless, the predictive accuracy strongly
depends on the availability of large input data sets. In practice the observations are lim-
ited and often noisy. Therefore, it becomes more legitimate to seek a complete statistical
description of the input values that is consistent with the data, instead of discrete esti-
mates of the best-fit inputs.

The Bayesian inference follows this path by reformulating the IP as a problem of sta-
tistical inference, incorporating the forward model, prior information on the inputs, and
uncertainties in the measurements. The solution is the posterior joint pdf of the inputs,
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which reflects the degree of confidence in their values [27, 66]. However, it remains chal-
lenging to use this approach for problems with high-dimensional spaces due to the re-
quirement of solving the forward model at every sample point. In order to alleviate this
problem, several sampling-based approaches have been proposed, one of the most suc-
cessful being the Markov Chain Monte-Carlo (MCMC). MCMC covers a broad range of
methods for numerically computing probabilities, or for optimization [12, 13, 18, 50, 60].
They are simulation methods, mostly used in complex stochastic systems where exact
computation are not computationally feasible. Methods that fall under this heading in-
clude Metropolis sampling, Hastings sampling and Gibbs sampling.

More recent works have explored the use of forward surrogate models to accelerate the
convergence of robust optimization (e.g., [36]) or Bayesian inference [10, 45]. In particu-
lar, Marzouk et al. [43–45] were precursors of the use of spectral methods, taking advan-
tages of stochastic spectral representations (such as Polynomial Chaos approximations)
for forward uncertainty propagation. They show that the use of the generalized Poly-
nomial Chaos (gPC) methods seems promising to improve the acceleration of stochastic
inverse problems and broaden their scope. But they also point to overwhelming difficul-
ties in the case of discontinuous solutions in the physical and the stochastic spaces, see
also [1, 32, 74]. They show that due to the poor approximation of solutions with low reg-
ularity, the gPC representation induces some errors that are propagated and amplified to
the input parameter posterior distribution via measurement errors.

Indeed, for strongly nonlinear hyperbolic problems, such as compressible fluid/gas
dynamics, aeroelastic flutter, multi-phase and/or reacting flows, etc., standard polyno-
mial chaos reconstruction of the system response fails because of the occurrence of Gibbs
oscillations due to the lack of smoothness. In this case, one may rely on adaptive proce-
dures. The first attempt of model adaptation was achieved by multiresolution/multiscale
schemes (e.g., wavelets and multi-wavelets) [31], soon followed by random partitioning
with a posteriori heuristic convergence criteria [72]. Later, complementary approaches
were proposed with random/spatial spaces partitioning [28, 46, 76] (with dual-based er-
ror estimation techniques to improve global error estimation) or hierarchical sparse grid
collocation [39] and more recently, binary trees [69]. Other original approaches such as hp-
adaptive piecewise gPC representation [34], nonlinear Galerkin-type formulation [54, 56],
or hybrid approaches [55, 57] were also proposed. In this paper, we will approximate
the forward problem with an iterative approach for Galerkin-based spectral projection
methods called iterative-gPC (i-gPC). It was recently introduced [58] and was shown
to be more accurate than the classical approach (with the same level of approximation)
especially when nonlinear transformations of random variables are in play.

The paper is organized as follows: Section 2 presents the inverse problem formulation
and solution approach via accelerated Bayesian inference through the use of stochastic
spectral methods, while Section 3 briefly introduces gPC and i-gPC representation of ran-
dom variables and processes in the framework of a stochastic spectral projection method.
In Section 4, we prove a theoretical result emphasizing the relevance of recurring to L2-
convergent approximation in order to accelerate Bayesian Inference. The efficiency of the
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combination is then put forward in Section 5. Numerical approximations and predicted
convergence rates are illustrated for some nonlinear and time-dependent test cases of
varying dimension and complexity, which are relevant regarding our hydrodynamics
motivations and therefore regarding hyperbolic conservation laws and the apparition of
discontinuities in finite time.

2 Statistical inverse problems

In this paper, we focus on Bayesian inference for inverse problems on an unknown pa-
rameter of finite dimension (θ∈R

d). The purpose is, at the end, to provide an estimation
of the parameter θ.

Bayesian inference theory is based upon Bayes’ formula. This is an inversion for-
mula for conditional probabilities. In the case of Bayesian statistical inverse problems,
we are interested in inferring on θ, our parameter of interest, knowing experimental data
m. Thus, we want to compute P(θ|m) (the posterior). By Bayes’ theorem, we get the
posterior

P(θ|m)∝ P(θ)P(m|θ) . (2.1)

The notation πpost(θ) for the posterior P(θ|m) and πpr(θ) for the prior P(θ) are common
and will be used in this paper. We have, here, to make an assumption to compute the
likelihood P(m|θ), which describes the confidence on the measures. In this paper, it is
assumed to be given by experimentalists, but it may also be dealt with into the Bayesian
inference.

The basic hypothesis we make is to consider an additive relationship between the
data mx at point x, the direct model u(x;θ) given θ, and the measurement error ε,

mx =u(x;θ)+ε, (2.2)

with ε following the pdf πε, which is independent of x. This hypothesis is widely used
in the literature, see for example in [20, 29]. In this case, the measurement error is chosen
Gaussian, i.e., πε =N (0,σ2), with a standard deviation σ related to the experimental
device. From Eq. (2.2), we get the model for P(m|θ):

P(m|θ)=πε(mx−u(x;θ)). (2.3)

The initial information about θ is translated into the prior pdf πpr. How this trans-
lation is performed is a great issue for Bayesian inference. For example, it may be a
uninformative prior, from a previous study, from empirical Bayes method, or deduced
according to the maximum entropy principle [23, 24]. In this paper, we consider only
simple uniform priors and we refer the readers to [3, 22, 84] and the Chapter 3 in [61] for
more details about prior selections.
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Assuming that we have N independent measures, {mx1
,··· ,mxN

} at points {x1,. . .,xN}
and using the Eqs. (2.3) and (2.1), we get the posterior probability function

πpost(θ)=
1

γ
πpr(θ)

N

∏
i=1

πε(mxi
−u(xi;θ)), (2.4)

with

γ=
∫

θ
πpr(θ)

N

∏
i=1

πε(mxi
−u(xi;θ)) dθ. (2.5)

The probability density function πpost contains all the information we have, both from
experimental data and from previous knowledge. It represents our state of knowledge.

For most practical cases, such as fluid mechanics simulations, the numerical resolu-
tion of the direct model u is too computationally intensive and makes the resolution of
(2.4) intractable. The following papers [40–42, 44] have suggested using an approximate
surrogate model instead, so that each measure i, θ 7→ u(xi;θ), ui(θ) is replaced by an
approximate model θ 7→ ũi(θ). In this case, one obtains an approximate posterior,

π̃post(θ)=
1

γn
πpr(θ)

N

∏
i=1

πε(mxi
−ũn,i(θ)), (2.6)

where n denotes the truncature order of the representation and γn is normalization coef-
ficient of the surrogate approximation see (2.6).

In the following section, we will briefly introduce several options for surrogate mod-
els in the form of stochastic spectral approximations based on Polynomial Chaos theory.

3 Stochastic spectral representations of the forward model

In the following sections, we will briefly review standard and iterative generalized Poly-
nomial Chaos (gPC) approximations, focusing on the differences between the two ap-
proaches in the context of non linear transformations possibly leading to discontinuous
solutions.

3.1 Generalized Polynomial Chaos

The Polynomial Chaos (PC) is a non-statistical representation used to approximate ran-
dom variables [78], as well as to solve stochastic differential and partial differential equa-
tions (SPDE) [15, 33, 83] and it has been used for several classes of computational fluid
mechanics (CFD), e.g., heat transfer, thermofluidics, porous media flows, incompressible
and reacting problems, shock-dominated compressible flows, shear flows, flow-structure
interactions, flows in random geometry, turbulence and uncertain unsteady dynamics,
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··· . It is based on the Cameron-Martin’s convergence theorem [5] which can be under-
stood as a generalization of Weierstrass’s for arbitrary probability measures. Let (Hk)k∈N

denote the normalized d-dimensional Hermite polynomials. Let Ξ denote a centered d-
dimensional normalized Gaussian random variable. The ensemble (Hi(Ξ))i∈N forms an
orthonormal basis of L2(Θ,B,P), see [5]. The result is the following: let (u(θ))θ∈Θ be a
random variable in L2(Θ,B,P), then

uP(θ)=
P

∑
k=0

ukHk(Ξ(θ))
L2(Θ,B,P)
−→
P→∞

u(θ), (3.1)

where the deterministic coefficients (uk)k∈N are projection of u(θ) on the basis. We have:

uk=
∫

θ∈Θ
u(θ)Hk(Ξ(θ)) dP(θ). (3.2)

Convergence is in the L2(Θ,B,P)-sense and is exponential. Moreover, it is optimal for
Gaussian u(θ). In the case of non-Gaussian random variables, gPC was introduced [81]
and applied in order to ameliorate the convergence rate, see among others [37, 47, 49, 51,
64, 75, 82].

3.2 Iterative generalized Polynomial Chaos

The i-gPC approximation, first introduced in [58], is an adaptive moment-based
method [26, 48] generalizing the gPC representation. It is inspired by the work of
Wiener [79] and Gerritsma et al. [14, 71]. It is particularly efficient for discontinuous de-
pendence of the model to its input and may be viewed as an innovative approach to
tackle Gibbs-induced phenomenon [19]. The method is in general more accurate than the
classical approach with the same level of approximation and at no significant additional
computational or memory cost, since it is deployed in a post-processing stage. Some other
recent solution-adaptive techniques may be more accurate than i-gPC but they follow a
different strategy and construct their computational grid in a sequential fashion [21, 80].

The i-gPC approach is gPC-based, therefore it inherits de facto its well-known curse
of dimensionality. As a result it should not be used as a remedy to gPC facing the di-
mensionality problem. In practice, it works well for a moderate number of random
dimensions (cf. example with 5 dimensions in [58]) as long as the system response is
sufficiently well sampled to capture most of its relevant features. Moreover, i-gPC may
benefit from recent sparse grid integration techniques developed for stochastic spectral
projection method in order to reduce the curse-of-dimensionality associated with the con-
ventional tensor-product integration rules [6, 39].

The i-gPC is an iterative method that consists in a first step and the iteration of the
same procedure. The first step corresponds to the application of the standard gPC frame-
work described in the previous section. Suppose θ∈R

d denotes our random input, i.e., a
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random vector with n independent random variable components. We suppose its prob-
ability measure dP

θ — a product of the probability measure of its independent com-
ponents — is known together with its L2(Θ,B,P)-corresponding orthonormal polyno-
mial chaos basis (φθ

α
)

α∈Nd . We then wish to approximate a random variable Y= u(θ),
where u is a (possibly nonlinear) transformation θ†. In the context of the Galerkin-based
spectral projection formalism, this may be done by introducing a N points quadrature
rule (θl ,wl)l∈{1,·,N} in order to compute the gPC coefficients of Y in the P-truncated basis

(φθ
k)k∈{0,···,P}

yθ
k =E[u(θ)φθ

k (θ)]≈
N

∑
l=1

ωlu(θl)φ
θ
k(θl), ∀k∈{0,··· ,P},

where the multi-index has been changed to P for ease of notation.
The approximation Y≈YP

θ (θ)=∑
P
k=0yθ

kφθ
k(θ) converges with P in the L2-sense when

the (yθ
k)k∈{0,···,P} are accurately estimated and the basis dimensionality P sufficiently large

for the problem at hand. Note that P≡P(Q,d) depends on the truncation order Q of the
representation in each dimensions. In the following, the dependence of P with respect to
Q and d is recalled only when necessary.

In the second step of i-gPC, which defines the iterative procedure, we build an ap-
proximation basis orthonormal with respect to the random variable Z≡YP

θ (θ). We denote
(φZ

k )k∈N the new basis with dPZ the associated probability measure‡. Based on moment
theory [26, 48], several algorithms are available, using Christoffel’s formulae, Chebyshev
algorithm, or the modified Chebyshev algorithm (used in this paper), see [11] for more
details. We introduce the ith statistical moment (sZ

i )i∈N defined as:

sZ
i =E[Zi]=

∫
xidPZ(x)≈∑

N

l=1
wl

(
YP

θ (θl)
)i

, ∀i∈N, (3.3)

and approximated via the former quadrature rule.
We now seek the development of Y=u(θ) in the newly adapted approximation basis

(φZ
k )k∈N:

yZ
k =E

[
u(F−1

θ (FZ(Z)))φ
Z
k (Z)

]

=
∫

u(x)φZ
k

( P

∑
l=0

yθ
l φθ

l (θ)

)
dP

θ(x)

≈
N

∑
l=1

ωlu(θl)φ
Z
k

( P

∑
t=0

yθ
t φθ

t (θl)

)
, ∀k∈{0,··· ,R}, (3.4)

where Fθ and FZ denote the cumulative density function (cdf) of respectively θ and Z.
Notice that the approximation reuses the N available points (u(θl),wl)l∈{1,···,N} and does
not need additional model simulations.

†Transformation in a broad sense i.e., Y can be the output of a code etc.
‡Let us note that the dimensionality of this univariate basis is much lower than the dimensionality of the
multivariate basis (φθ

α
)

α∈Nn .
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The dimension R is kept constant through the entire iterative scheme and chosen close
to the polynomial order value Q at the initial step, i.e., R∼Q. This choice is central for
multi-dimensional problems when n>1, because it implies that R≪P.

The following steps of the approach consists in successive iterations of the second

step. If we call Zm+1 ≡YQ
Zm(Zm), the (m+1)-th approximation of Y in the Q-truncated

basis (φZm

k )k∈N and let θ ≡Z0 be the initial input random variable and Y= u(θ)= u(Z0),
then we can prove (assuming exact integration of Eqs. (3.3) and (3.4)) [58]:

‖Y−YQ
Zm+1(Z

m+1)‖L2 ≤‖Y−YQ
Zm(Z

m)‖L2 , (3.5)

indicating that successive iterations ensure better approximations.
Practical applications of the method, in particular in the context of computationally

expensive u functional evaluation, suggest that the accuracy of the representation will be
governed by the accuracy of the numerical integrations involved in the scheme. A more
thorough analysis of the interplay of quadrature/aliasing and truncation errors as well
as possible improvement of the method are assessed in [53].

4 Convergence of the posterior distribution

A relevant question relates to the impact of a mean square converging forward model
onto the accuracy of the inferred posterior distribution. Marzouk et al. [43] have proved
that if the approximate forward model converges to the true model in the L2 sense, then
the approximate posterior probability converges to the true posterior probability in the
sense of the Kullback-Leibler (KL) divergence. This may be summarized as the following
proposition:

Proposition 4.1. Let {ui = u(xi,·)}i∈{1,···,N} be a set of N samples of the exact forward
model and ũn,i its approximate model built with n<N evaluations of the exact forward
model. We assume that the measure error is Gaussian, centered, with known standard
error. Let πpr be the prior on θ on Θ. Let πpost be the exact posterior and π̃n

post the
approximate posterior distributions. Then, there exists a real strictly positive constant C
such as

DKL(πpost‖π̃n
post)≤C

N

∑
i=1

‖ũn,i−ui‖L2(Θ) . (4.1)

In their study, it was shown that the rate of convergence of the approximate posterior
was higher than the one of the approximate forward model. In this section, we propose
to prove the following proposition (cf. Proposition 4.2) which ensures that if the approxi-
mate model converges in the L2 sense, then the posterior converges in the KL sense, and
at least two times faster.

Proposition 4.2. Let, for i∈{1,··· ,N}, ui=u(xi,·) be the exact forward model and ũn,i its
approximate model built with n evaluations of the exact forward model. We assume that



A. Birolleau, G. Poëtte and D. Lucor / Commun. Comput. Phys., 16 (2014), pp. 1-34 9

the measure error is Gaussian, centered, with known standard error. We assume that the
prior is uniform on Θ. Let πpost be the exact posterior and π̃n

post the approximate posterior.
Then, there exists a real strictly positive constant C such as

DKL(πpost‖π̃n
post)≤C

{ N

∑
i=1

‖ũn,i−ui‖L2(Θ)

}2

. (4.2)

In order to carry on with the proof, we introduce some useful definitions and theo-
rems.

4.1 Few prior definitions and theorems

In probability and information theory, the Kullback-Leibler divergence (DKL) [30] quanti-
fies the dissimilarity between two probability measures. This particular f -divergence [35]
is not a distance because it is not symmetric and does not respect the Minkowski’s in-
equality. DKL is null if and only if the two distributions are identical.

Definition 4.1 (Kullback-Leibler divergence). Let Θ be a set included in R
d and (p,q) two

probability density functions on Θ such as almost everywhere q(θ)>0 (P(q(θ)>0)=1).
The KL divergence between p and q is defined as

DKL(p‖q)=
∫

Θ
p(θ)log

( p(θ)

q(θ)

)
dθ. (4.3)

DKLmay be numerically approximated via Monte-Carlo integration using n uniformly
distributed samples θi on Θ.

In the following, we also need to introduce a symmetric version of the DKLbetween p
and q, also called the Jeffrey’s divergence [25], defined as

D
s
KL(p‖q)=DKL(p‖q)+DKL(q‖p)

=
∫

Θ

{
p(θ)−q(θ)

}
log

( p(θ)

q(θ)

)
dθ. (4.4)

Moreover, we will need to resort to the notion of variation between two probability mea-
sures. The total variation (TV) is a distance between two probability measures and is
defined as follows.

Definition 4.2 (Total variation). Let Θ be a set in R
d with the Borelian σ-algebra B and

(p,q) two probability measures on Θ. The total variation between p and q is

TV(p,q)=sup
A∈B

∣∣p(A)−q(A)
∣∣. (4.5)

Finally, the Pinsker’s inequality [52] relates TV and DKL. It states that the total vari-
ation between two probability distributions is bounded by the square root of their KL
divergence.
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Theorem 4.1 (Pinsker’s inequality). Let Θ be a set with the σ-algebra B. Let (p,q) be two
probability distributions on Θ. Then,

TV(p,q)≤

√
1

2
DKL(p‖q). (4.6)

For the proof of Pinsker’s inequality, see [52]. Taking the Borelian σ-algebra, this
theorem has the following corollary.

Corollary 4.1 Let Θ be a set included in R
d with the Borel σ-algebra B and (p,q) two

probability distributions on Θ. Then,

sup
θ∈Θ

∣∣p(θ)−q(θ)
∣∣≤

√
1

2
DKL(p‖q). (4.7)

Proof. For θ∈Θ, the singleton {θ} is in the σ-algebra B. Then, the set of the singletons is
included in B. Then, applying Pinsker’s inequality to this set (Theorem 4.1), leads to the
result. �

Now that we have the tools for the study of the convergence of the approximate pos-
terior, we prove the main theoretical result in this paper (Eq. (4.2)).

4.2 Proof of Proposition 4.2

In order to prove the inequality (4.2), we introduce useful lemmas.

Lemma 4.1. The function x 7→ e−x is uniformly Lipschitz on [0,+∞]. That is to say, there exists
a constant Λ strictly positive such as for all x≥0 and for all y≥0 : |e−x−e−y|≤Λ|x−y|.

Lemma 4.2. With the notations of the previous sections, there exists a strictly positive real con-
stant C1 such as

|γn−γ|≤C1

N

∑
i=1

‖ũn,i−ui‖L2(Θ) . (4.8)

Proof. To begin with, for each point measure i, the approximate model ũn,i converges in
norm L2 toward ui. Consequently, (ũn,i)n∈R is bounded in norm L2

∀i∈{1,··· ,N} :‖ũn,i‖L2(Θ)≤ max
1≤i≤N

sup
n∈R

‖ũn,i‖L2(Θ)=CN. (4.9)

Then, by definition of γn and γ (2.5)

γn−γ=
∫

Θ
πpr(θ)

[ N

∏
i=1

πε(ũn,i(θ)−mi)−
N

∏
i=1

πε(ui(θ)−mi)

]
dθ. (4.10)
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Using the hypothesis of a Gaussian measure error,

|γn−γ|≤
∫

Θ
πpr(θ)

∣∣∣∣exp
[
−

1

2σ2

N

∑
i=1

(
ũn,i(θ)−mi

)2
]

−exp
[
−

1

2σ2

N

∑
i=1

(
ui(θ)−mi

)2
]∣∣∣∣ dθ. (4.11)

Using Lemma 4.1,

|γn−γ|≤
Λ

2σ2

∫

Θ
πpr(θ)

∣∣∣
N

∑
i=1

(
ui(θ)−mi

)2
−
(
ũn,i(θ)−mi

)2
∣∣∣ dθ, (4.12a)

|γn−γ|≤
Λ

2σ2

∫

Θ
πpr(θ)

∣∣∣
N

∑
i=1

(
ui(θ)−ũn,i(θ)

)(
ui(θ)+ũn,i(θ)−2mi

)∣∣∣ dθ, (4.12b)

|γn−γ|≤
Λ

2σ2

N

∑
i=1

∫

Θ
πpr(θ)

∣∣ui(θ)−ũn,i(θ)
∣∣∣∣ui(θ)+ũn,i(θ)−2mi

∣∣ dθ. (4.12c)

Applying Hölder’s inequality for each integral in the sum,

|γn−γ|≤
Λ

2σ2

N

∑
i=1

‖ui−ũn,i‖L2(Θ)‖ui+ũn,i−2mi‖L2(Θ) . (4.13)

By inequality (4.9),

|γn−γ|≤
(

max
i

‖ui‖L2(Θ)+2max
i

|mi|+CN

) Λ

2σ2

N

∑
i=1

‖ui−ũn,i‖L2(Θ) . (4.14)

Introducing

C1=
(

max
i

‖ui‖L2(Θ)+2max
i

|mi|+CN

) Λ

2σ2
, (4.15)

we obtain

|γn−γ|≤C1

N

∑
i=1

‖ui−ũn,i‖L2(Θ) . (4.16)

So, we complete the proof. �

Lemma 4.3. Let (ak)k∈R
and (bk)k∈R

be two real strictly positive sequences and a∈R
∗
+ such as

∀k∈R

|ak−a|≤bk and lim
k→+∞

bk =0. (4.17)

Then, there exists a real constant M>0 such as ∀k∈R

∣∣∣log
( ak

a

)∣∣∣≤Mbk. (4.18)
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Proof. By hypothesis,

∀n∈R : |ak−a|≤bk, (4.19)

which leads to,

∀k∈R : 1−
bk

a
≤

ak

a
≤1+

bk

a
. (4.20)

We notice that for a given k0 ∈N, 1−bk/a>0. Therefore,

∀k> k0 : log
(

1−
bk

a

)
≤ log

( ak

a

)
≤ log

(
1+

bk

a

)
≤

bk

a
, (4.21)

and

∀k> k0 :
∣∣∣log

( ak

a

)∣∣∣≤max
{
−log

(
1−

bk

a

)
,
bk

a

}
. (4.22)

The leading term in the right hand side is bk/a when k →+∞. Then, |log(ak/a)| is of
order O(bk). Then, there exists a constant C such that ∀k> k0 : |log(ak/a)|≤Cbk .

Finally, setting

M=max

{
C,

|log( a0
a )|

b0
,··· ,

|log(
ak0
a )|

bk0

}
,

we conclude that

∀k∈R :
∣∣∣log

( ak

a

)∣∣∣≤Mbk, (4.23)

which ends the proof. �

Lemma 4.4. There exists a constant C2>0 such as:

∣∣∣log
(γn

γ

)∣∣∣≤C2

N

∑
i=1

‖ũn,i−ui‖L2(Θ) . (4.24)

Proof. We apply the Lemmas 4.3 and 4.2 with

an =γn, (4.25a)

bn=
N

∑
i=1

‖ui−ũn,i‖L2(Θ)−−−→n→∞
0 (cf. Cameron Martin theorem [5]). (4.25b)

The lemma is proved. �

Proof of the Proposition 4.2. First, we notice that the DKLis smaller than Jeffrey’s diver-
gence

0≤DKL(πpost‖π̃n
post)≤D

s
KL(πpost‖π̃n

post). (4.26)

We define

∆n ≡DKL(πpost‖π̃n
post). (4.27)
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From inequality (4.26), we have

∆n ≤D
s
KL(πpost‖π̃n

post). (4.28)

Assuming that the prior is uniform (1 =Kprπpr(θ)) and using the definition of Jeffrey’s
divergence, we rewrite

∆n ≤Kpr

∫

Θ

{
πpost(θ)−π̃n

post(θ)
}

log
( πpost(θ)

π̃n
post(θ)

)
πpr(θ) dθ, (4.29)

which may be bounded as follows

∆n ≤Kprsup
θ∈Θ

∣∣πpost(θ)−π̃n
post(θ)

∣∣
∫

Θ

∣∣∣log
( πpost(θ)

π̃n
post(θ)

)∣∣∣πpr(θ) dθ. (4.30)

According to the Corollary 4.1 of Pinsker’s inequality,

∆n ≤Kpr

√
1

2
∆n

∫

Θ

∣∣∣log
( πpost(θ)

π̃n
post(θ)

)∣∣∣πpr(θ) dθ, (4.31)

which leads to

∆2
n ≤K2

pr

1

2
∆n

{∫

Θ

∣∣∣log
( πpost(θ)

π̃n
post(θ)

)∣∣∣πpr(θ) dθ

}2

(4.32)

and

∆n ≤
K2

pr

2

{∫

Θ

∣∣∣log
( πpost(θ)

π̃n
post(θ)

)∣∣∣πpr(θ) dθ

}2

. (4.33)

By introducing the likelihood function l§ and the approximate likelihood ln
¶,

∆n ≤
K2

pr

2

{
log

(γn

γ

)
+
∫

Θ

∣∣∣log
( l(θ)

ln(θ)

)∣∣∣πpr(θ) dθ

}2

, (4.34a)

∆n ≤
K2

pr

4σ2

{
log

(γn

γ

)
+
∫

Θ

∣∣∣
N

∑
i=1

(ui(θ)−mi)
2−(ũn,i(θ)−mi)

2
∣∣∣πpr(θ) dθ

}2

, (4.34b)

∆n ≤
K2

pr

4σ2

{
log

(γn

γ

)
+

N

∑
i=1

∫

Θ

∣∣ui(θ)−ũn,i(θ)
∣∣∣∣ui(θ)+ũn,i(θ)−2mi

∣∣πpr(θ) dθ

}2

. (4.34c)

Applying Hölder’s inequality on each integral in the sum, we have

∆n ≤
K2

pr

4σ2

{
log

(γn

γ

)
+

N

∑
i=1

‖ui−ũn,i‖L2(Θ)‖ui+ũn,i−2mi‖L2(Θ)

}2

. (4.35)

§l=∏
N
i=1 πε(ui(θ)−mi).

¶ln =∏
N
i=1πε

(
ũn,i(θ)−mi

)
.



14 A. Birolleau, G. Poëtte and D. Lucor / Commun. Comput. Phys., 16 (2014), pp. 1-34

By the Lemma 4.2,

∆n ≤
K2

pr

4σ2

{
C2

N

∑
i=1

‖ui−ũn,i‖L2(Θ)+
N

∑
i=1

‖ui−ũn,i‖L2(Θ)‖ui+ũn,i−2mi‖L2(Θ)

}2

. (4.36)

We introduce C3 as

C3≡
(

max
i

‖ui‖L2(Θ)+2max
i

|mi|+sup
n,i

‖ũn,i‖L2(Θ)

)
, (4.37)

which exists given that all the ui are in L2, that we have a finite number of measures and
that all the ũn,i converge in L2.

Then,

∆n ≤
K2

pr

4σ2

{
C2

N

∑
i=1

‖ui−ũn,i‖L2(Θ)+C3

N

∑
i=1

‖ui−ũn,i‖L2(Θ)

}2

. (4.38)

Finally, introducing

C≡
K2

pr

4σ2
(C2+C3)

2,

we conclude the proof by:

∆n ≤C

{ N

∑
i=1

‖ui−ũn,i‖L2(Θ)

}2

. (4.39)

Thus, we complete the proof of Proposition 4.2. �

The inequality (4.1) ensures that, if we have a method to build approximate models
that converge in the L2-sense (e.g., Polynomial Chaos or the iterative version of gPC),
then the posterior converges in the KL sense. Moreover, in case of a uniform prior, the
inequality (4.2) tells us that this convergence is twice faster.

5 Numerical comparisons

In this section, we demonstrate the predicted convergence rates of the posterior density
function obtained by Bayesian inference for inverse problems of varying smoothness. For
strongly nonlinear or discontinuous system response, we make use of our new represen-
tation of the forward model that is adaptively approximated by an iterative generalized
Polynomial Chaos-based representation. The numerical approximations and predicted
convergence rates of the former approach are compared to the new iterative numerical
method.

This work is motivated by hydrodynamic application and the understanding of fluids
interfaces for example for the study of Rychtmyer-Meshkov and Rayleigh-Taylor insta-
bilities. As a consequence, the present test-cases are all nonlinear and, except the first
one, inspired from hydrodynamic problem. Moreover, our adaptive approach was orig-
inally developed for dealing with the discontinuous cases but it is possible to apply our
approach to other problems.
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5.1 Step function

In this subsection we revisit one of the benchmarks first introduced in the paper by Mar-
zouk and Xiu [40] and involving a discontinuity. The inverse problem involves a step
function-like forward model that may be interpreted as follows: let us a consider a one-
dimensional linear advection problem, defined on Θ=[−1;1], with a discontinuous initial
condition u0(x) representative of a shock-dominated solution:

u0(x)=I[x<0](x)=

{
0, if x≤0,
1, elsewhere.

(5.1)

Later on, the shock will be advected in time and the solution may be written as u(x,t)=
u0(x−vt), for t > 0. The goal is to infer on the shock speed v(= θ) based on a single
observation m, from a detector placed at (x=0, t=1) with finite accuracy. The measure
m=u(vtrue)+η is artificially perturbed by a Gaussian noise η∼N (0,ν2) with a standard
deviation ν= 0.1. We assume that the measure error law πε considered in our Bayesian
formalism is known, chosen as ε∼ η ∼N (0,ν2). We assume that we have no particular
initial knowledge about the shock speed or its direction, so we model it as a uniform prior
distribution over the entire domain range [−1;1]. We choose vtrue =0.2 as the true value
for the shock speed.

Despite its simplicity (exact solution is available), this academic problem is numeri-
cally difficult mainly because of the discontinuity.

The numerical methods described in previous sections are applied to this problem.
Figs. 4(a) and 4(b) show the results of the inverse problem for gPC and i-gPC approximate
representations compared to the exact solution. Fig. 4(a) shows the approximation of the
forward model and Fig. 4(b) shows the posterior probability distribution functions of
v. A Legendre polynomial basis approximation of order P = 9 is chosen together with
numerical quadrature of Clenshaw-Curtis (CC) type of level l = 8, with 2l−1+1 = 129
quadrature points.

The gPC-based Bayesian inference performs in this case very poorly as the oscillations
of the approximate forward model are inherited and amplified by the nonlinearity of the
ε Gaussian density. However, it is very clear that the i-gPC approach avoids the spurious
oscillations of the gPC representation which artificially emphasizes certain values of v>0
and assigns very low probability of occurrence to values of v lower than vtrue =0.2, due

to the oscillations of ũ
gPC
n .

For high level of integration accuracy, the study may be reiterated for different choices
of truncation order P. In the following, we perform a convergence analysis of the quanti-
ties defined as:

πpost(v)∝ πpr(v)πε(u(v)−m) , (5.2a)

π
n,gPC
post (v)∝ πpr(v)πε

(
ũ

gPC
n (v)−m

)
, (5.2b)

π
n,i-gPC
post (v)∝ πpr(v)πε

(
ũ

i-gPC
n (v)−m

)
. (5.2c)
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omparison between posterior density Kullba
k-Leibler divergen
e

DKL(πpost‖π̃npost) obtained from gPC (DgPCKL ) and i-gPC (Di-gPCKL ) forward model approximations for di�er-ent quadrature levels.
Fig. 1 validates the theoretical results presented in Section 4. It shows the conver-

gence rates numerically evaluated for the gPC representation in a log-log plot. The bot-
tom curve shows the algebraic convergence of the model approximation ‖ũn,i−ui‖L2(Θ)
(FML2) while the top confirms that the posterior density Kullback-Leibler divergence
DKL(πpost‖π̃n

post) (DKL) decreases twice as fast, as predicted by the theory (cf. Proposition
4.2) and also observed for stochastic collocation approximation [40]. The study is also
performed for the i-gPC representation with the same dimensionality and underlying
quadrature. This time the Kullback-Leibler divergence is much lower, cf. Fig. 2, which
indicates that the posterior density is more accurate. The truncation order P does not
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seem to be the limiting factor while the effect of the aliasing error related to the quadra-
ture accuracy is in this case dominant. This is confirmed when we look at the errors of
the approximated gPC and i-gPC forward models in L1-norm in the convergence study
with respect to the truncature order P (abscissae) and the quadrature accuracy (colors
of the curves), displayed in Fig. 3. We notice in this case that the accuracy of the i-gPC
model is bounded by the maximum resolution level between two neighbor points in the
quadrature grid whereas the accuracy of gPC is bounded by the truncature order P in-
dependently of the quadrature accuracy. Therefore, a relevant question relates to the
robustness of the method for less accurate numerical integration.

Figs. 4-5 show the results obtained for a Legendre polynomial basis approximation
of order P = 9 and P = 4 with numerical quadrature of CC type of level 11 with 1023
quadrature points and with l = 6 with 33 quadrature points respectively. The i-gPC-
based posterior estimation is very close to the exact solution. On Fig. 5, the number
of functional evaluations and the polynomial order being lower, the projection error is
higher, but remarkably i-gPC is still able to recover the uniform law of the true posterior,
it captures the discontinuity better and avoids the apparition of oscillations.

It is interesting to assess the advantage of the i-gPC representation compared to other
methods [38, 58]. Here, we revisit the straightforward but challenging example of the
discontinuous step function treated in [58], but in the context of finite numerical inte-
gration, i.e., the forward model will only be evaluated a finite (moderate) number of
times. The goal is to compare the accuracy of pseudo-spectral gPC, stochastic colloca-
tion [67], h-adaptive piecewise polynomial (also referred as Multi-Element-gPC [34, 73])
and i-gPC approximations. We refer the reader to [38] for other types of approxima-
tions/comparisons.

Stochastic collocation is based on an interpolation on Lagrange polynomials at the
quadrature points. ME-gPC is an adaptive and sequential approach consisting in tracking
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discontinuities in the stochastic space and decomposing it into several well-chosen (i.e.,
close to the discontinuity position) elements. To be fair, the comparison will be carried
out on a common computational ground.

Let θ be a uniform random variable on [−1;1] and u be the step function, equal to 1
on [−1;−0.4] and 0 on ]−0.4;1]. The random solution Y= u(θ) only takes two discrete
values, i.e., the functional u maps a uniform distribution to a binomial distribution.

We choose to rely on a budget of 14 function samples for all methods: a fixed Gauss-
Legendre (GL) grid is used except for the ME-gPC approximation where Clenshaw-
Curtis (CC) grid points are sequentially introduced depending on the required elemental
refinement decomposition. We test the gPC (Legendre-based chaos with truncature de-
gree P= 3 and P= 5) and i-gPC representations making use of the previous gPC results
together with a stochastic collocation (Lagrange-based nodal basis constructed on the GL
points) and a ME-gPC approximation of first order Legendre-based chaos, i.e., P=1 and
two boundary quadrature CC points in each element.
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tion test 
ase: 
omparison between several types of approximation. Note: Gauss-Legendre(GL) 14 quadrature points are the training data for the sto
hasti
 
ollo
ation, gPC and i-gPC approximationsand Clenshaw-Curtis (CC) 14 quadrature points are the sequential training data for the pie
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Fig. 6 shows the results together with the analytical solution and the computational

grids. gPC and collocation polynomial approximations strongly oscillate whereas ME-
gPC and i-gPC approximations avoid Gibbs’ phenomenon: spurious (e.g., under- and
overshoot) values are avoided which keeps the distribution of Y from artificially spread-
ing. So the representations are in this sense more robust.

ME-gPC results are very accurate, cf. Table 1. i-gPCP=5 is also quite accurate, in partic-
ular in the L1 norm which is the relevant one when dealing with systems of conservation
law and discontinuous solutions. The i-gPC approach is also quite accurate at capturing
the approximate location of the shock considering that the discontinuity is positioned in
between two distant quadrature points.Table 1: Comparison of a

ura
y of step fun
tion approximations (
f. Fig. 6) based on 14 fun
tion evaluations.

L1-error L2-error

Piecewise gPC P=1 9.0×10−5 6.8×10−3

gPC P=3 1.5×10−1 2×10−1

i-gPC P=3 1.9×10−2 1.2×10−1

gPC P=5 9.8×10−2 1.6×10−1

i-gPC P=5 1.1×10−2 7.7×10−2

Collocation 6.7×10−2 1.1×10−1

One may argue that ME-gPC (and other related adaptive approximations) do better
than i-gPC for this type of problem. This is true but the approaches are completely dif-
ferent and therefore complementary: when i-gPC adapts the functional representation
based on samplings from a given arbitrary and fixed grid, ME-gPC requires new samples
in a sequential fashion based on some ad hoc heuristics. Moreover, i-gPC bears some ad-
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(b) With three detectorsFigure 7: Same problem as in Fig. 4 but with two then three measurements at x=0.1, t=1 and x=0.2, t=1.Adding observations does not a�e
t the uniformity of the posterior but allows narrowing its support.
vantages: when the output to represent is a random vector, as it is the case in a Bayesian
framework as soon as there are several measurements, it relies on a single grid and does
not need to adapt the computational grid to each quantity of interest/measurements; in
terms of implementation, it may trivially take advantage of parallel computing which is
not the case for sample-based sequential methods.

In the last paragraph of this section, we consider the same problem but we add a
second then a third detector. The first detector was located at x=0 for t=1. We locate the
second at x= 0.8 and t= 1 and the third at x= 0.2 and t= 1 and consider the posteriors
obtained with the different methods. Fig. 7 shows the analytical posterior and the ones
obtained with gPC and i-gPC. Let us first comment the analytical posterior: the increase
in the number of observations does not affect the uniformity of the posterior, it only
affects their supports. Indeed, with one measurement the posterior is uniform on [0,1],
with two it is uniform on [0,0.8] and with three it is uniform on [0,0.2]. As the number of
observations increases, the true value can be approaches more precisely.

Note also that for such test-problem with several detectors, we were not able to ap-
ply ME-gPC in the same condition as the other methods: indeed, the sequentially built
quadrature points of the algorithm are different for each observations increasing consid-
erably the number of model calls with the number of measurements.

With a choice of a uniform prior, the posterior distribution is also uniform and non-
informative about the true value of the parameter, at most predicting a narrower range
of probability when multiplying observations. While this may foster several questions
about the conditioning of inverse problems for systems with discontinuity, according to
our study and others [4], the stochastic inverse problem framework remains adequate in
this setup and shows that there is not one "most probable parameter" but several.

In conclusion, we can say that the global accuracy of the i-gPC representation, on this
test problem, is constrained by the precision of the underlying numerical quadrature. A
more thorough analysis of the interplay of quadrature/aliasing and truncation errors in
this framework is presented in a different publication [53].
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In the following section, we consider a nonlinear time-dependent problem with two
and three stochastic dimensions demonstrating that the previous concepts are transpos-
able in multi-dimensional stochastic context.

5.2 Inviscid Burgers equation

In this section, we show how the method behaves for nonlinear problems in higher
stochastic dimensions. We consider the simplest hyperbolic nonlinear equation known
as Burgers equation [9]:





∂tu(x,t,θ)+∂x
u2(x,t,θ)

2
=0,

u0(x,θ)=u(x,0,θ),
(5.3)

with a shock-dominated uncertain initial condition. Here we have two shocks whose
locations are not precisely known within some bounded intervals.

θ=(θ0,θ1) are the unknown parameters related to the initial condition u0 such that

u0(x,θ)=





u1, if x≤ x0+σ0θ0,
u2, if x0+σ0θ0 ≤ x≤ x1+σ1θ1,
u3, if x≥ x1+σ1θ1.

(5.4)

For our practical applications, we choose the following parameters values: u1 = 2,
u2=1/2, u3=0, x0=−0.5, x1=0.5, σ0=0.2 and σ1=0.1. As before, we build a test-case in
which we know the true value of the parameter, here it is set to θtrue =(0.5,0.5).

We consider a prior knowledge following a uniform distribution on [−1;1]2. Fig. 8(a)
shows several realizations of the initial condition corresponding to different values of θ.
The system is then integrated in time. The first shock (left one on the figure) will move to
the right faster than the second one until they merge.
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Figure 9: Exa
t posterior, gPC posterior and i-gPC posterior. P= 4 and Clenshaw-Curtis quadrature level is5. The gPC os
illations make us think that some parameters, among the positive one, are more probable thanothers. On the 
ontrary, with i-gPC, we get an area of equi-probable parameters whi
h is what says the exa
tposterior. Moreover, i-gPC gets better the dis
ontinuities.
For this problem, an analytical solution is available and is given, at time t and at

position x, by

u(x,t,θ)=





u1, if x≤ x0+σ0θ0+v0t,

u2, if x0+σ0θ0+v0t< x and x≤ x1+σ1θ1+v1t,

u3, if x> x1+σ1θ1+v1t.

(5.5)

v0 =(u1+u2)/2 and v1 =(u2+u3)/2. We suggest considering measurement at time t=1
and at position x = 0.75. At this time and at this position, the response is a discrete
random variable with three Dirac of different weights at u0, u1 and u2. Fig. 8(b) shows
the analytical solution in x=0.75 and at t=1 corresponding to different initial conditions
(i.e., different values of the random parameter θ).

The approximate models gPC and i-gPC are constructed using a full two dimensional
Clenshaw-Curtis grid of level 5 (289 runs of the forward model).

Fig. 9 presents the reference posterior, the posterior built from the gPC approxima-
tions at the measurement points and the posterior built with the i-gPC approximation
at these same points. Note that the discontinuities are better captured with i-gPC than
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with gPC and the oscillations are reduced (see the different scales for the different ap-
proximations). The i-gPC approximation allows recovering the uniform distribution of
the parameter in the high probability area whereas gPC tends to, first, misevaluate the
support of the area of non zero probability: its support is smaller than expected and
parameter values which are actually very probable are given probability zero. Suppose
those parameters with high probability of occurrence correspond to defective situations,
one would not want to miss them. Besides, the gPC approximations are very oscillating,
giving birth to parameter values which seems to be more likely to occur whereas this is
not the case: the i-gPC approximation allows recovering the uniform distribution.

Fig. 10 shows the gPC convergence of the approximate posterior in the sense of the
Kullback-Leibler divergence and the convergence of the gPC approximate model in the
sense of the L2 error. The result is once again consistent with Proposition 4.2.

In this paragraph, we consider the same hyperbolic nonlinear equation as before,
again with a shock-dominated uncertain initial condition, but this time we want to infer
on the floors of the initial condition rather than on the shock positions.

In this section, θ=(θ1,θ2,θ3) are the unknown parameters related to the initial condi-
tion u0 such that

u0(x,θ)=





θ1, if x≤ x0,

θ2, if x0≤ x≤ x1,

θ3, if x≥ x1.

(5.6)

For one realization of the initial conditions, we once again now the exact solution to
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this Burgers problem. At time t and at position x, the solution is given by

u(x,t,θ)=





if t< t∗





θ1, if x≤ x0+v0t,
θ2, if x0+v0t< x≤ x1+v1t,
θ3, if x> x1+v1t,

if t≥ t∗
{

θ1, if x≤ x∗+v2(t−t∗),
θ3, if x> x∗+v2(t−t∗),

(5.7)

where v0 =(θ1+θ2)/2, v1 =(θ2+θ3)/2 are the velocities of the two shocks for times t<
t∗ with t∗ = 2(x0−x1)/(θ3−θ1) the time for which the fast shock reach the slow one.
We denote by x∗= x0+v0t∗ the location where it occurs. Finally, v2 = (θ3+θ1)/2 is the
shock velocity of the resulting shock when they collapse at (x∗,t∗). This test-problem is
interesting for example because we want to infer on the second floor which has a short
time life [0,t∗] depending on the realizations of θ, the positions of the detectors in our
Bayesian context will have a great importance.

As before, we build a test-case in which we know the true value of the parameter,
here it is set to θtrue =(θtrue

1 = 2,θtrue
2 = 0.5,θtrue

3 = 0) and the observations are once again
artificially noised thanks to a gaussian distribution of zero mean and 0.1 standard devi-
ation. The priors are taken uniform on [1.8,2.2]×[0.3,0.7]×[−0.2,0.2]. Fig. 11 presents
several realizations of the initial conditions (Fig. 11(a)) with the previous prior and of the
solutions at time t=0.8 (Fig. 11(b)). Initially, the shock positions are known but we want
to infer on the floors of the initial condition, see Fig. 11(a). As time evolves, the left shock
absorbs the right one at times depending on the vector of parameter θ = (θ1,θ2,θ3), see
Fig. 11(b).

We use a level 4 Gauss-Legendre quadrature rule (17 points) with a polynomial ex-
pansion of order 6 in each stochastic direction.
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We considered a Bayesian problem with five observations at positions and times

x1 = −0.75, t1 = 0 x2 = 0, t2 = 0.5 and x3 = 0.65, t3 = 0.97. Fig. 12 presents the re-
sults for the three marginals of the posterior obtained with the previous conditions.
The vertical bars corresponds to the positions of the true values of the parameters, i.e.,
θtrue =(θtrue

1 =2,θtrue
2 =0.5,θtrue

3 =0). Let us first consider the marginal with respect to θ3:
Fig. 12 shows that gPC and i-gPC give equivalent results and allows inferring on the true
values of parameter θ3. If we now consider the marginal with respect to θ2, we realize
that the different measurements did not give information on the true value of θ2. Indeed,
the analytical marginal is still uniform on [0.3,0.7]. Note that for this marginal, the gPC
approximated posterior presents spurious modes whereas i-gPC allows recovering the
fact that the prior has not been updated by the measurements. Finally, the last marginal,
with respect to θ1, is the most challenging for gPC and i-gPC but once again, i-gPC allows
a gain in exactly the same conditions as gPC.

In the next section, we consider Euler system and compressible fluid dynamics and
apply the above material to the main motivation of our work.

5.3 Euler system: stochastic Riemann problem

In this section, we consider an hydrodynamic compressible problem, where the initial
location of the interface is uncertain. This test problem consists in a first step toward the
study of uncertain interface position and mixing zone behaviours which play an impor-
tant role in many applications. Our system is modeled by an Euler system:





∂tρ+∂x(ρu)=0,
∂t(ρu)+∂x(ρu2+p)=0,
∂t(ρe)+∂x(ρue+pu)=0,

(5.8)
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where the first equation corresponds to mass conservation, ρ is the mass density and u
the velocity. The second equation corresponds to the conservation of impulsion, p is the
pressure given by a perfect gas state equation. The last equation corresponds to total
energy conservation, e is the specific total energy.

Let us consider a stochastic Riemann problem [62, 63, 68]. The problem initially con-
sists of two constant states, a light fluid and a heavy fluid, separated by an interface
whose abscissa is uncertain. The initial condition is given by

u(x,0,θ)=





ρ(x,0,θ)=

{
1, if x≤ θ,
0.125, elsewhere,

ρu(x,0,θ)=0,

ρe(x,0,θ)=

{
2.5, if x≤ θ,
0.25, elsewhere.

(5.9)

θ corresponds to the initial abscissa interface. Its true value is set to 1. The prior on θ is an
uniform distribution on [0.95;1.05] and the error law for the measurement error and the
noisy observations consists in a centered gaussian distribution of standard deviation σ=
0.1. We place a sensor at x=1.01 (in real experiments, this sensor consists in a camera or
equivalent sharp device, see [59,70] for example), in the vicinity of the interface abscissa,
and we consider 4 measurement times: 0, tm/3, 2tm/3 and tm =0.14.

Fig. 13 presents three realisations of the uniform prior at different times together with
the position of the detector for the measurements. As time passes, for one realisation,
three waves are developing and propagating: a rarefaction fan (left) in the heavy fluid, a
contact discontinuity (middle), interface between both fluids, and a shock (right) in the
light fluid.

First, let us consider the different approximations at the different measurement
points. In order to build the approximations, we rely on a non-intrusive Polynomial
Chaos projection with a Gauss-Legendre integration grid of level 6 (26−1+1=33 points)
and level 8 (28−1+1=129 points), and a polynomial order of P=7.

Fig. 14 presents the analytical solution (reference) together with the gPC and i-gPC
approximations at three measurement points (t = 0, t = 0.046 and t = 0.14). Let us first
consider the dynamic of the flow and the analytical solutions. One can notice the different
behaviour of the stochastic analytical solution at the measurement points with respect to
time: the solution first consists in a discontinuity as the shock passes through the detector,
see 14(a). Then, the detector captures both the contact discontinuity together with a part
of the rarefaction fan, see 14(c). At the last measurement point, the detector only captures
the rarefaction fan, see 14(b).

We now consider the behaviour of the different approximations at these measurement
points. For the first measure, i-gPC allows recovering the discontinuous behaviour of the
shock passing through the sensor whereas the gPC approximations oscillates (Fig. 14(a)).
At measure two, in the vicinity of the rarefaction fan, both gPC and i-gPC gives satisfac-
tory results (Fig. 14(c)). At measure three, where we observe both the contact discontinu-
ity and the rarefaction fan, i-gPC allows an improvement especially in the vicinity of the
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discontinuity (Fig. 14(b)). In this sense, we consider i-gPC allows an adaptation of the
basis with respect to the solution.

Figs. 15(a) and 15(b) present the reference posterior together with the gPC and i-gPC
approximated ones. Once again, the analytical posterior density function exhibits a dis-
continuous behaviour. Once again, on this test problem, the use of gPC approximations
can lead to bad interpretations: for example, according to the gPC accelerated posterior,
the parameter value θ = 1.01, where the sensor is located, is not considered as relevant
whereas it is, see the reference posterior. On the contrary, the i-gPC accelerated posterior
gives to this area the importance it deserves. Moreover, due to the oscillations of the gPC
representation, the gPC accelerated posterior gives more weight to some points which is
not the case with i-gPC.

Finally, Fig. 16 presents, on this same difficult problem, a convergence study in term
of Kullback-Leibler divergence, L1 norm and L2 norm, of the gPC and i-gPC approxima-
tions with respect to both the number of integration points 2k−1+1 and the polynomial
order P. Let us first consider the gPC Kullback-Leibler convergence curves on the top
of Fig. 16(a): as the number of integration points increases, the convergence speed de-
creases. This is due to the particular behaviour of gPC approximations in term of the
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Kullback-Leibler divergence on discontinuous solutions: at fixed P, for such solutions,
the Kullback-Leibler divergence may increase as the L2 projection error decreases (i.e., k
increases). Let us now comment on the behaviour of i-gPC in the same context. The accu-
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racy of the i-gPC approximations for fixed P and k is better than for gPC. The conclusion
is that it is always better to use i-gPC compared to gPC, and this is the case in term of
the Kullback-Leibler divergence, the L1 norm and the L2 norm. Finally, in Fig. 16, we
notice that the increase in the numerical accuracy does not improve the accuracy of gPC
whereas i-gPC allows an important gain making the most of numerical integration.

6 Conclusions

In this paper, we have tackled the resolution of inverse problem implying strongly non
linear or discontinuous behaviours, namely systems of conservation laws (governing
compressible gas dynamics). We first related the exponential L2-convergence of the for-
ward approximation to the exponential convergence in terms of Kullback-Leibler diver-
gence of the approximate posterior. In particular, we proved that under the assumption
of uniform prior distribution, the convergence of the posterior, is at least twice as fast as
the convergence rate of the forward model in the L2-sense. The Bayesian inference strat-
egy has been developed in the framework of a stochastic spectral projection method. The
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predicted convergence rates have been demonstrated for simple nonlinear inverse prob-
lems of varying smoothness. We furthermore suggested an efficient numerical approach
for the Bayesian solution of inverse problems adapted to strongly nonlinear or discon-
tinuous system responses. This comes with the improvement of the forward model that
is adaptively approximated by an iterative generalized Polynomial Chaos-based repre-
sentation. This new approach allows a gain with respect to gPC and accelerates the con-
vergence of Bayesian inference. We demonstrated the efficiency of the new approach in
the context of finite accuracy numerical quadrature rule. The new approach makes the
inference more accurate and above all not misleading which is fundamental in practical
and industrial applications.
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