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Abstract. In this paper, a class of new immersed interface finite element methods

(IIFEM) is developed to solve elasticity interface problems with homogeneous and non-

homogeneous jump conditions in two dimensions. Simple non-body-fitted meshes are

used. For homogeneous jump conditions, both non-conforming and conforming ba-

sis functions are constructed in such a way that they satisfy the natural jump condi-

tions. For non-homogeneous jump conditions, a pair of functions that satisfy the same

non-homogeneous jump conditions are constructed using a level-set representation of

the interface. With such a pair of functions, the discontinuities across the interface

in the solution and flux are removed; and an equivalent elasticity interface problem

with homogeneous jump conditions is formulated. Numerical examples are presented

to demonstrate that such methods have second order convergence.
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1. Introduction

In this paper, we consider the elasticity interface problem

∇ ·σ+ F = 0, in Ω− ∪Ω+, (1.1)

where σ is the stress tensor, a 2 × 2 symmetric matrix, F = ( f1, f2)
T is a known body

force. The domain Ω consists of Ω− and Ω+, Ω−∩Ω+ = ;, see Fig. 1 for an illustration. We

assume that the interface Γ = Ω− ∩Ω+ separates Ω− and Ω+ is smooth enough (C2). We

also denote by n the unit vector normal to Γ pointing from Ω− to Ω+.
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Figure 1: A diagram of the geometry of an ellipti interfae problem.
For linearly elastic problems with small displacements, the relation between stress ten-

sor and deformation is given by

σi j = λ (∇ · u)δi j + 2µǫi j(u), (1.2)

where λ and µ are Lamé constants, u= (u1, u2)
T is the displacement vector. The equations

(1.1) can be written as the component form,
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Due to the discontinuities in the coefficients, or/and source distribution along the interface

Γ, the solution and flux are often discontinuous. The jump conditions across Γ can be

written as
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The jump conditions are called natural if

w1 = w2 = q1 = q2 = 0.
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Elastic interface problems (1.3)-(1.4) with such jump conditions arise in many areas, for

example, the epitaxial growth of thin films [2,6].

To solve the interface problem, first we need to generate a mesh. One approach is

to use a body fitted mesh coupled with a finite element discretization, see for example,

[1,5,7,8,11,17] for scalar elliptic partial differential equations (PDEs). Recently, Cartesian

meshes have become popular especially for moving interface problems to overcome the

cost in the grid generation at every or every other time steps.

Finite difference methods are proposed in [18, 19] with non-homogeneous jump con-

ditions. While second order accuracy was achieved, the condition number of the discrete

system is quite large especially in the nearly incompressible case (λ is large) compared with

that obtained from finite element formulations. In [18, 19], a first order immersed inter-

face finite element method (IIFEM) was proposed using Cartesian meshes for the elasticity

problem with homogeneous jump conditions. In general, the discretization using a finite

element discretization has better conditioned system of equations compared with that ob-

tained from a finite difference method. The Soblev space theory provides strong theoretical

foundations for convergence analysis for finite element methods.

In [10], an immersed-interface finite element method was developed for scalar ellip-

tic interface problems with non-homogeneous jump conditions. In this paper, we propose

immersed-interface finite element methods for the elastic system with homogeneous and

non-homogeneous jump conditions. In some sense, this paper is a non-trivial extension

to the work in [10]. While the idea is similar, the discussion and implementation are

substantially more difficult as we can see later in this paper.

The basic idea of our immersed-interface finite method for homogeneous jump con-

ditions is to incorporate the jump conditions in constructing basis functions. In a fi-

nite difference immersed interface method, the jump conditions are enforced through

finite difference equations at grid points near or on the interface. In the immersed in-

terface finite element methods, the jump conditions are enforced through the construc-

tion of special finite-element basis functions that satisfy the homogeneous jump conditions

(w1 = w2 = q1 = q2 = 0). Clearly, such basis functions depend on the interface location

and the physical parameters.

To deal with non-homogeneous jump conditions, we construct a known functions with

the same jump conditions via a level set function whose zero level set is the interface Γ.

Through the known function, we transform the original elastic interface problem to a new

one with homogeneous jump conditions. In implementation, the process is equivalent to

moving the non-homogeneous jump conditions to the right hand sides.

The paper is organized as follows. In Section 2, we review the immersed interface

non-conforming finite element method for elasticity interface problems. In Section 3, we

describe the immersed interface finite element methods for elasticity interface problems

with homogeneous jump conditions and present a numerical example. In Section 4, we

describe the immersed-interface finite-element methods for elasticity interface problems

with non-homogeneous jump conditions and present some numerical results.
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2. Review of the non-conforming immersed interface finite element space

The weak formulation of the elasticity problem (1.3)-(1.4) with homogeneous jump

conditions (w1 = w2 = q1 = q2 = 0) is,

a(u, v) = L(v), ∀v ∈ {H1
0(Ω)}

2, (2.1)
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see, for example, [4] for a reference.

Let Th be a finite-element mesh with mesh size h that covers Ω. We assume that the

elements in Th are all triangles. For simplicity, we shall assume that Ω is a convex polygonal

domain and the mesh covers Ω exactly. Standard finite element techniques can be applied

to treat a curved boundary. In practice the computational domain Ω can often be chosen

as a rectangular domain with sides parallel to the coordinate axes; and the finite-element

mesh can be uniform.

We call an element T ∈ Th an interface element if Γ ∩ int T 6= ;. Note that an element

is a non-interface element, if one of its edges is part of the interface. We assume for any

interface element T ∈ Th, the set Γ∩∂ T consists of exactly two points that are on different

edges of T .

We define an immersed-interface finite-element space Vh with respect to the mesh Th

to be a finitely-dimensional subspace of L2(Ω) that consists of all the linear combinations

of the corresponding basis functions φ1, · · · ,φN for some integer N ≥ 1:

Vh = span {υ1,υ2, · · · ,υN}, (2.2)

where υi are vector functions of two dimensions. The basis functions are the usual finite-

element basis functions on a non-interface element, in which the set of shape functions are

given by

φe =

�

φ1 0 φ2 0 φ3 0

0 φ1 0 φ2 0 φ3

�

, (2.3)

where φi, i = 1,2,3, are the standard shape functions with φi(x j) = δi j, see for example,

[3] for the details.

On an interface element, the basis functions are also chosen as piecewise polynomials

that are determined by the element and the interface Γ. All the basis functions satisfy

the homogeneous jump conditions for both of the function and flux. Moreover, there

exists an interpolation operator from some functional space to Vh that enjoys the usual

approximation properties.
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Figure 2: A typial interfae element T =△ABC . The ar DM E is the part of the interfae Γ in T . It isapproximated by the line segment DE. T+ =△ADE, T− = T − T+, and Tr is the region enlosed by the
DE and the ar DM E.

At an interface triangle, see Fig. 2 for a typical example, we consider how to construct a

piecewise linear function φ(x1, x2) = [φ1(x1, x2), ψ1(x , y)]T given its values at the three

vertices. Let
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+ c

(2)

φ1
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φ1
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(2.4)
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(2.5)

There are twelve unknown coefficients. There are chosen to satisfy the values at three

vertices, which gives six equations; the continuity condition at D and E, which gives four

equations; the flux jump conditions (1.7)-(1.8), which provides additional two constraints.

Thus the number of unknowns is the same as the number of equations. The coefficient

matrix is non-singular for physically meaningful parameters, we refer the reader to [9] for

more details.

Remark 2.1. The idea of constructing the non-conforming basis functions is the same as

for the scaler elliptic interface problems described in [10]. However, we can not construct

the basis functions for the system using the dimension by dimension approach due to the

coupling of the flux jump condition (1.8).

Note that from the construction process, we can see that if the components of the

solution are piecewise linear functions, then the constructed interpolation function using

the nodal values would be exact except for a small mis-matched regions whose area is at

most O (h3), where h is the uniform mesh size. Therefore, the constructed interpolation
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function using the constructed finite element basis functions is second order accurate in

the L∞ norm. On the other hand, while the basis functions are continuous on each element

(triangle), they may not match with other pieces defined on neighboring triangles. So the

finite element space is a non-conforming one. The convergence rate is observed between

first order and second order in the L∞ norm.

3. A conforming finite element space

In this section, we show how to construct a conforming linear finite element space.

The basis functions associated with interface elements are still piecewise linear and glob-

ally continuous. The method extended the idea for scale interface problems in [10], the

conforming finite element space can be regarded as a perturbation to the non-conforming

one.

In order to maintain the continuity in the basis functions, we extend the previously

defined basis functions at an interface element to one more triangle along the interface (cf.

Fig. 3 (b)). We require that the local basis functions in two adjacent interface elements,

such as ∆ABC and ∆AFB, take the same value at the interface point (D) on their common

edge.

(a) (b)

A

B C

E

D

F

G

I

H

The support of a loal basis funtion. A diagram for the onstrution of a loal.Figure 3: (a) The support of a loal basis funtion. (b) A diagram for the onstrution of a loal basisfuntion on △ABC .
For an interface element T = ∆ABC ∈ Th, see Fig. 3 for an illustration, we denote the

set of basis functions as

φe =

�

φ̄1 φ̄2 φ̄3 φ̄4 φ̄5 φ̄6 φ̄7 φ̄8 φ̄9 φ̄10

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10

�

. (3.1)

We construct φ̄i and ψi, i = 1,2, · · · , 10 , by assigning their values (zero or unity) at

the vertices A, B, C , F , and I , respectively. This construction process can be summarized in

the following steps:

P1. Use the values at the nodes A, B, C , F , and I to construct the three sets of non-

conforming finite element basis functions on the elements ∆ABC , ∆AFB, and ∆AC I ,

respectively, as explained in Section 2;
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P2. Set the value at D as the average of the values at D of the non-conforming basis

functions defined on ∆ABC and ∆AFB constructed in P1;

P3. Similarly, set the value at E as the average of values at E of the non-conforming basis

functions defined on the elements ∆ABC and ∆AC I constructed in P1;

P4. Set the values at the points A, B and C exactly the same as those from the non-

conforming finite-element basis function on ∆ABC:

φe(B) =

�

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

�

,

φe(C) =

�

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

�

,

φe(A) =

�

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

�

;

P5. Partition the element ∆ABC into three sub-triangles by an auxiliary line, say line

segment BE, or DC . We choose the auxiliary line in such a way that at least one

of angles (or complimentary angle if the angle is more than π/4) is bigger than or

equal to π/2, see [14] for more explanations;

P6. Define the basis functions φ̄i and ψi, i = 1,2, · · · , 10, to be the piecewise linear

function in the three sub-triangles.

Remark 3.1. Note that if all the coefficients are continuous, then the non-zero basis func-

tions are the standard piecewise linear basis functions. For coefficients with jumps across

the interface Γ, we can think that the compact support region of a global basis function has

been extended from interface element to one or two triangles along the interface to keep

the continuity of the basis function.

3.1. A numerical example for the conforming IIFEM with homogeneous jump

conditions

We consider the problem (1.4)-(1.6) with Ω = (−1,1)× (−1,1), Γ being the circle

centered at point (0,0) with radius R = 0.5, and λ− = µ− = 1, and λ+ = µ+ = 100. The

body force term F = ( f1, f2) and the Dirichlet boundary condition G = (g1, g2) are from

the exact solution u= (u1,u2),

u1(x1, x2) = u2(x1, x2) =







(x2
1 + x2

2), if r ≤ R,

(x2
1 + x2

2)

100
+

�

1−
1

100

�

R2, otherwise,

where r =
p

x2
1 + x2

2 . The exact solution satisfies the homogeneous jump conditions (w1 =

w2 = q1 = q2 = 0).
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Figure 4: The linear regression analysis of ‖u−uI‖L∞ in log-log sale of the interpolation error using theonforming linear IIFE spae. (a), the mesh is varying aording to N = 20+ 20k, k = 0, 1, · · · , 24, theslope (onvergene order) is 1.7192; (b), N = 120+ 20k, k = 0, 1, · · · , 19, the slope is 2.1479.
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Figure 5: The linear regression analysis of (u−uh) in the L∞ norm in log-log sale by using the onforming,linear, immersed interfae �nite element spae. (a), the mesh is varying aording to N = 20+ 20k,
k = 0, 1, · · · , 24, the slope (onvergene order) is 1.8706; (b), N = 120+ 20k, k = 0, 1, · · · , 19, the slopeis 1.9443.

For this problem, even though the solution is piecewise quadratic, we can not get the

exact solution due to the approximation of Γ using piecewise line segments. But we show

that the interpolation error, and the global error of the finite element solution both have

asymptotic second order convergence in the L∞ norm.

With fixed Cartesian meshes, the L∞ errors usually do not decrease monotonically

because there is no fixed patten between the underlying mesh and the interface as we

refine the mesh. Thus it is more appropriate to find average convergence order using
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linear regression analysis, see for example, [12, 13] for more details. In Fig. 4, we show

the grid refinement results in log-log scale for the error of the interpolation function uI .

In Fig. 4 (a), the meshes are taken as N = 20+ 20k, k = 0,1, · · · , 24, the slope of the

fitted line (convergence order) is 1.7192. For the coarser grid, the error in representing

the interface has some effect on the convergence order. In Fig. 4 (b), we start with a finer

mesh, N = 120+ 20k, k = 0,1, · · · , 19, the slope of the fitted line is 2.1479 which gives

more accurate account about the convergence order.

In Fig. 5, we show the grid refinement analysis for the finite element solution by plot-

ting and fitting the error ‖u − uh‖L∞ . The convergence order is 1.8706 with the mesh

varying according to N = 120+ 20k, k = 0,1, · · · , 19 in Fig. 5 (a); and 1.9443 with the

mesh varying according to N = 120+ 20k, k = 0,1, · · · , 24 in Fig. 5 (b).

4. IIFEM for elasticity system with non-homogeneous jump conditions

In theory, the conforming IIFEM only works for homogeneous jump conditions, that is,

w1 = w2 ≡ 0 and q1 = q2 ≡ 0. It is possible to treat non-homogeneous jump in the fluxes

(q1 6= 0 and q2 6= 0) as line integrals. But the convergence order in the L∞ norm will

likely be deteriorated. It is almost impossible to have second order finite element method

using the basis constructed in previous section since any linear combination of the basis

functions would satisfy the homogeneous jump conditions.

One efficient way of overcoming this difficulty is the singularity removal technique first

developed for the scalar problems [10]. The idea is to construct a known function with the

same jump conditions to transform the original problem to a new one with homogeneous

jump conditions via a level set representation of the interface Γ.

Let ϕ(x1, x2) be a Lipschitz continuous function whose zero level set is the interface

Γ = { (x1, x2), ϕ(x1, x2) = 0 }.

A commonly used one is the signed distance function, which is a smooth function (C2)

in the neighborhood of the interface if the interface is smooth (C2). We refer the readers

to [15,16] about the level set method. Note that, given an fixed interface, one can generate

the signed distance function numerically.

In the source singularity removal technique, we extend the jump conditions along the

normal line in each direction. We denote these extension as we
i
(x1, x2) and qe

i
(x1, x2), i =

1,2. Note that the extensions are two dimensional functions at least in a neighborhood of

the interface and they are constants along the normal lines of the interface. The theoretical

justification of the extension was established in [10], which we repeat in the following

lemma,

Lemma 4.1. Let ρ > 0 be small enough. Then, for any x ∈ N(Γ,ρ), there exists a unique

x∗ ∈ Γ such that

|x − x∗| = dist (x ,Γ). (4.1)
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Moreover,

x − x∗

|x − x∗|
=

(

− n(x∗) if x ∈ Ω−,

+ n(x∗) if x ∈ Ω+,
(4.2)

where n(x∗) is the unit normal to Γ at x∗, pointing from Ω− to Ω+.

We define ũ= (ũ1, ũ2) as

ũ1 = we
1(x)+ J e

1(x)
ϕ(x)

|∇ϕ(x)|
, ∀x ∈ Ω, (4.3a)

ũ2 = we
2(x)+ J e

2(x)
ϕ(x)

|∇ϕ(x)|
, ∀x ∈ Ω, (4.3b)

where J e
1 : Ω→ R, J e

2 : Ω→ R are the extensions of J1 : Γ→ R, J2 : Γ→ R.

Note that J1 : Γ→ R, J2 : Γ→ R, J e
1 : Ω → R and J e

2 : Ω→ R are unknown functions

and will be determined later in this section. They satisfy the following conditions:

• J e
1 and J e

2 are smooth on Ω, J1 and J2 are smooth on Γ;

• J e
1(x) = J1(x

∗) and J e
2(x) = J2(x

∗) for any x ∈ N(Γ,ρ), where x∗ is defined as in

Lemma 4.1;

• J e
1(x) = 0 and J e

2(x) = 0 for any x ∈ Ω \ N(Γ,ρ).

We then define û = (û1, û2) as:

û1 = χΩ+(x)ũ1(x), ∀x ∈ Ω, (4.4a)

û2 = χΩ+(x)ũ2(x), ∀x ∈ Ω, (4.4b)

where χΩ+ is the characteristic of function of Ω+. The function û= (û1, û2) has the follow-

ing properties:

• û+
1

, û−
1

, û+
2

, and û−
2

are smooth on Ω− and Ω+, respectively;

• û1 = g1 and û2 = g2 on ∂Ω;

• û = (û1, û2) has the same non-homogeneous jump conditions across the interface Γ

as u = (u1,u2),
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�

Γ

= q1, (4.5c)
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+
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�
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∂ û2
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�
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+
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�
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�

Γ
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Now we discuss how to find the functions J1 and J2 in the following procedure.
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• Find the partial derivatives of ũ1 and ũ2. Note that ϕ(x) = 0 on the interface Γ, we

have
∂ J e
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∂ ũ1

∂ x2

�

�

�

�

Γ

=
∂ we

1

∂ x2

+ J1

∂

∂ x2

�

ϕ(x)

|∇ϕ(x)|

�

, (4.6b)

∂ ũ2
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• Obtain the following equations after we plug (4.4) into (4.5c)-(4.5d),
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�
�

�

�

�

Γ

+ 2µ+n1

∂ ũ1

∂ x1

�

�

�

�

Γ

+µ+n2

�

∂ ũ1

∂ x2

+
∂ ũ2

∂ x1

�
�

�

�

�

Γ

= q1, (4.7a)

λ+n2

�

∂ ũ1

∂ x1

+
∂ ũ2

∂ x2

�
�

�

�

�

Γ

+ 2µ+n2

∂ ũ2

∂ x2

�

�

�

�

Γ

+µ+n1

�

∂ ũ1

∂ x2

+
∂ ũ2

∂ x1

�
�

�

�

�

Γ

= q2. (4.7b)

• Set equations for J1, J2 after we plug (4.6) into (4.7) and rearrange terms to get

aJ
11J1 + aJ

12J2 = bJ
1, (4.8a)

aJ
21J1 + aJ

22J2 = bJ
2, (4.8b)

where

aJ
11 = (λ

++ 2µ+)n1

∂

∂ x1

�

ϕ(x)

|∇ϕ(x)|

�

+µ+n2

∂

∂ x2

�

ϕ(x)

|∇ϕ(x)|

�

,

aJ
12 = λ

+n1

∂

∂ x2

�

ϕ(x)

|∇ϕ(x)|

�

+µ+n2

∂

∂ x1

�

ϕ(x)

|∇ϕ(x)|

�

,

aJ
21 = µ

+n1

∂

∂ x2

�

ϕ(x)

|∇ϕ(x)|

�

+λ+n2

∂

∂ x1

�

ϕ(x)

|∇ϕ(x)|

�

,

aJ
22 = µ

+n1

∂

∂ x1

�

ϕ(x)

|∇ϕ(x)|

�

+ (λ++ 2µ+)n2

∂

∂ x2

�

ϕ(x)

|∇ϕ(x)|

�

,

and

bJ
1 = q1− (λ

++ 2µ+)n1

∂ we
1

∂ x1

−λ+n1

∂ we
2

∂ x2

−µ+n2

∂ we
1

∂ x2

−µ+n2

∂ we
2

∂ x1

,

bJ
2 = q2− (λ

++ 2µ+)n2

∂ we
2

∂ x2

−λ+n2

∂ we
1

∂ x1

−µ+n1

∂ we
1

∂ x2

−µ+n1

∂ we
2

∂ x1

.
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• Let AJ to be a 2× 2 matrix and bJ , x J to be 2× 1 vectors, we have

AJ =

�

aJ
11 aJ

12

aJ
21 aJ

22

�

, x J =

�

J1

J2

�

, bJ =

�

bJ
1

bJ
2

�

. (4.9)

Consequently, (4.8) can be written as

AJ x J = bJ .

Thus J1 and J2 can be solved from x J = (AJ)−1 bJ .

4.1. Computing the modified load vector

If we set u = uH + û, then uH satisfies the elasticity equations with homogeneous jump

conditions. We can then use the IIFEM method described in the previous sections to solve

for uH , which also leads to u since û is a known function. In practice, we can get the

solution directly after some manipulations.

Note that, by plugging u = uH + û into the elasticity equations, we can get

∇ ·σH + F H = 0, (4.10)

which can be written as

−

¨

(λ+ 2µ)
∂ 2uH

1

∂ x2
1

+ (λ+µ)
∂ 2uH

2

∂ x1∂ x2

+µ
∂ 2uH

1

∂ x2
2

«

= f H
1 , (4.11a)

−

¨

(λ+ 2µ)
∂ 2uH

2

∂ x2
2

+ (λ+µ)
∂ 2uH

1

∂ x1∂ x2

+µ
∂ 2uH

2

∂ x2
1

«

= f H
2 , (4.11b)

where the body force F H = ( f H
1 , f H

2 ) associated with uH is given by

f H
1 = f1 +

¨

(λ+ 2µ)
∂ 2û1

∂ x2
1

+ (λ+µ)
∂ 2û2

∂ x1∂ x2

+µ
∂ 2û1

∂ x2
2

«

, (4.12a)

f H
2 = f2 +

¨

(λ+ 2µ)
∂ 2û2

∂ x2
2

+ (λ+µ)
∂ 2û1

∂ x1∂ x2

+µ
∂ 2û2

∂ x2
1

«

. (4.12b)

The weak form of the interface problem for uH is

a(uH , v) =

∫

Ω

¨

(λ+ 2µ)
∂ uH

1

∂ x1

∂ v1

∂ x1

+ (λ+ 2µ)
∂ uH

2

∂ x2

∂ v2

∂ x2

+µ
∂ uH

1

∂ x2

∂ v1

∂ x2

+µ
∂ uH

2

∂ x1

∂ v2

∂ x1

+ λ
∂ uH

1

∂ x1

∂ v2

∂ x2

+λ
∂ uH

2

∂ x2

∂ v1

∂ x1

+µ
∂ uH

1

∂ x2

∂ v2

∂ x1

+µ
∂ uH

2

∂ x1

∂ v1

∂ x2

«

d x

= L(v) =

∫

Ω

�

f H
1 v1 + f H

2 v2

�

d x , ∀v ∈ {H1
0(Ω)}

2.
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Let the resulting linear system of uH be AUH = F HL using the conforming immersed

interface finite element method. We use F HL to represent the load vector associated with

uH to avoid the confusion with the body force F H associated with uH . The entries of A and

F HL are

ai j =

∫

Ω

¨

(λ+ 2µ)
∂ φ j

∂ x1

∂ φi

∂ x1

+ (λ+ 2µ)
∂ψ j

∂ x2

∂ψi

∂ x2

+µ
∂φ j

∂ x2

∂ φi

∂ x2

+µ
∂ψ j

∂ x1

∂ψi

∂ x1

+ λ
∂ φ j

∂ x1

∂ ψi

∂ x2

+λ
∂ψ j

∂ x2

∂ φi

∂ x1

+µ
∂φ j

∂ x2

∂ψi

∂ x1

+µ
∂ψ j

∂ x1

∂ φi

∂ x2

«

d x ,

F
HL

i
=

∫

Ω

�

f H
1 φi + f H

2 ψi

�

d x .

We also define U , Û and UH to be 2N × 1 vectors,

U = (u
(1)
1 ,u

(1)
2 ,u

(2)
1 ,u

(2)
2 , · · · ,u(i)1 ,u

(i)
2 , · · · ,u(N)1 ,u

(N)
2 )

T , (4.13a)

Û = (û
(1)
1

, û
(1)
2

, û
(2)
1

, û
(2)
2

, · · · , û(i)
1

, û
(i)
2

, · · · , û(N)
1

, û
(N)
2
)T , (4.13b)

UH =
�

(uH
1 )
(1), (uH

2 )
(1), (uH

1 )
(2), (uH

2 )
(2), · · · ,

(uH
1 )
(i), (uH

2 )
(i), · · · , (uH

1 )
(N), (uH

2 )
(N)
�T

, (4.13c)

where (u
(i)
1 ,u

(i)
2 ), ((u

H
1 )
(i), (uH

2 )
(i)) are the finite element solutions of u, and uH at the i th

node (Ni), i = 1, · · · , N , and (û
(i)
1

, û
(i)
2
) are the exact values of the function û at i th node

(Ni), i = 1, · · · , N . By U = UH + Û , we have

AU = A(UH + Û) = AUH + AÛ = F HL + AÛ = F.

Note that, the coefficient matrix A is the same as in that of the same problem with

homogeneous jump conditions. We only need to adjust some entries of the load vector F

based on F HL . The computation of the load vector is summarized below:

Fi =











































































∫

Ω

�

f1φi + f2ψi

�

d x , if Ωs(φi,ψi)∩Γ = ;,

∫

Ω

�

f1φi + f2ψi

�

d x

+

∫

Ω

¨

(λ+ 2µ)
∂ 2û1

∂ x2
1

+ (λ+µ)
∂ 2û2

∂ x1∂ x2

+µ
∂ 2û1

∂ x2
2

«

φi d x

+

∫

Ω

¨

(λ+ 2µ)
∂ 2û2

∂ x2
2

+ (λ+µ)
∂ 2û1

∂ x1∂ x2

+µ
∂ 2û2

∂ x2
1

«

ψi d x

+

2N
∑

j=1

ai j Û j, otherwise,

(4.14)

where Ωs(φi,ψi) is the non-zero support region of φi and ψi, i = 1, · · · , N .
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4.2. A numerical example with non-homogeneous jump conditions

We consider the problem (1.3)-(1.6) with Ω = (−1,1)× (−1,1). The interface Γ is a

circle centered at the origin with radius R = 0.5. The parameters are λ− = µ− = 1 and

λ+ = µ+ = 100. The exact solution u = (u1,u2):

u1 =







r2, if r ≤ R,

1

b

�

r2 + log(r)
�

, otherwise,

u2 =







r2, if r ≤ R,

1

b

�

r2 + sin(x1) cos(x2),
�

, otherwise,

where r =
p

x2
1
+ x2

2
and b = max
�

(λ+/λ−), (µ+/µ−)
	

. The exact solutions are non-

linear with non-homogeneous jump conditions both in the solutions and the fluxes.

In Fig. 6, we show the results of a grid refinement analysis for the errors ‖u− uh‖L∞
using the conforming IIFE method and the singularity removal technique. The convergence

order from the sample meshes ranging from 20 to 500 with 20 increment is 1.9095, see

Fig. 6 (a). When cutting the results from coarse meshes, the convergence order increases

to 2.0222, see Fig. 6 (b). It shows clearly that the method has second order accuracy.

4.3. An example with discontinuous Lamé constants and non-homogeneous

jump conditions

We consider the problem with Ω = (−1,1)× (−1,1), Γ being the circle centered at

point (0,0) with radius R= 0.5, and

λ=

(

λ− = 3 if r ≤ R,

λ+ = 30 otherwise,

µ =

(

µ− = 2 if r ≤ R,

µ+ = 20 otherwise.

The exact solution u = (u1,u2) is:

u1 = u2 =

(

r2 if r ≤ R,

r3 otherwise,

where r =
p

x2
1 + x2

2. The exact solution has non-homogeneous jump conditions across Γ.

We show the grid refinement analysis in the infinity norm in Fig. 7. When coarser

meshes (from a 20 by 20 mesh) are included, the average convergence order is 1.8541;
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(a) −8 −7 −6 −5 −4 −3 −2
−12

−11

−10

−9

−8

−7

−6

(b) −6.6 −6.4 −6.2 −6 −5.8 −5.6 −5.4
−12

−11.5

−11

−10.5

Figure 6: The linear regression analysis of (u−uh) in the L∞ norm in log-log sale by using the onformingimmersed interfae �nite element spae and singularity removal tehnique. (a), the mesh varies aordingto N = 20 + 20k, k = 0, 1, · · · , 24, the slope (onvergene order) is 1.9095; (b), N = 300+ 20k, k =
0, 1, · · · , 10, the slope is 2.0222.

(a) −8 −7 −6 −5 −4 −3 −2 −1

−12

−11

−10

−9

−8

−7

−6

(b) −6.4 −6.2 −6 −5.8 −5.6 −5.4
−12

−11.8

−11.6

−11.4

−11.2

−11

−10.8

Figure 7: The linear regression analysis of (u−uh) in the L∞ norm in log-log sale by using the onforming,linear, immersed interfae �nite element spae. (a). the mesh is varying aording to N = 20+ 20k,
k = 0, 1, · · · , 24, the slope (onvergene order) is 1.8541; (b). N = 300+ 20k, k = 0, 1, · · · , 10, the slopeis 1.9519.
When finer meshes (from a 300 by 300 mesh) are included, the average convergence

order is 1.9519. The results show that the new conforming immersed interface finite

element method is second order accurate in the infinity norm for the elasticity problems

with discontinuous Lamé constants and non-homogeneous jump conditions.
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5. Conclusions

We have developed the immersed-interface finite-element methods for solving elasticity

interface problems with homogeneous and non-homogeneous jump conditions using a uni-

form mesh. The described methods actually can be applied for any mesh. The interpolation

function using the conforming finite element space is second order accurate. Numerical

examples show that the developed methods have second order convergence rate in the L∞

norm. The content of this paper is part of Y. Gong’s PhD thesis [9].
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