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Abstract. We discuss a variant of restarted GMRES method that allows changes of the

restarting vector at each cycle of iterations. The merit of the variant is that previously

generated information can be utilized to select a new starting vector, such that the

occurrence of stagnation be mitigated or the convergence be accelerated. The more

appealing utilization of the new method is in conjunction with a harmonic Ritz vector

as the starting vector, which is discussed in detail. Numerical experiments are carried

out to demonstrate that the proposed procedure can effectively mitigate the occurrence

of stagnation due to the presence of small eigenvalues in modulus.
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1. Introduction

In this paper, we consider the solution of large sparse linear systems of equations

Ax = b, (1.1)

where A is an n×n nonsingular matrix, b is an n dimensional vector. Krylov subspace meth-

ods are particularly appealing for this kind of problems and they are widely investigated,

see, e.g., [10,16,17,21,24]. We refer to [22] for a recent survey.

For nonsymmetric matrix A, the GMRES method proposed by Y. Saad and M. H. Schultz

[17] is one of the most popular choices. The GMRES method is an iterative method in

nature, it generates a sequence of approximations converging to the exact solution to (1.1),
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and the approximations have the property of minimizing the 2-norm of the residual vector

over the Krylov subspace involved. However, the optimality of the GMRES comes at a cost.

As the computational costs and storage requirements are prohibitive, so the full GMRES

is limited for practical applications, the restarted version of the algorithm is proposed

in [17]. The idea is that the GMRES method is restarted after fixed number of iterations,

say m (≪ n usually), the resulting restarted version algorithm is denoted by GMRES(m).

However, since GMRES(m) only keeps the current approximate solution as the new initial

guess for the next cycle (the next m iterations), restarting would lose most information

obtained from the previous cycle of the iteration and the convergence may slow down and

even stagnation occurs. Stagnation means that there is little decrease in the residual norm

at the end of a restart cycle, which is often encountered in the GMRES(m), especially in

the case that m is small though there are exceptions [8]. In this paper, the occurrence of

the stagnation is studied in restarted GMRES method, the result reveals that stagnation of

restarted GMRES method occurs if and only if the first row of H̃m, the projection matrix of

the coefficient matrix A in Krylov subspace, is zero.

Techniques for reducing the negative effect of restarting have been investigated in [13,

14, 19]. These methods aim to recovering the superlinear convergence behavior of full

GMRES (see, e.g., [21]) by retaining some eigenvector information generated in the former

cycle of iterations. M. Eiermann et al. [7] provided an overview of the augmentation

strategies and some comparisons are done with some preconditioning approaches [4, 9].

Generalizations of augmenting procedures that aim to retaining information other than

approximate subspace are investigated in [2, 5]. Some other equivalent formulations and

variants of restarted GMRES method have been proposed in [1, 18, 20, 26]. All these

methods take the residual vector at the end of each restart cycle as the starting vector at

the new cycle of iterations, continuing the process until convergence. In this paper, after

analysis of convergence behavior including stagnation of restarted GMRES algorithm, we

present a variant of GMRES(m) that allows change of the restarting vector at every cycle

of the iterative process. The flexibility of choosing the starting vector of the new method

provides us a frame work of using inner-outer iterations, in which other iterative methods

can be used to get the next starting vector. A simple strategy of taking the harmonic vector

associated with the smallest harmonic Ritz value as the starting vector is discussed in

details. Numerical experiments are done to compare the variant of GMRES(m) combining

with this strategy with the original GMRES(m) and show the former superiority.

In Section 2, we give a brief review of restarted GMRES and an analysis of convergence

behavior including stagnation of GMRES(m). In Section 3, we present a variant of restarted

GMRES and a simple strategy of choosing the restarting vector. Some numerical results are

reported in Section 4. The last section gives a brief concluding remarks.

Throughout the paper, by f ∗ we denote the conjugate transpose of vector f , byRm the

m-dimensional complex space and by e j the jth column of the unit matrix whose order is

determined from the context. The Euclidean inner product 〈x , y〉 = y∗x is used and norm

‖ · ‖ denotes both the Euclidean vector norm and the subordinate spectral matrix norm.
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2. Restarted GMRES and occurrence of stagnation

In the following discussions, we refer to the group of m iterations between successive

restarts as a cycle. The restart number is denoted with a subscript: ri is the residual

after i cycles or m× i iterations. At the end of each restart cycle i, GMRES(m) finds an

approximate solution of the form:

x i+1 = x i + Vm yi+1, (2.1)

where Vm = (v1, v2, · · · , vm), whose columns form an orthonormal basis for the Krylov

subspace of dimension m defined by

Km(A, ri) = span{ri ,Ari, · · · ,A
m−1ri}. (2.2)

The m dimensional vector yi+1 is determined so that the norm of the residual ri+1 =

b − Ax i+1 is minimal over Km(A, ri). The orthonormal basis v1, v2, · · · , vm for the Krylov

subspace Km(A, ri) is obtained via the well known Arnoldi process, which satisfies the

relationship

AVm = VmHm + hm+1,mvm+1e∗m = Vm+1H̃m, (2.3)

where Hm is an m×m upper Hessenberg matrix,

H̃m =

�

Hm

hm+1,me∗m

�

is an (m+ 1)×m upper Hessenberg matrix.

Let β = ‖ri‖ and v1 = ri/β , then the residual ri+1 associated with the approximate

solution x i+1 computed from (i+ 1)-th cycle satisfies

ri+1 = b− Ax i+1

= ri − AVm yi+1

= β v1 − Vm+1H̃m yi+1

= Vm+1(βe1− H̃m yi+1). (2.4)

Suppose hm+1,m 6= 0, then the residual norm ‖ri+1‖ = ‖βe1 − H̃m yi+1‖ is minimal when

yi+1 solves the following least square problem

min
y∈Rm
‖βe1 − H̃m y‖. (2.5)

It was known in this case that (2.5) is equivalent to

ri+1 ⊥ AKm(A, ri). (2.6)

So the approximate solution x i+1 of the form (2.1) can be determined uniquely. The details

on the practical implementation of GMRES algorithm can be found in [17].
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From (2.1) it is easy to see that the residual vectors satisfies the relation

ri+1 = ri − AVm yi+1.

Taking the inner product of ri+1 with itself, then from (2.6) we have

〈ri+1, ri+1〉= 〈ri , ri〉 − 〈AVm yi+1, ri〉 − 〈ri − AVm yi+1,AVm yi+1〉

= 〈ri , ri〉 − 〈AVm yi+1, ri〉 − 〈ri+1,AVm yi+1〉

= 〈ri , ri〉 − 〈AVm yi+1, ri〉. (2.7)

As yi+1 solves the least square problem (2.5), so we have

yi+1 = ||ri||(H̃
∗
mH̃m)

−1H̃∗me1. (2.8)

It follows from (2.7) and (2.8) that

||ri+1||
2 = ||ri||

2− ||ri||
2e∗1H̃m(H̃

∗
mH̃m)

−1H̃∗me1

= ||ri||
2
�

1− e∗1H̃m(H̃
∗
mH̃m)

−1H̃∗me1

�

= ||ri||
2(1− g∗
�

H̃∗mH̃m)
−1 g
�

, (2.9)

where

g = H̃∗me1 = H∗me1. (2.10)

Suppose the m-step Arnoldi process does not terminate, i.e., h j+1, j 6= 0, j = 1,2, · · · , m,

then we have rank(H̃m) = m. It follows that H̃∗mH̃m is symmetric positive definite (SPD),

and hence (H̃∗mH̃m)
−1 is also SPD. From (2.9) it is easy to see that ||ri+1||

2 = ||ri||
2 if and

only if g = 0 if and only if the first row of H̃m or Hm is zero. Thus we have the following

theorem.

Theorem 2.1. Suppose dim
�

Km+1(A, ri)
�

= m+ 1, i.e., the m-step Arnoldi process does not

terminate at the i-th cycle, then GMRES(m) stagnates if and only if g = H̃∗me1 = 0, where

H̃m is the (m+1)×m upper Hessenberg matrix generated by the m-step Arnoldi process using

v1 = ri/||ri|| as the starting vector.

At the m-th iteration of the i-th cycle, GMRES(m) seeks the approximate solution of

the form x i+1 = x i + z with

z ∈Km(A, ri).

Then ri+1 = b−Ax i+1 satisfies the minimum property that

||ri+1||= min
z∈Km(A,ri)

||ri − Az|| = ||ri|| sin∠
�

ri,AKm(A, ri)
�

. (2.11)

So the method stagnates equivalently means sin∠
�

ri,AKm(A, ri)
�

= 1, i.e., ri ⊥ AKm(A, ri).

This has been discussed in [3,12,27].



342 Q. Niu and L.-Z. Lu

3. A variant of restarted GMRES method

Algorithm 3.1 or usual GMRES(m) takes the residual vector at the end of each restart

cycle as the starting vector for the next cycle of iterations. This means that at each restart

cycle, GMRES(m) loses all information except an approximation solution generated in the

previous cycles. From the analysis given in the previous section, we have seen that this

might lead to the convergence failure of GMRES(m) if stagnation or nearly stagnation

happens. Moreover, this also means that GMRES(m) is sensitive to the starting vector [8].

To overcome the occurrence of the stagnation, a number of strategies have been proposed

in the literature [11,20,27].Algorithm 3.1: A variant of restarted GMRES algorithm1. Start:Choose a stopping riterion ε and an initial guess x; set the size of the Krylov subspaeto be m and ompute r = b− Ax.2. Choose a starting vetor r̃; ompute u1 = r̃/||r̃ ||. Iteration and form the orthonormalbasis matrix Um of Km(A, r̃):for j = 1 : m do:
u = Au j;for i = 1 : j do:
fi, j = (u,ui);
u = u− fi, jui ;end
f j+1, j = ||u||;
u j+1 = u/ f j+1. j;end3. Form the approximate solution:Find z̃ ∈Km(A, r̃) suh that ||r − Az̃||=minz∈Km(A, r̃) ||r − Az||;Compute x = x + z̃.4. Restart or stop:Compute the residual vetor r = b−Ax and relative residual norm ||r||/||b||. If ||r||/||b|| ≤ εthen stop, else go to 2.

In this paper, we also intend to tune the starting vector flexibly to avoid occurrence

of stagnation or to accelerate the convergence. In principle, any vector with suitable di-

mension can be utilized as the starting vector. However, detailed analysis show that the

traditional choice of the new starting vector generally involves a hybrid procedure [11] or

inexactly solving a new linear system equivalent to the original one, like GMRESR [25]

with embedded inner outer iteration. In the following text, we will discuss a procedure

specialized for coefficient matrices with relatively small eigenvalues in magnitude, by uti-

lizing the eign-information from previous cycle to choose the starting vector at the new

cycle. The idea leads to a new variant of restarted GMRES method. We should address
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that the idea of utilizing eigen-information, particularly adding approximate eigenvectors

at restarting has been proposed discussed by R. B. Morgan [13,14]. We emphasize partic-

ularly on the selection of the starting vector of GMRES(m) in this paper, the augmenting

techniques appeared [2, 13] may also be applicable in the new algorithm settings which

needs further investigation.

Remark 3.1. The main differences between GMRES(m) and Algorithm 3.1 are in steps

2-4. If we fix r̃ = r at step 2 in Algorithm 3.1, then the two algorithms are equivalent.

However, if stagnates or nearly stagnates happen in GMRES(m), as will be shown by sev-

eral numerical examples in the next section; for Algorithm 3.1, we can adjust the starting

vector r̃ such that Algorithm 3.1 may succeed.

Subsequently, we first show how to realize step 4 and then a practical choice of r̃ in

step 2. Suppose that x i is an initial guess (i = 0) or an approximation (i ≥ 1) got from i-th

cycle of Algorithm 3.1. In (i+1)-th cycle, instead of using ri = b−Ax i as the starting vector,

we can select another vector by utilizing information generated in the i-th cycle or simply

choose a random n dimensional vector r̃ to construct a Krylov subspace K̃ ≡ Km(A, r̃).

Letting u1 = r̃/||r̃||, then the application of m-step Arnoldi process to matrix A yields the

relationship

AUm = UmFm + fm+1,mum+1e∗m = Um+1 F̃m, (3.1)

where Um = [u1, · · · ,um], whose columns form an orthonormal basis of K̃ , Fm is an m×m

upper Hessenberg matrix and

F̃m =

�

Fm

fm+1,me∗m

�

.

In the (i+1)-th cycle, the new method seeks the next approximate solution of the form

x i+1 = x i + z̃ = x i + Umq̃, where z̃ ∈ K̃ and q̃ ∈ Rm such that

||ri − Az̃|| =min
z∈K̃
||ri − Az||, or ||ri − AUmq̃|| = min

q∈Rm
||ri − AUmq||. (3.2)

However, if the starting vector r̃ of the new Krylov subspace does not collinear with ri,

then from (2.4) we can see that the minimization problem (3.2) can not be reduced to a

least square problem of the form (2.5). So a new procedure should be given for solving

the minimization problem (3.2).

It is well known that F̃m can be transformed into an upper triangular matrix by the

computation of a QR decomposition

Qm F̃m = R̃m =

�

Ri+1

0

�

. (3.3)

where Ri+1 ∈ R
m×m is an upper triangular matrix, Qm ∈ R

(m+1)×(m+1) is unitary. More-

over, since F̃m is upper Hessenberg, Qm can be constructed by a product of m Givens

rotations

Qm = Gm

�

Gm−1 0

0 1

��

Gm−2 0

0 I2

�

· · ·

�

G1 0

0 Im−1

�

. (3.4)
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where, for j = 1 : m,

G j =







I j−1

c j −s j

s j c j






, s2

j + c2
j = 1.

From (3.1) and (3.3), we have

AUm = Um+1Q∗mR̃m = Ũm+1R̃m = ŨmRi+1, (3.5)

where Ũm+1 = Um+1QT
m = [Ũm, ũm+1], and the columns of Ũm form an orthonormal basis

for the shifted Krylov subspace AK̃ . Based on (3.2) and (3.5), then the norm of the residual

vector ri+1 satisfies the following relationship

||ri+1||= min
q∈Rm
||ri − ŨmRi+1q||. (3.6)

Suppose q̃ = ar g{minq∈Rm ||ri − ŨmRi+1q||}. Then we have

ri − ŨmRi+1q̃ ⊥ Ũm,

which is equivalent to

Ri+1q̃ = Ũ∗mri. (3.7)

So q̃ can be obtained by solving (3.7), then the new approximate solution x i+1 = x i+Umq̃

can be formed. That is, step 4 of Algorithm 3.1 can be completed. Moreover, we know

from the above discussion that costs of step 4 of both algorithms are almost the same. So

the cost of Algorithm 3.1 is almost the same as original GMRES algorithm except possibly

cost of forming r̃.

The residual vector ri+1 of the new method at cycle i + 1 satisfies

||ri+1|| = ||ri|| sin∠(ri,AK̃ ). (3.8)

That is, the residual norm of the new method correlates with the angle between the resid-

ual vector ri and the shifted Krylov subspace AK̃ . If ri ∈ AK̃ , then we will obtain the

exact solution in the affine subspace x i + K̃ . This suggests a reasonable way of finding

the starting vector r̃, that is, trying to get an approximate solution of the linear system

Ar = ri by using another iteration method at step 2 in Algorithm 3.1. Similar strategy in

augmented GMRES method has also been analyzed by Y. Saad in [19]. On the other hand,

based on the same analysis for occurrence of stagnation as given in the previous section, it

is easy to see that the new algorithm stagnates if and only if ri ⊥ AK̃ . So a careful selected

starting vector r̃ should be able to mitigate occurrence of stagnation in the new algorithm.

To estimate ||ri+1||, we first recall the definition of gap between two subspaces [23].

Definition 3.1. For any pair of subspaces (H1,H2) of Rn, the gap Θ(H1,H2) between H1

andH2 is defined by

Θ(H1,H2) =max

�

sup
x∈H1,||x ||=1

||(I − P2)x ||, sup
x∈H2,||x ||=1

||(I − P1)x ||
�

, (3.9)

where Pi is the orthogonal projector onto subspace Hi, i = 1,2.
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Thus Θ(H1,H2) represents the sine of the largest possible angle between vectors in

H1 and their projection in H2. It is proved that

Θ(H1,H2) =max
n

||(I − P2)P1||, ||(I − P1)P2||
o

.

Theorem 3.1. Suppose that Φ is a subspace of K̃ such that Θ(AΦ,Φ)≤ ǫ. Then the residual

vector ri+1 at (i + 1)-th cycle obtained by the new variant of restarted GMRES method using

r̃ as the starting vector satisfies

||ri+1|| ≤ ||(I − PΦ)(I − PAK̃ )ri||+ ǫ||ri||,

where PΦ is the orthogonal projector onto subspace Φ.

Proof. From (3.6), (3.7) we have ri+1 = ri − ŨmŨ T
mri = (I − PAK̃ )ri, so

PΦri+1 = PΦ(I − PAK̃ )ri.

where PAK̃ is the orthogonal projector on to subspace AK̃ . As

||PΦ(I − PAK̃ )|| ≤ ||PΦ(I − PAΦ)||,

based on the definition of gap and assumption of the theorem, we have

||PΦri+1|| ≤ ||PΦ(I − PAΦ)||||ri|| ≤ Θ(AΦ,Φ)||ri|| ≤ ǫ||ri||.

Decompose ri+1 as

ri+1 = (I − PΦ)ri+1 + PΦri+1,

then the result holds by taking norm on both sides of the above equation. �

Theorem 3.1 shows that if the subspace K̃ includes an exactly invariant subspace

Φ, then the new method will get the approximate solution with the components of the

starting vector r̃ in the direction of Φ has been removed completely. Similar results have

been given for the GMRES method in [19,21] when analyzing the superlinear convergence

behavior of the augmented restarted GMRES method. Thus it is seen that the new method

will benefit from fast convergence of eigenspaces during the iteration. This suggests that

we can restart the process by favoring the convergence of eigenspaces, meanwhile, the

reduction of the GMRES residual norm would also be accelerated according to Theorem

3.1. So the restarting strategies for solving large eigenvalue problems may be adopted

to restart the GMRES process. The flexibility of the starting vector proposed in the new

method provides us a framework to accomplish the idea.

In the rest of this section, we just present a simple strategy to choose the starting vector

r̃ in Algorithm 3.1, which will be demonstrated to be effective by numerical experiments

in the next section. We believe that there must be other better strategies.

Suppose that in Algorithm 3.1, the residual r0 is used as the starting vector at the

first iteration (of the first cycle) and step 3 of i-th cycle has been completed, we get the
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relationship (3.1) and Krylov subspace K̃ . Let (λ̂ j, ϕ̂ j) be the harmonic Ritz pair obtained

at the i-th cycle, then (λ̂ j , ϕ̂ j) satisfies the relationship

¨

ϕ̂ j ∈ K̃ ,

(A− λ̂ j I)ϕ̂ j ⊥ AK̃ .
(3.10)

From (3.1), (3.5) and (3.10) we know that (λ̂ j, ϕ̂ j) are the solution of the following gen-

eralized eigenvalue problem.

¨

ϕ̂ j = Um g j,

Ri+1 g j = λ̂ jQm(1 : m, 1 : m)g j,
(3.11)

where Um is defined in (3.1), Qm is defined by (3.3) and (3.4).

Define the harmonic residual vector by

r̂ j = Aϕ̂ j − λ̂ jϕ̂ j .

Then Theorem 5.5 of [14] can be stated as follows.

Theorem 3.2. In GMRES(m), the (i + 1)-th GMRES residual vector ri+1 is collinear with

the residual vector associated with the residual vectors associated with harmonic ritz pairs

computed within the i-th cycle of iterations.

The result is helpful to us in determining the starting vectors. By this theorem, we know

that if the smallest harmonic Ritz value λ̂1 is very small in magnitude, then Aϕ̂1 ≈ r̂1, that

is, Aϕ̂1 will lie in the direction close to ri . This property indicates that

sin∠(ri,Aϕ̂1)≈ sin∠(ri, r̂1)

is very small. Furthermore, since ϕ̂1 ∈ K̃ (see (3.10)), we have

sin∠(ri,AK̃ )≤ sin∠(ri,Aϕ̂1).

So it follows from (3.8) that fast convergence of the new variant of restarted GMRES

method can be expected if we use ϕ̂1 to construct the new Krylov subspace K̃ . So for the

new method or Algorithm 3.1, a simple strategy of choosing the starting vector is to set

r̃ = ϕ̂1
§ from the beginning of the second cycle of the iteration, whereas the first cycle

of the iteration is the same as the original GMRES(m) using r0 = b − Ax0 as the starting

vector. In numerical experiments of the next section, the new method combining with this

strategy of choice is denoted by NGMRES(m), which is demonstrated to be very effective

for problems with well separated small eigenvalues. However, it should be emphasized

that there are other choices like using a combination of the harmonic Ritz vectors as the

starting vector or using an inner-outer iteration to determine the starting vector in the new

method.

§In case that A is real matrix but ϕ̂1 is a complex vector, we use real(ϕ̂1) + imag(ϕ̂1) to avoid the complex

operation in the process. However, no complex ϕ̂1 appear in all numerical examples of the next section.
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4. Numerical experiments

In this section, some numerical experiments are performed to demonstrate the analysis

and theory presented in the previous sections. The matrices with small separated eigen-

values (see Table 3) are selected and restart parameter m is chosen to be relatively small

so that there is possibly occurrence of nearly stagnation in GMRES(m) (see Examples 4.2,

4.3 and 4.4 below).

We report some numerical experiments on NGMRES(m), which is tested and compared

with GMRES(m). All numerical tests have been carried out on an INTEL PENTIUM IV 2.4GHZ

with main memory 256MB and the machine precision eps = 2.22× 10−16 using MATLAB

6.5 on a Window XP-based system. In all tables of the paper, m is the dimension of the

Krylov subspace, i ter denotes the number of restarts, cpu is the CPU timings in seconds,

res is the relative residual norm. In the following experiments, the stopping criterion is set

to be res = 10−7 and the initial approximate vector is taken to be the vector with random

entries uniformly distributed on [0,1] in each examples.

Example 4.1. Two matrices sherman1 and sherman4 from [6] are tested in this example.

The right hand sides b are also taken from the collection. Both matrices are real nonsym-

metric generated in oil reservoir simulation. The dimensions of sherman1 is 1000, and

sherman4 is 1104. Tested results on sherman1 are listed in Table 1, from which we can

see that for subspaces with different dimensions, NGMRES(m) is faster than GMRES(m),

both in terms of restarts and of the elapsed time. The convergence history for matrix

sherman4 are shown in Fig. 1. GMRES(15) and GMRES(20) take 0.48s and 0.46s to reach

res = 10−7, while NGMRES(15) and NGMRES(20) need only 0.29s and 0.25s, respectively.

In the example, no stagnation or nearly stagnation phenomena occurs.Table 1: Tested results on sherman1.
m methods i ter cpu res

15 GMRES 337 4.5 9.6E-8

NGMRES 143 1.03 9.8E-8

20 GMRES 194 2.7 9.5E-8

NGMRES 80 0.93 9.7E-8

25 GMRES 123 2.2 9.3E-8

NGMRES 53 1.02 8.8E-8

Example 4.2. Real symmetric positive definite matrix nos3 from [6] is tested in this exam-

ple. It is of order 960, arising from structure engineering. Fig. 2 shows convergence curves

of both algorithms. We can see from Fig. 2 that GMRES(10) nearly stagnates from the first

few cycles of the iteration while NGMRES(10) converges more quickly. The convergence

of GMRES(20) is steady but slowly, its residual norm reaches 5.1×10−6 after 500 restarts.

The NGMRES(20) exhibits faster convergence behavior, it needs only 76 restarts in 1.6s to

reduce the relative residual norm below 10−7. So the variant of restarted GMRES is far

better than the original one for this problem.
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The number of restartsR esid ual norms
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Figure 1: The onvergene urves for sherman4. 0 100 200 300 400 500 60010−810−610−410−2100102104

The number of restartsR esid ual norms
NGMRES(20)GMRES(20)NGMRES(10)GMRES(10)

Figure 2: The onvergene urves for nos3.
0 100 200 300 400 500 60010−810−610−410−2100102

The number of restartsR esid ual norms GMRES(10)NGMRES(10)GMRES(15)NGMRES(15)
Figure 3: The onvergene urves for dde1. 0 50 100 150 200 25010−810−610−410−2100102
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Figure 4: The onvergene urves for avity10.
Example 4.3. We test real nonsymmetric matrix cdde1 from [15] in this example, it is

generated in computational fluid dynamics with size 961. Fig. 3 and Table 2 show the

comparison of the convergence behavior of the two methods with different subspace sizes.

From Fig. 3 we can see that GMRES(10) nearly stagnate after several times of restarting,

while NGMRES(10) exhibits consistently fast convergence behavior. When enlarging the

dimension of the subspace involved, Table 2 shows that convergency of both methodsTable 2: Tested results on dde1.
m methods i ter cpu res

15 GMRES 200 1.62 8.5E-8

NGMRES 15 0.15 6.8E-8

20 GMRES 84 0.91 7.7E-8

NGMRES 12 0.16 1.2E-8

25 GMRES 46 0.86 3.8E-8

NGMRES 8 0.17 1.9E-8

30 GMRES 27 0.76 3.2E-8

NGMRES 7 0.24 1.4E-8
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improve accordingly, but NGMRES(m) behaves much better in terms both the timing and

the number of the iteration.

Example 4.4. In this example, we test real nonsymmetric matrix cavity10 from [6]. This

matrix is of size 2597 arising from finite element modeling. The right hand side b used

is the normalized vector accompanies with cavity10 in matrix market. Fig. 4 depicts the

convergence history of both algorithms with different dimensions of the Krylov subspaces,

from which we can see that GMRES(30) stagnate at the level of 10−5, whereas NGM-

RES(30) effectively mitigate the occurrence of stagnation, and exhibit much better conver-

gence behavior. Table 3: Matries tested in the examples.
E xample mat ri x size SM LM

4.1 sherman1 1000 -3.0× 10−4, -1.0× 10−3, -1.1× 10−3 -5.04

4.1 sherman4 1104 0.03, 0.085, 0.28 66.5

4.2 nos3 960 0.0183, 0.249, 0.267 689.9

4.3 cdde1 961 -0.0052, 0.024, 0.024 7.95

4.4 cavity10 2597 4.4× 10−6,4.3× 10−4, 4.3× 10−4 13.05

LM: the largest eigenvalue in magnitude (estimated)

SM: the three smallest eigenvalues in magnitude (estimated)

In Table 3, we list some information on the matrices used in the test. From this table,

we can see that all the matrices tested in the above examples have one common property:

the smallest eigenvalues are well separated and the ratio of the second smallest eigenvalue

in magnitude to the smallest one is large. For such problems, our numerical experiments

show that NGMRES(m) always outperforms GMRES(m).

5. Closing remarks

After an analysis of the occurrence of stagnation of GMRES algorithm, we discuss the

implementation of restarted GMRES from a different view of point. It is shown that the

starting vector at the each restart cycle of GMRES(m) can be chosen flexibly for mitigating

occurrence of stagnation or for accelerating the convergence. A simple strategy of tak-

ing the harmonic vector associated with the smallest harmonic Ritz value in magnitude as

the starting vector is discussed. The new method combining with the strategy is demon-

strated to be effective by a few numerical examples with small well-separated eigenvalues.

However, other strategies like inner-outer iteration methods may also be adopted in the

framework.
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