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Abstract. We present a systematic and efficient Chebyshev spectral method using quasi-

inverse technique to directly solve the second order equation with the homogeneous

Robin boundary conditions and the fourth order equation with the first and second

boundary conditions. The key to the efficiency of the method is to multiply quasi-

inverse matrix on both sides of discrete systems, which leads to band structure systems.

We can obtain high order accuracy with less computational cost. For multi-dimensional

and more complicated linear elliptic PDEs, the advantage of this methodology is obvi-

ous. Numerical results indicate that the spectral accuracy is achieved and the proposed

method is very efficient for 2-D high order problems.
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1. Introduction

Due to high order accuracy, spectral methods have gained increasing popularity for

several decades, especially in the field of computational fluid dynamics (see, e.g., [1, 2]

and the references therein). According to different test functions in a variational formula-

tion, there are three most common spectral schemes, namely, the collocation, Galerkin and

tau methods. Since the collocation methods approximate differential equations in physical

space, it is very easy to implement and adaptable to various of problems, including vari-

able coefficient and nonlinear differential equations. Weideman and Reddy constructed a

MATLAB software suit to solve differential equations by the spectral collocation methods

in [13]. Trefethen’s book [12] explained the essentials of spectral collocation methods

with the aid of 40 short MATLAB programs. For multi-dimensional problems, the spectral

collocation methods discretize the differential operators employing Kronecker products. In
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the Galerkin method, we work in the spectral space, it may lead to well conditioned linear

systems with sparse matrices for problems with constant coefficients by choosing proper

basis functions (see, e.g., [3,5,9,10]).

Although the collocation and Galerkin methods usually lead to optimal error estimates,

the primary drawback of collocation method is that the differentiation matrices are dense

in all dimensions, and it is generally not feasible to solve multi-dimensional problems by

employing the Galerkin method. Shen used a matrix diagonalization method to solve

the 2-D and 3-D Helmholtz problems in [9] and [10], but an eigenvalue-eigenvector de-

composition of the discretized linear operator is required. Therefore it can only be used for

relatively simple differential equations. Heinrichs [6] utilized a Galerkin basis set to obtain

efficient differentiation matrices, and exploited the inherent structure of both the Galerkin

differentiation matrices and the relationship between the Chebyshev and Galerkin spectral

coefficients to maximize the sparsity of differential operators. Julien and Watson [7] pre-

sented the quasi-inverse technique to efficiently solve linear elliptic differential equations

with constant coefficients under Dirichlet boundary conditions. In this paper, we present

an extension of the Chebyshev spectral method using quasi-inverse technique to directly

solve the Helmholtz equation with the homogeneous Robin boundary conditions and the

general biharmonic equation with the first and second boundary conditions. For the gen-

eral biharmonic equation, we give a uniform treatment for the first and second boundary

conditions.

The main idea is that we employ a truncated series of Chebyshev polynomials to ap-

proximate the unknown function, and the differential operator is expanded by Chebyshev

polynomials which vector of coefficients is represented by the product of derivative matrix

and vector of Chebyshev coefficients of unknown function. The coefficients of this series

are taken to be equal to the coefficients of the right-hand side expansion. According to

Galerkin basis satisfying boundary conditions, we identify a transformation matrix which

transforms the Chebyshev and Galerkin coefficients, and then multiply a quasi-inverse

matrix on both sides of the resulting spectral system to obtain a pre-multiplied system

Av̄ = B f̄ , where A and B have band structure. After we solve this system of equations, the

Galerkin spectral coefficients are converted back to Chebyshev spectral coefficients. We

obtain the approximation solution from spectral space to physical space using the forward

Chebyshev transform by FFT.

The remainder of the paper is organized as follows. In the next section, we introduce

some notations and summarize a few mathematical facts used in the remainder of the pa-

per. In Section 3, we consider the Helmholtz equations for one, two and three dimensional

cases. In Section 4, we study the general biharmonic equations for one and two dimen-

sional cases. In Section 5, we present some numerical results. Finally, some concluding

remarks are given in Section 6.

2. Preliminaries

2.1. Notation

We introduce some basic notations as follows:
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• δmn, Kronecker-delta function, equal to 1 if m = n and zero otherwise

• ⊗, Kronecker matrix product

• Tm(x), mth degree Chebyshev polynomial

• ū, vector of spectral coefficients associated with Chebyshev spectral modes

• v̄, vector of spectral coefficients associated with Galerkin spectral modes

• Ix , identity matrix with respect to x

• I (±z)
x , quasi-identity matrix with respect to x . It is an identity matrix with z rows of

zeros at the top/bottom for ± z, respectively

• D
p
x , pth differential matrix with respect to x

• D
−p
x , pth quasi-inverse matrix for D

p
x

• E(±z)
x , "shifted identity" matrix with ones on the ±z super/sub-diagonal for the vari-

able x

• S{v}x , transformation matrix for the unknown v in the x spatial direction. It is used to

transform between Chebyshev spectral coefficients and Galerkin spectral coefficients

2.2. Chebyshev polynomials

The Chebyshev polynomials can be represented by trigonometric functions

Tm(x) = cos mθ , θ = arccos x ,

which satisfy the orthogonality relation

(Tm(x), Tn(x))ω =
cmπ

2
δmn, (2.1)

where the weight function ω(x) = (1− x2)−
1

2 , and c0 = 2 and cm = 1 for m ≥ 1. The

derivative of the Chebyshev polynomials can be represented by

T ′m(x) =
m sin(mθ)

sinθ
.

According to the trigonometric identity

2 sinθ cos mθ = sin(m+ 1)θ − sin(m− 1)θ ,

we can obtain the following relation

2Tm(x) =
T ′m+1(x)

m+ 1
−

T ′m−1(x)

m− 1
, m> 1. (2.2)

The Chebyshev expansion of a function u ∈ L2
ω(−1,1) is

u(x) =

∞
∑

m=0

ûmTm(x), ûm =
2

πcm

∫ 1

−1

u(x)Tm(x)ω(x)d x . (2.3)
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The derivative of u expanded in Chebyshev polynomials can be represented formally as

u′(x) =

∞
∑

m=0

û(1)m Tm(x), (2.4)

where

û(1)m =
2

cm

∞
∑

p=m+1

p+m odd

pûp, m ≥ 0. (2.5)

This expression is a consequence of the relation (2.2). From (2.2) one has

2mûm = cm−1û
(1)
m−1 − û

(1)
m+1, m≥ 1, (2.6)

and from (2.6), we have the following recursion relation

cmû(1)m = 2(m+ 1)ûm+1+ û
(1)
m+2, m ≥ 0, (2.7)

which yields (2.5). The generalization of this relation is [2]

cmû(q)m = 2(m+ 1)û
(q−1)

m+1 + û
(q)

m+2, m ≥ 0. (2.8)

Similarly, the second derivative of u is expanded by Chebyshev polynomials

u
′′
(x) =

∞
∑

m=0

û(2)m Tm(x). (2.9)

Due to the recursion relation (2.8), the coefficients are

û(2)m =
1

cm

∞
∑

p=m+2

p+m even

p(p2 −m2)ûp, m≥ 0. (2.10)

Here, we can define a differential matrix D2
x such that ū(2) = D2

x ∗ ū, where D2
x is an upper

triangular matrix with zeros on the main diagonal, ū(2) and ū are the vectors of û(2)m and

ûm, respectively.

2.3. Quasi-inverse matrix

Definition 2.1. D
−p
x is called the quasi-inverse matrix of order p associated with D

p
x in the x

spatial direction, if D
−p
x ∗ D

p
x = I

(p)
x and D

p
x ∗ D

−p
x = I

(−p)
x .

The following properties of the quasi-inverse matrix can be found in [7].

Property 1. A necessary condition of the definition of the quasi-inverse is that the matrix D
−p
x

has zeros in the first p rows and the last p columns.
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Property 2. Structure from the basis polynomials translates to the quasi-inverse representa-

tion such that there is a well defined structure between different order operators, (1) D2
x =

Dx ∗ Dx , (2) D
−p
x = I

(p)
x ∗ D

−p
x ∗ I

(−p)
x , (3) D

−p
x ∗ D

q
x ≡ I

(p)
x ∗ D

−p+q
x .

The quasi-inverse matrix D−1 associated with D1 is a tri-diagonal matrix whose nonzero

entries defined by the three term recursion relation (2.6) are:

ḋm,m−1 =
cm−1

2m
, sub-diagonal

ḋm,m+1 = −
em+2

2m
, super-diagonal







1≤ m≤ M . (2.11)

The quasi-inverse matrix D−2 associated with D2 is a penta-diagonal matrix whose

nonzero elements are [4]:

ḋm,m−2 =
cm−2

4m(m− 1)
, 2nd sub-diagonal

ḋm,m = −
em+2

2(m2− 1)
, main diagonal

ḋm,m+2 =
em+4

4m(m+ 1)
, 2nd super-diagonal























2≤ m ≤ M , (2.12)

where em = 1 for m ≤ M , em = 0 for m > M . The non-zero entries of D
−p
x are defined

analytically by the three term recursion relation

cmû(q)m − û
(q)

m+2 = 2(m+ 1)û
(q−1)

m+1 , m ≥ 0. (2.13)

2.4. Kronecker products

Definition 2.2. If A and B are of dimensions p× q and r× s, respectively, then the Kronecker

product A⊗ B is the matrix of dimension pr × qs with p× q block form, where the i, j block

is ai jB.

Property 3. If A∗ C and B ∗ D exist, then (A⊗ B) ∗ (C ⊗ D) = (A∗ C)⊗ (B ∗ D).

In multiple dimensions, we can separate the differential operator by employing the

Kronecker product. For instance, consider the discretization of the 2nd derivative operator

in 1-D, 2-D and 3-D shown below:

• 1D ux x(x)→ D2
x ∗ ū

• 2D ux x(x , y)→ (D2
x ⊗ I y) ∗ ū

• 2D ux y(x , y)→ (D1
x ⊗ D1

y) ∗ ū

• 2D uy y(x , y)→ (Ix ⊗ D2
y) ∗ ū

• 3D ux x(x , y, z)→ (D2
x ⊗ I y ⊗ Iz) ∗ ū

• 3D ux y(x , y, z)→ (D1
x ⊗ D1

y ⊗ Iz) ∗ ū, etc.
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3. Helmholtz equations

In this section, we are interested in employing the Chebyshev spectral method using

quasi-inverse technique to solve the Helmholtz equation

αu−△u = f , in Ω = Id , (3.1)

where I = (−1,1) and d = 1,2,3.

3.1. 1-D Helmholtz

Let us begin with the one dimensional Helmholtz equation

αu(x)− u
′′
(x) = f (x), x ∈ I , (3.2)

with the homogeneous Robin boundary condition

a±u(±1)+ b±u′(±1) = 0. (3.3)

We first expand u(x), u
′′
(x) and f (x) in terms of Chebyshev polynomials respectively

uM (x) =

M
∑

m=0

ûmTm(x), ū= (û0, û1, · · · , ûM )
T , (3.4)

u
′′

M (x) =

M
∑

m=0

û(2)m Tm(x), ū(2) = (û
(2)
0 , û

(2)
1 , · · · , û(2)M )

T , (3.5)

fM (x) =

M
∑

m=0

f̂mTm(x), f̄ = ( f̂0, f̂1, · · · , f̂M )
T , (3.6)

where

û(2)m =
1

cm

M
∑

p=m+2

p+m even

p(p2 −m2)ûp. (3.7)

In spectral-Galerkin method, it is essential to seek an appropriate basis functions to satisfy

the boundary condition. We usually choose a compact combination of Chebyshev polyno-

mials as basis function. The following lemma provides a basis function which satisfies the

homogeneous Robin boundary condition [11].

Lemma 3.1. Let us define

am =− {(a+ + b+(m+ 2)2)(−a−+ b−m2)

− (a− − b−(m+ 2)2)(−a+− b+m2)
	

/DETm,

bm =
�

(a+ + b+(m+ 1)2)(−a−+ b−m2)

+ (a− − b−(m+ 1)2)(−a+− b+m2)
	

/DETm, (3.8)
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with

DETm = 2a+a−+ (m+ 1)2(m+ 2)2(a−b+ − a+b−− 2b−b+). (3.9)

If DETm 6= 0, then a linear combination of Chebyshev polynomials

φm(x) = Tm(x)+ amTm+1(x)+ bmTm+2(x) (3.10)

satisfies the homogeneous Robin boundary condition (3.3).

Proof. Since Tm(±1) = (±1)m and T ′m(±1) = (±1)m−1m2, the boundary condition

(3.3) leads to the following system for {am, bm} :

(a++ b+(m+ 1)2)am+ (a++ b+(m+ 2)2)bm = −a+− b+m2,

− (a−− b−(m+ 1)2)am+ (a−− b−(m+ 2)2)bm = −a−+ b−m2, (3.11)

whose determinant DETm is given by (3.9). When DETm 6= 0, {am, bm} can be uniquely

determined from (3.11). �

Remark 3.1. We note in particular that

• If a± = 1 and b± = 0 (Dirichlet boundary condition), we have am = 0, bm = −1.

Hence, φm(x) = Tm(x) − Tm+2(x) satisfies the homogeneous Dirichlet boundary

condition.

• If a± = 0 and b± = 1 (Neumann boundary condition), we have

am = 0, bm = −
m2

(m+ 2)2
.

Hence,

φm(x) = Tm(x)−
m2

(m+ 2)2
Tm+2(x)

satisfies the homogeneous Neumann boundary condition.

We choose {φm}
M−2
m=0 as Galerkin basis function and represent u(x) in terms of a trun-

cated series of Galerkin basis function:

uM (x) =

M−2
∑

m=0

ũmφm(x), v̄ = (ũ0, ũ1, · · · , ũM−2)
T . (3.12)

Since the Galerkin basis function φm(x) are linear combinations of Chebyshev polyno-

mials, the Chebyshev coefficients ûm are also linear combinations of the coefficients ũm,

we try to seek a transformation matrix Sx , between the Chebyshev and Galerkin spectral

representation such that

ū = Sx ∗ v̄. (3.13)

Here v̄ should be added two fictitious modes ũM−1 and ũM , which we specify to be identi-

cally zero, since Sx is (M + 1)× (M + 1).
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To determine the appropriate transformation matrix Sxi
, we first project onto each

Tn(x) mode by applying inner products to each side defined by (2.1),

(φm(x), Tn(x))ω =(Tm(x)+ amTm+1(x)+ bmTm+2(x), Tn(x))ω

=
cmπ

2
δmn + am

cm+1π

2
δm+1,n + bm

cm+2π

2
δm+2,n. (3.14)

We can express this inner product relation in terms of shifted identity matrices E(k)x ≡
[em,n] ≡ [δm,n−k]. For k < 0, E(k)x defines a square matrix (M + 1)× (M + 1) with ones

on the kth sub-diagonal, whereas for k > 0, the identity matrix Ix = [δm,n] is equivalent

to E(0)x . A matrix with entries [em,n ≡ δm,n+1] can be represented by E(−1)
x . We define the

following transformation matrix for the Robin boundary condition,

Sx = E(0)x + E(−1)
x W1 + E(−2)

x W2, (3.15)

where W1 and W2 are the weight matrices with diagonal entries {am} and {bm}, respec-

tively.

The transformation matrix provides a convenient means for discretizing the differential

equation with the boundary conditions embedded within the differentiation matrix. The

discrete 1-D Helmholtz system of equations in spectral space is

(αIx − D2
x) ∗ Sx ∗ v̄ = Ix ∗ f̄ . (3.16)

To increase the efficiency, the original system (3.16) can be replaced by A∗ v̄ = B∗ f̄ , where

A and B have band structure. We exploit the quasi-inverse technique, and multiply both

sides by D−2
x

(αD−2
x − I (2)x ) ∗ Sx ∗ v̄ = D−2

x ∗ f̄ . (3.17)

We obtain the 1-D pre-multiplied Galerkin operator A≡ (αD−2
x − I (2)x )∗Sx (left) and quasi-

inverse B ≡ D−2
x (right) which are banded matrices. Since ũM−1 and ũM are identically
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Figure 1: Non-zero (nz) elements of 1-D pre-multiplied restri
ted Galerkin operator A (left) and quasi-inverse B (right) from Eq. (3.17) with 17 Chebyshev grids.
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zero, we can solve the (M − 1)× (M − 1) sub-system which is called "restricted system",

where we ignore the top two rows and the last two columns of matrices A and B. The

non-zero elements of A and B take the form Fig. 1. The cost to solve system of equations is

O (M) operations. After we solve this system of equations, v̄ should be converted back to

Chebyshev spectral coefficients ū via the relation (3.13), which requires O (M) operations

since Sx has the special structure. We obtain the approximation solution of u(x) from

spectral space to physical space using the forward Chebyshev transform by FFT.

Remark 3.2. We note that for other boundary conditions, we only need identify the cor-

responding Galerkin basis function and don’t need to derive a new spectral Chebyshev

differential matrix for each Galerkin basis set by using the transformation matrix. The

method for solving elliptic differential equations can easily generalize to two and three

dimensional cases.

3.2. 2-D Helmholtz

Consider the 2-D Helmholtz equation

αu−△u = f , in Ω = I2,

with the homogeneous Robin boundary conditions

(a±u+ b±ux)(±1, y) = 0, (c±u+ d±uy)(x ,±1) = 0. (3.18)

Let us denote

u(x , y) =

M−2,N−2
∑

m,n=0

ũm,nφm(x)φn(y),

where φm(x) and φn(y) are similar to that in one dimension case. The transformation

matrices for each Galerkin basis are the same as they are in one dimension Sx = E(0)x +

E(−1)
x W1 + E(−2)

x W2 and similarly for Sy . The discrete 2-D Helmholtz system of equations

in spectral space is

h

α(Ix ⊗ I y)− (D
2
x ⊗ I y + Ix ⊗ D2

y)
i

∗ (Sx ⊗ Sy) ∗ v̄ = (Ix ⊗ I y) ∗ f̄ , (3.19)

where v̄ and f̄ are vectors of length (M − 1)× (N − 1) formed by the columns of matri-

ces (ũm,n)
M−2,N−2
m,n=0 and ( f̃m,n)

M−2,N−2
m,n=0 , respectively. We exploit the quasi-inverse technique

similarly to the 1-D case, and multiply both sides by D−2
x ⊗ D−2

y

h

α(D−2
x ⊗ D−2

y )− (I
(2)
x ⊗ D−2

y + D−2
x ⊗ I (2)y )
i

∗ (Sx ⊗ Sy) ∗ v̄ = (D−2
x ⊗ D−2

y ) ∗ f̄ ,

and employ the Property 3 to obtain

h

α(D−2
x ∗ Sx ⊗ D−2

y ∗ Sy)− (I
(2)
x ∗ Sx)⊗ (D

−2
y ∗ Sy)− (D

−2
x ∗ Sx)⊗ (I

(2)
y ∗ Sy)
i

∗ v̄

=(D−2
x ⊗ D−2

y ) ∗ f̄ . (3.20)
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Figure 2: Non-zero (nz) elements of 2-D pre-multiplied restri
ted Galerkin operator A (left) and quasi-inverse B (right) for the 2-D Helmholtz problem with 12 ∗ 12 Chebyshev grids.
From Fig. 2, we can see the strict band structure of 2-D pre-multiplied Galerkin operator

A≡ α(D−2
x ∗ Sx ⊗ D−2

y ∗ Sy)− (I
(2)
x ∗ Sx)⊗ (D

−2
y ∗ Sy)− (D

−2
x ∗ Sx)⊗ (I

(2)
y ∗ Sy),

and quasi-inverse B ≡ D−2
x ⊗D−2

y . There are (M−1)×(N−1) unknowns and the bandwidth

grows as O (M+N), so the cost to solve system of equations is O (MN2+M2N) operations.

3.3. 3-D Helmholtz

The formulation of the 3-D Helmholtz equation with the homogeneous Robin boundary

conditions is similar to the 2-D case. We utilize the same Galerkin basis functions and

transformation matrices as in the 1-D and 2-D problems. The discrete 3-D Helmholtz

system of equations for (3.1) in spectral space is
h

α(Ix ⊗ I y ⊗ Iz)− (D
2
x ⊗ I y ⊗ Iz + Ix ⊗ D2

y ⊗ Iz + Ix ⊗ I y ⊗ D2
z )
i

∗ (Sx ⊗ Sy ⊗ Sz) ∗ v̄

=(Ix ⊗ I y ⊗ Iz) ∗ f̄ .

We exploit the quasi-inverse technique similarly to the 1-D case, and multiply both sides

by D−2
x ⊗ D−2

y ⊗ D−2
z

h

α(D−2
x ⊗ D−2

y ⊗ D−2
z )− I (2)x ⊗ D−2

y ⊗ D−2
z − D−2

x ⊗ I (2)y ⊗ D−2
z − D−2

x ⊗ D−2
y ⊗ I (2)z

i

∗ (Sx ⊗ Sy ⊗ Sz) ∗ v̄ = (D−2
x ⊗ D−2

y ⊗ D−2
z ) ∗ f̄ .

The original system is replaced by A∗ v̄ = B ∗ f̄ , where

A=α(D−2
x ∗ Sx ⊗ D−2

y ∗ Sy ⊗ D−2
z ∗ Sz)− (I

(2)
x ∗ Sx)⊗ (D

−2
y ∗ Sy)⊗ (D

−2
z ∗ Sz)

− (D−2
x ∗ Sx)⊗ (I

(2)
y ∗ Sy)⊗ (D

−2
z ∗ Sz)− (D

−2
x ∗ Sx)⊗ (D

−2
y ∗ Sy)⊗ (I

(2)
z ∗ Sz),
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and

B = D−2
x ⊗ D−2

y ⊗ D−2
z ,

which again has a well defined band structure.

Remark 3.3. Since the Dirichlet and Neumann boundary conditions are the special cases

of the Robin boundary condition, we can solve the Helmholtz equation with the common

three boundary conditions for 1-D, 2-D and 3-D. For nonhomogeneous boundary prob-

lems, we always first reduce them to problems with homogeneous boundary conditions by

modifying the right-hand side, then solve the homogeneous boundary problems.

Algorithm 3.1. The Chebyshev spectral method for PDEs using quasi-inverse technique

involves the following steps:

1. Identify the appropriate Galerkin basis functions to fulfill the boundary conditions;

2. For each Galerkin basis in each coordinate, identify the appropriate transformation

matrix Sxi
;

3. Evaluate the Chebyshev coefficients { f̂m}
M
m=0 of IM f (x) from { f (x j)}

M
j=0 (backward

Chebyshev transform) and evaluate f̄ ;

4. Discretize the differential equation using the standard Kronecker formalism to obtain

L (D) ∗ Sxi
∗ v̄ = Ixi

∗ f̄ ;

5. Identify the quasi-inverse matrix B for the highest order operator in each spatial

direction;

6. Multiply the system on both sides by B to obtain a pre-multiplied system Av̄ = B f̄ ;

7. Solve the system for v̄;

8. Convert from Galerkin basis v̄ to Chebyshev basis ū;

9. Evaluate uM (x j) =
M
∑

m=0

ûmTm(x j), j = 0,1, · · · , M (forward Chebyshev transform).

4. General biharmonic equations

In this section, we generalize the methodology of quasi-inverses to high order prob-

lems. Consider the general biharmonic equation

△2u−α△u+ βu= f , in Ω = Id , (4.1)

with the following two types of boundary conditions

u
�

�

∂Ω
=
∂ u

∂ n

�

�

�

�

∂Ω

= 0, (4.2)
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and

u
�

�

∂Ω
=
∂ 2u

∂ n2

�

�

�

�

∂Ω

= 0, (4.3)

where n is the normal vector to ∂Ω and d = 1,2. (4.2) and (4.3) are named the first and

second boundary conditions respectively. Here, we give a uniform treatment to solve the

first-kind general biharmonic problem constituted by (4.1) and (4.2) and the second-kind

general biharmonic problem constituted by (4.1) and (4.3).

4.1. 1-D General biharmonic equations

Consider the 1-D general biharmonic equation

u(4)(x)−αu
′′
(x)+ βu(x) = f (x), x ∈ I , (4.4)

with the first boundary conditions u(±1) = u′(±1) = 0 and the second boundary condi-

tions u(±1) = u
′′
(±1) = 0, respectively. Here, we would like to seek the basis functions of

the form

φm(x) = Tm(x)+ amTm+2(x)+ bmTm+4(x).

Lemma 4.1. For the first boundary condition (4.2), we define

am = −
2(m+ 2)

m+ 3
, bm =

m+ 1

m+ 3
.

For the second boundary condition (4.3), we define

am = −
2(m+ 2)(15+ 2m(m+ 4))

(m+ 3)(19+ 2m(6+m))
, bm =

(m+ 1)(3+ 2m(m+ 2))

(m+ 3)(19+ 2m(6+m))
.

Then

φm(x) = Tm(x)+ amTm+2(x)+ bmTm+4(x) (4.5)

satisfies the first and second boundary conditions respectively.

Proof. Since Tm(±1) = (±1)m and T
′′

m(±1) = 1

3
(±1)mm2(m2 − 1), the boundary condi-

tion u(±1) = 0 leads to the following equation for {am, bm}

am+ bm = −1. (4.6)

The boundary condition u
′′
(±1) = 0 leads to the following equation

(m4 + 8m3+ 23m2+ 28m+ 12)am

+ (m4 + 16m3+ 95m2+ 248m+ 240)bm = −(m
4 −m2). (4.7)

By solving the above system (4.6) and (4.7), we obtain {am, bm} for the second boundary

conditions (4.3). Similarly for the first boundary conditions. �
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We identify the transformation matrix for this Galerkin basis (4.5)

Sx = E(0)x + E(−2)
x W2 + E(−4)

x W4, (4.8)

where W2 and W4 are the weight matrices with diagonal entries {am} and {bm}, respec-

tively. We can now write down the matrix form of the discretized equation

(D4
x −αD2

x + β Ix ) ∗ Sx ∗ v̄ = Ix ∗ f̄ , (4.9)

where v̄ has been padded with four zeros at the bottom of the column. We exploit the

quasi-inverse technique similarly to the 1-D Helmholtz equation, and multiply both sides

by D−4
x

(I (4)x −αD−4
x ∗ D2

x + βD−4
x ) ∗ Sx ∗ v̄ = D−4

x ∗ f̄ .

By employing the Property 2, we obtain

I (4)x ∗ (Ix −αD−2
x + βD−4

x ∗ I (−4)
x ) ∗ Sx ∗ v̄ = D−4

x ∗ f̄ . (4.10)

The top four rows on both sides are identically zero, so it is trivial to identify appropriate

sub-system, shown in Fig. 3. The banded system can be solved in O (M) operations. The

conversion from the Galerkin basis to Chebyshev basis is still O (M), so the total cost is

quasi-optimal.
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Figure 3: Non-zero (nz) elements of 1-D pre-multiplied restri
ted Galerkin operator A (left) and quasi-inverse B (right) from Eq. (4.10) with 49 Chebyshev grids.
4.2. 2-D General biharmonic equations

The power of this methodology is its’ ready extensibility to higher dimensions and more

complicated sets of differential equations. Consider the 2-D general biharmonic equation

(4.1) with the first and second boundary conditions respectively. We discretize u(x , y) with

the product of two Galerkin basis functions

u(x , y) =

M−4,N−4
∑

m,n=0

ũm,nφm(x)φn(y),
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where φm(x) is defined as in the 1-D case and similarly for φn(y). The transformation

matrices for each Galerkin basis are the same as they are in one dimension. The discrete

2-D general biharmonic system of equations in spectral space is

h

D4
x ⊗ I y + 2(D2

x ⊗ D2
y) + Ix ⊗ D4

y −α(D
2
x ⊗ I y + Ix ⊗ D2

y) + β(Ix ⊗ I y)
i

∗ (Sx ⊗ Sy) ∗ v̄ = (Ix ⊗ I y ) ∗ f̄ . (4.11)

We exploit the quasi-inverse technique similarly to the 2-D Helmholtz equation again, and

multiply both sides by D−4
x ⊗ D−4

y , obtain A∗ v̄ = B ∗ f̄ , where

A=I (4)x ∗ Sx ⊗ D−4
y ∗ Sy + 2(I (4)x ∗ D−2

x ∗ Sx ⊗ I (4)y ∗ D−2
y ∗ Sy)

+ D−4
x ∗ Sx ⊗ I (4)y ∗ Sy + β(D

−4
x ∗ Sx ⊗ D−4

y ∗ Sy)

−α(I (4)x ∗ D−2
x ∗ Sx ⊗ D−4

y ∗ Sy + D−4
x ∗ Sx ⊗ I (4)y ∗ D−2

y ∗ Sy), (4.12)

and B = D−4
x ⊗D−4

y . Because of the structure, it is easy to identify the trivial equations and

extract the restricted system, see Fig. 4.
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Figure 4: Non-zero (nz) elements of 2-D pre-multiplied restri
ted Galerkin operator A (left) and quasi-inverse B (right) for the 2-D general biharmoni
 problem with 20 ∗ 20 Chebyshev grids.
Remark 4.1. Because the number of unknowns is the same, the complexity of the solve is

roughly the same as that of the 2-D Helmholtz equation, although the bandwidth is slightly

wider, it still only grows like M + N .

Remark 4.2. In the case of the second-kind general biharmonic problem constituted by

(4.1) and (4.3), one can split the governing equation (4.1) into a set of two weakly cou-

pled Poisson equations which can be efficiently solved by employing the proposed method.

Although we only study the standard second and fourth order problems, general linear

problems can be similarly solved by quasi-inverse methodology.
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5. Numerical results

In this section, we give some numerical results obtained by using the algorithms pre-

sented in the previous sections. All test codes are implemented in MATLAB and are per-

formed on desktop Dell PC with single core processor. We utilize MATLABs’ built-in "sparse"

representation for matrices and solve the system of equations via the "backslash" operator.

The timing is performed by averaging the time to solve each test problem several separate

runs for each number of unknowns.Table 1: One-dimension Helmholtz equation with three types boundary 
onditions.
Dirichlet BC Neumann BC Robin BC

M Error∞ Cond(A) Er ror∞ Cond(A) Er ror∞ Cond(A) Cond(B)

8 7.816E-04 8.7 3.983E-04 142.7 1.158E-03 168.3 336

12 2.368E-07 13 9.845E-08 349.6 3.555E-07 399.4 1.72E+3

16 2.297E-11 18 8.084E-12 651.1 3.768E-11 724.8 5.44E+3

20 1.110E-15 22 1.998E-15 1047 1.332E-15 1145 1.33E+4

24 5.551E-16 27 1.998E-15 1536 1.332E-15 1663 2.76E+4

Example 5.1. Consider the following one dimensional Helmholtz equation

αu(x)− u
′′
(x) = f (x), x ∈ I .

Given the exact solution under three types boundary conditions. The homogeneous Dirich-

let boundary condition and the exact smooth solution

u(±1) = 0, u(x) = sin(πx). (5.1)

The homogeneous Neumann boundary condition and the exact smooth solution

u′(±1) = 0, u(x) = cos(πx). (5.2)

The homogeneous Robin boundary condition

a±u(±1)+ b±u′(±1) = 0, (5.3)

where a± = π and b± = −1. Given the following known function

f = (π2 +α)(sin(πx)+ cos(πx)),

the exact solution can be verified to be

u(x) = sin(πx)+ cos(πx).

Table 1 lists the maximum pointwise error of u− uM , condition numbers of matrices A

and B using the quasi-inverse technique with α = 1 under the three types boundary condi-

tions. Numerical results of this example show that Chebyshev spectral method via quasi-

inverse technique converges exponentially under the threex types boundary conditions,

because the difference only lies in the different transformation matrices corresponding the

Galerkin basis functions. Compared to the condition number of matrix A with Dirichlet

boundary condition (Dirichlet BC), those of matrix A with Neumann and Robin BCs are

larger.
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Example 5.2. Consider the following two dimensional Helmholtz equation

αu−△u = f , in Ω = I2.

The homogeneous Dirichlet boundary condition and an exact smooth solution are

u|∂Ω = 0, u(x , y) = sin(πx) sin(πy). (5.4)

The homogeneous Neumann boundary condition and an exact smooth solution are

∂ u

∂ n
|∂Ω = 0, u(x , y) = cos(πx) cos(πy). (5.5)Table 2: Two-dimension Helmholtz equation with two types boundary 
onditions.

Dirichlet BC Neumann BC

M , N Error∞ Cond(A) CPU(s) Er ror∞ Cond(A) CPU(s) Cond(B)

8 1.132E-03 6.20E+3 8.37E-3 3.752E-04 1.03E+4 8.28E-3 1.13E+5

12 4.402E-07 6.97E+4 1.36E-2 1.004E-07 8.00E+4 1.48E-2 2.94E+6

16 4.445E-11 3.90E+5 2.17E-2 8.408E-12 3.55E+5 2.17E-2 2.96E+7

20 1.776E-15 1.48E+6 3.07E-2 3.775E-15 1.15E+6 3.32E-2 1.77E+8

24 8.882E-16 4.42E+6 4.23E-2 4.219E-15 3.06E+6 4.48E-2 7.62E+8

In Table 2, we list the maximum pointwise error of u − uMN , condition numbers of

matrices A and B and time of solving numerical solutions using the proposed Chebyshev

spectral method with α = 1 under Dirichlet and Neumann boundary conditions. The

results indicate that the spectral accuracy is achieved and the Chebyshev spectral method

using quasi-inverse technique is very efficient even for 2-D problems. There is no any

difference for the Dirichlet and Neumann boundary conditions, it shows the methodology

can be adopted to deal with more complicated boundary problems.

Example 5.3. Consider the 1-D general biharmonic equation with the first boundary con-

ditions:

u(4)(x)−αu
′′
(x)+ βu(x) = f (x), x ∈ I , u(±1) = u′(±1) = 0, (5.6)

with an exact smooth solution u(x) = sin2(4πx).

This example was used in [10] and [11]. In Table 3, we list the maximum pointwise

error of u − uM and time of solving system of equations A ∗ v̄ = B ∗ f̄ with two typical

choices of α, β . The results indicate that the spectral accuracy is achieved for both α and

β are zeros and non-zeros cases. Because the matrices A and B have band structure, we

can efficiently solve the system of equations A∗ v̄ = B ∗ f̄ , and reduce the computing time.

Example 5.4. Consider the 2-D first-kind general biharmonic boundary-value problem

(4.1) and (4.2) with an exact smooth solution u(x , y) = [1+ cos(πx)][1+ cos(πy)]/π4.
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M α β Error∞ CPU(s) α β Error∞ CPU(s)

32 0 0 7.91262E-03 3.77E-5 2M2 M4 8.78857E-03 7.74E-5

64 0 0 2.08375E-13 3.97E-5 2M2 M4 2.55351E-15 9.97E-5

128 0 0 5.47562E-13 4.50E-5 2M2 M4 2.26416E-14 1.50E-4

This problem was solved with α = 0, β = 0 via a spectral collocation method based

on integrated Chebyshev polynomials in [8]. For the sake of comparison, we measure the

accuracy of a numerical solution via the norm of relative errors of the solution

Ne(u) =

√

√

√

√

√

√

√

√

M ,N
∑

i, j=0

(u
(e)

i, j
− ui, j)

2

M ,N
∑

i, j=0

(u
(e)

i, j
)2

,

where u
(e)

i, j
and ui, j are the exact and computed values of the solution u at point (i, j). In

Table 4, we list the relative error Ne(u) and time of solving system of equations A ∗ v̄ =

B ∗ f̄ with two typical choices of α, β . Although the results obtained are slightly less

accurate than the proposed integration formulation (PIF) in [8], we can efficiently solve

the system for 2-D fourth-order problems because of band structure. We draw the mesh

plot of solution of the general biharmonic equation (4.1) with α = 0, β = 0, which is

indistinguishable from the exact solution in Fig. 5.

Finally, we compare the actual CPU cost for solving a 2-D Poisson equation and a 2-

D biharmonic equation via the proposed algorithms in the previous sections. The two-
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Figure 5: Numeri
al solution of the 2-D biharmoni
 problem with 24 ∗ 24 Chebyshev grids.



214 F. Liu, X. Ye and X. WangTable 4: Relative error Ne(u) and time for M=N (with (M + 1) ∗ (N + 1) Chebyshev grids).
M + 1 α β Ne(u) CPU(s) α β Ne(u) CPU(s)

12 0 0 3.57815E-05 7.76E-4 (M + 1)2 (N + 1)4 6.58325E-05 7.27E-4

16 0 0 3.49722E-09 2.41E-3 (M + 1)2 (N + 1)4 1.51927E-08 2.62E-3

20 0 0 1.57236E-13 5.14E-3 (M + 1)2 (N + 1)4 1.17619E-12 5.48E-3

24 0 0 8.85953E-16 9.46E-3 (M + 1)2 (N + 1)4 4.80108E-16 9.81E-3

dimensional Poisson equation is

−△u= 32π2 sin(4πx) sin(4πy), in Ω = I2, u|∂Ω = 0, (5.7)

with an exact smooth solution u(x , y) = sin(4πx) sin(4πy). The two-dimensional bihar-

monic equation with the first boundary conditions:

△2u = f in Ω = I2, u|∂Ω =
∂ u

∂ n
|∂Ω = 0, (5.8)

with an exact smooth solution u(x , y) = (sin(2πx) sin(2πy))2. The two equations were

solved by the Legendre-Galerkin method in [9]. In Table 5, we list in the second col-

umn the maximum pointwise error of u−uMN and time of solving approximate solution in

parentheses of Poisson equation (5.7); in the third column, we list the maximum pointwise

error of u− uMN and time of solving approximate solution in parentheses of biharmonic

equation (5.8). It is obvious that the approximate solutions converge exponentially to the

exact solution. Comparing with the actual time in [9] (the execution time plus the pre-

processing time) via Legendre-Galerkin method, the CPU time in seconds via the proposed

algorithms is less. It is worth noting that the actual time for solving a 2-D biharmonic

equation is 2.5 times of that for solving a 2-D Poisson equation.Table 5: Er ror∞ and CPU time of the Poisson and biharmoni
 solvers.
M , N Poisson Error∞ (CPU) biharmonic Error∞ (CPU)

24 6.89445E-06 (0.024) 1.19917E-05 (0.053)

32 4.76170E-11 (0.037) 6.16985E-11 (0.099)

40 3.88578E-15 (0.065) 1.36280E-14 (0.175)

48 2.85882E-15 (0.091) 2.79753E-14 (0.264)

6. Conclusion

We have presented a systematic Chebyshev spectral method using quasi-inverse tech-

nique to efficiently solve linear elliptic PDEs. By multiplying the quasi-inverse matrix on

the system’s both sides, we obtain the system of equations which has band structure, so

it can be efficiently solved. We can achieve the same numerical accuracy compared with

other methods with less computational cost. The advantages of this methodology are easy

to solve the multi-dimensional and more complicated linear elliptic PDEs with a few com-

mon boundary conditions. We note that the Chebyshev spectral method via quasi-inverse
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technique to solve the 2-D general biharmonic equations is very competitive to other exist-

ing numerical methods.
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