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Abstract. The block-by-block method, proposed by Linz for a kind of Volterra integral
equations with nonsingular kernels, and extended by Kumar and Agrawal to a class
of initial value problems of fractional differential equations (FDEs) with Caputo deriva-
tives, is an efficient and stable scheme. We analytically prove and numerically verify that
this method is convergent with order at least 3 for any fractional order index α > 0.
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1. Introduction

Fractional calculus [13, 14], almost as old as the familiar integer-order calculus, is
now winning more and more scientific applications owing to its “memory" and “heredity"
principle in a variety of areas, such as viscoelasticity [2], anomalous diffusion [3], control
theory [15], finance [8, 16, 17] and hydrology [1, 18]. A recent panoramic view of the
fractional calculus can be seen in [19].

Similarly to the integer-order differential equations, it is usually difficult to obtain the
analytical solution for a fractional differential equation (FDE). So there has been a grow-
ing interest to develop numerical approaches in solving the FDEs. However, the theoretical
studies of fractional numerical methods, including stability analysis and error estimation,
are quite challenging due to the nonlocal property of fractional operators [5,7,12]. In this
context, Diethelm et al [5, 7] took advantage of the fact that some kinds of FDEs can be
formulated as Volterra integral equations of the second kind, then derived the fractional
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Adams-Bashforth-Moulton method from the classical case. Significantly, they gave conver-
gence analysis, i.e., for any α > 0 the described method is convergent with order at least
one if the analytical solution y(t) is twice continuously differentiable. In addition, Lin and
Liu [12] developed a kind of linear multistep methods for fractional initial value problems
based on Lubich’s high-order approximations [10] to fractional derivatives and integrals.
And they proved the consistence, convergence and stability of these methods. Neverthe-
less, the unavoidable shortcoming in these linear multistep methods is that one needs to
spend much time in computing the starting weights.

In 2006, Kumar and Agrawal [9] also utilized the equivalent Volterra integral equation
in [5] and extended the block-by-block method proposed by Linz [11] to some kinds of
FDEs. Numerical examples have shown the efficiency and stability of this scheme, i.e., for a
kind of FDEs the performance is better than that of Diethlm’s Adams method [7]. However,
it’s a pity that the error estimate and convergence order analysis of this scheme was ne-
glected. In the present paper, we will derive error estimate and precise convergence order
of the block-by-block method under certain assumptions, and test the order via numerical
experiments.

This paper is organized as follows. In Section 2, in order to facilitate the theoretical
analysis, the block-by-block method is rewritten. We give in Section 3 some preparations
and useful lemmas. The error estimate and convergence order analysis are given in Section
4. Numerical experiments are carried out in Section 5, which verify the theoretical results
obtained in Section 4. Final section is the concluding remarks.

2. Block-by-block method

We consider the following nonlinear FDE

Dα∗ y(t) = f (t, y(t)), 0≤ t ≤ T, n− 1< α ≤ n (2.1)

subject to the initial conditions:

y(k)(0) = ck, k = 0,1, · · · , n− 1. (2.2)

In (2.1), Dα∗ denotes the Caputo derivative of order α, defined by

Dα∗ y(t) :=
1

Γ(n−α)

∫ t

0

(t −τ)n−α−1 dn y(τ)

dτn
dτ.

Assume that Ω := [0, T]× [c0 − λ, c0 + λ] with some λ > 0 and f (t, y) ∈ C(Ω). Further-
more, let f fulfill a Lipschitz condition with respect to the second variable on Ω, namely

| f (t, y)− f (t, z)| ≤ L|y − z|

for some constant L > 0. According to [6], there exists a unique solution y(t) on [0, T]

for the initial value problem (IVP) (2.1-2.2).
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As also mentioned in [6], if f (t, y) is continuous, IVP (2.1-2.2) is equivalent to the
following Volterra integral equation of the second kind

y(t) = g(t) +
1

Γ(α)

∫ t

0

(t −τ)α−1 f (τ, y(τ))dτ, (2.3)

where

g(t) :=
n−1
∑

k=0

ck

tk

k!
.

Kumar and Agrawal [9] have extended the block-by-block method [11] for a kind of
Volterra integral equations with nonsingular kernels to Eq.(2.3) in which the integral ker-
nel is singular for 0 < α < 1. For convenience of analysis, we will rewrite this method in
the sequel.

First divide the interval [0, T] into 2N parts with stepsize h = T/(2N), and set t j =

jh( j = 0,1, · · · , 2N). The numerical solution of Eq.(2.3) at the point t j is denoted by y j .
Let g j = g(t j) and f j = f (t j , y j).

Now assume that y j( j = 0,1, · · · , 2m), the approximations of y(t j)( j = 0,1, · · · , 2m),
are obtained. In order to get the numerical solutions y2m+1 and y2m+2, the block-by-
block method presented by Kumar and Agrawal can be described as follows, for m =

0,1, · · · , N − 1,

y2m+2 = g2m+2 +

m−1
∑

k=0

h

W
[2m+2]
k,0 f2k +W

[2m+2]
k,1 f2k+1 +W

[2m+2]
k,2 f2k+2

i

(2.4a)

+W
[2m+2]
m,0 f2m +W

[2m+2]
m,1 f2m+1 +W

[2m+2]
m,2 f2m+2,

y2m+1 = g2m+1 +

m−1
∑

k=0

h

W
[2m+1]
k,0 f2k +W

[2m+1]
k,1 f2k+1 +W

[2m+1]
k,2 f2k+2

i

(2.4b)

+W
[2m+1]
m,0 f2m +W

[2m+1]
m,1 f2m+1 +W

[2m+1]
m,2 f2m+2,

where for i = 0,1,2,

W
[2m+2]
k,i :=

1

Γ(α)

∫ t2k+2

t2k

(t2m+2 −τ)
α−1φk,i(τ)dτ, k = 0,1, · · ·m, (2.5)

W
[2m+1]
k,i :=

1

Γ(α)

∫ t2k+2

t2k

(t2m+1 −τ)
α−1φk,i(τ)dτ, k = 0,1, · · · , m− 1. (2.6)

In Eq.(2.4b), if k = m, W
[2m+1]
m,i (i = 0,1,2) are defined as

W
[2m+1]
m,0 := d2m+

3

8
d2m+ 1

2
, W

[2m+1]
m,1 :=

3

4
d2m+ 1

2
+d2m+1, W

[2m+1]
m,2 := −

1

8
d2m+ 1

2
(2.7)

with
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d2m :=
1

Γ(α)

∫ t2m+1

t2m

(t2m+1 −τ)
α−1ψm,0(τ)dτ,

d2m+ 1
2

:=
1

Γ(α)

∫ t2m+1

t2m

(t2m+1 −τ)
α−1ψm,1(τ)dτ,

d2m+1 :=
1

Γ(α)

∫ t2m+1

t2m

(t2m+1 −τ)
α−1ψm,2(τ)dτ.

Functions φk,i(t) (i = 0,1,2) are quadratic Lagrange interpolating polynomials associated
with points t2k, t2k+1 and t2k+2, precisely,

φk,0(t) :=
(t − t2k+1)(t − t2k+2)

2h2 , φk,1(t) :=
(t − t2k)(t − t2k+2)

−h2 ,

φk,2(t) :=
(t − t2k)(t − t2k+1)

2h2 .

Similarly, ψm,i(t) (i = 0,1,2) are Lagrange interpolating polynomials associated with

points t2m, t2m+ 1
2

and t2m+1. From (2.5)-(2.7), it is known that W
[2m+2]
k,i and W

[2m+1]
k,i

can be explicitly calculated.
For simplicity, we reduce Eq.(2.4) to











y2m+2 = g2m+2 + hα
2m
∑

j=0
ω2m+2− j f j + hαω1 f2m+1 + hαω0 f2m+2,

y2m+1 = g2m+1 + hα
2m
∑

j=0
̟2m+2− j f j + hα̟1 f2m+1 + hα̟0 f2m+2,

(2.8)

where

ω0 :=W
[2m+2]
m,2 /hα, ω2k+1 :=W

[2m+2]
m−k,1 /h

α, k = 0,1, · · · , m;

ω2k :=W
[2m+2]
m−k,2 /h

α +W
[2m+2]
m−k+1,0/h

α, k = 1,2, · · · , m;

ω2m+2 :=W
[2m+2]
0,0 /hα,

and ̟ j is defined similarly just by replacing the W
[2m+2]
k,i in the definition of ω j with

W
[2m+1]
k,i ( j = 0,1, · · · , 2m+ 2).

In the remainder of this paper, we will be devoted to convergence analysis of the block-
by-block method under the assumptions Dα∗ y(t) ∈ C3[0, T] and f y(x , y) ∈ C(Ω). There-
fore, it is necessary to relate the smoothness properties of a given function to smoothness
properties of its Caputo derivatives.

Lemma 2.1. ([7]) For any α > 0, y(t) ∈ C3+⌈α⌉[0, T], we have

Dα∗ y(t) =

2
∑

k=0

y(k+⌈α⌉)(0)

Γ(⌈α⌉ −α+ k+ 1)
t⌈α⌉−α+k +φ(t)
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with some function φ(t) ∈ C3[0, T].

Remark. By above lemma, for y(t) ∈ C3+⌈α⌉[0, T], Dα∗ y(t) ∈ C3[0, T] if and only if
y(⌈α⌉)(0) = y(1+⌈α⌉)(0) = y(2+⌈α⌉)(0) = 0. These conditions seem to be quite stringent
and limit the application of block-by-block method. Notice that there exist such kinds of
functions as the most simple one y(t) = tα, which satisfy Dα∗ y(t) ∈ C3[0, T] but y(t) /∈
C3+⌈α⌉[0, T].

3. Preliminary lemmas

In our subsequent analysis in Section 4, the following lemmas are needed.

Lemma 3.1. Let

ak = (k+ 1)α+1+ kα+1 +

�

k+
1

2

�α+1

+ 6
kα+2 − (k+ 1)α+2

α+ 2

+ 12
(k+ 1)α+3+ kα+3 − 2

�

k+ 1
2

�α+3

(α+ 2)(α+ 3)
. (3.1)

Then for α≥ 0, we have
m
∑

k=0

ak = O (m
α) , m ≥ 2. (3.2)

Proof. For k ≥ 2, we have

ak = kα+1

�
�

1+
1

k

�α+1

+ 1+

�

1+
1

2k

�α+1
�

+
6kα+2

α+ 2

�

1−
�

1+
1

k

�α+2
�

+
12kα+3

(α+ 2)(α+ 3)

�
�

1+
1

k

�α+3

+ 1− 2

�

1+
1

2k

�α+3
�

= kα+1



3+
+∞
∑

j=1

(2 j + 1)(α+ 1) · · · (α+ 1− j+ 1)

j!2 j k j



−
6kα+2

α+ 2

+∞
∑

j=1

(α+ 2) · · · (α+ 2− j+ 1)

j!k j

+
12kα+3

(α+ 2)(α+ 3)

+∞
∑

j=1

(2 j − 2)(α+ 3) · · · (α+ 3− j+ 1)

j!2 jk j

= kα+1
+∞
∑

j=2

( j− 1)( j− 2)2 j + ( j− 1)( j+ 4)

( j+ 1)( j+ 2)2 j

(α+ 1) · · · (α+ 2− j)

j!k j

.
=
(α+ 1)α

k1−α

+∞
∑

j=0

b j

k j
. (3.3)

When 0< α< 1, it is easy to check that for any k ≥ 2,
¦

b j

�

� j = 0,1, · · ·
©

is an alternate series with

b0 =
1

16
> 0, b1 =

1

32
(α− 1) < 0, b2 =

1

96
(α− 1)(α− 2) > 0
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and
¦

|b j |
�

� j = 0,1, · · ·
©

monotonically approaches 0. Hence it deduces that the infinity series of the
last term of (3.3) converges and

(α+ 1)α

k1−α

�

b0 +
b1

k

�

< ak <
(α+ 1)αb0

k1−α , (3.4a)

m
∑

k=2

(α+ 1)αb0

k1−α +

m
∑

k=2

(α+ 1)αb1

k2−α <

m
∑

k=2

ak <

m
∑

k=2

(α+ 1)αb0

k1−α . (3.4b)

Consequently,

m
∑

k=0

ak =

m
∑

k=2

ak +O (1) =
m
∑

k=2

(α+ 1)αb0

k1−α [1+ o(1)] +O (1)

= (α+ 1)b0mα [1+ o(1)] =
(α+ 1)

16
mα [1+ o(1)] . (3.5)

Note that for α= 0,

ak = 3k+
3

2
+ 3
�

k2 − (k+ 1)2
�

+ 2

�

(k+ 1)3 + k3 − 2

�

k+
1

2

�3
�

= 0;

and for α = 1,

ak = (k+ 1)2 + k2 +

�

k+
1

2

�2

+ 2
�

k3− (k+ 1)3
�

+ (k+ 1)4 + k4 − 2

�

k+
1

2

�4

=
1

8
.

When n − 1 < α ≤ n for some integer n ≥ 2, it can be checked that for any k ≥ 2, b0,
· · · , bn−1 are positive, and

¦

b j

�

� j = n− 1, n, · · ·
©

is an alternate series and
¦

|b j |
�

� j = n− 1, n, · · ·
©

monotonically approaches 0. According to the similar analysis dealing with the case 0< α < 1, we
can also obtain for α > 1, the result (3.2) holds. This completes the proof. �

Lemma 3.2. For α > 0 and j ≥ 2 , the following statements hold

ω j = O
�

jα−1
�

, ̟ j = O
�

jα−1
�

, (3.6)

where ω j and ̟ j are defined in Eq.(2.8).

Proof. Here we prove ω j = O
�

jα−1
�

; the proof of ̟ j = O
�

jα−1
�

is similar. Without loss of
generality, we only need to prove

ω2m+1−2k =
W
[2m+2]
k,1

hα
= O

�

(2m+ 1− 2k)α−1
�

; (3.7)

the other results can be obtained by using the same method. According to the definition of W
[2m+2]
k,1 ,

it results in

W
[2m+2]
k,1

hα
=

1

Γ(α)

∫ t2k+2

t2k

(t2m+2 −τ)
α−1 (τ− t2k)(τ− t2k+2)

−h2+α dτ (3.8)



Convergence Analysis of a Block-by-block Method for FDEs 235

After some operations, the right side of (3.8) becomes

−1

Γ(α)h2+α

∫ t2k+2

t2k

(t2m+2− τ)
α−1[τ2− (t2k + t2k+2)τ+ t2k t2k+2]dτ

=
−1

Γ(α+ 2)

�

−2(2m+ 2− 2k)1+α− 2(2m− 2k)1+α +
2(2m+ 2− 2k)2+α

2+α
−

2(2m− 2k)2+α

2+α

�

=
−2n1+α

Γ(α+ 2)



−(1+
1

n
)1+α− (1−

1

n
)1+α+ n

 

(1+ 1
n
)2+α

2+α
−
(1− 1

n
)2+α

2+α

!



=
−2n1+α

Γ(α+ 2)

�

(1+α)α

�

2

3!
−

2

2!

�

1

n2 + (1+α)α(α− 1)(α− 2)

�

2

5!
−

2

4!

�

1

n4

+(1+α)α · · · (α− 4)

�

2

7!
−

2

6!

�

1

n6
+ (1+α)α · · · (α− 6)

�

2

9!
−

2

8!

�

1

n8 + · · ·
�

=
4nα−1

Γ(α)

��

1

2!
−

1

3!

�

+ (α− 1)(α− 2)

�

1

4!
−

1

5!

�

1

n2

+(α− 1) · · · (α− 4)

�

1

6!
−

1

7!

�

1

n4 + (α− 1) · · · (α− 6)

�

1

8!
−

1

9!

�

1

n6
+ · · ·

�

= O (nα−1), (3.9)

where n= 2m+ 1− 2k. This completes the proof. �

Lemma 3.3. (Gronwall Inequality) Let C1 > 0 independent h > 0, C2 ≥ 0, and {zn} satisfy the

inequality

|zn| ≤ hαC1

n−1
∑

j=0

(n− j)α−1|z j |+ C2, j = 0,1, · · · , n− 1, nh≤ T, (3.10)

with 0< α ≤ 1. Then

|zn| ≤ C2Eα
�

C1Γ(α)T
α
�

, nh≤ T, (3.11)

where Eα denotes the Mittag-Leffler function defined as

Eα(x) :=
∞
∑

k=0

xk

Γ(αk+ 1)
, α > 0.

In particular, when α= 1, the inequality (3.11) results in

|zn| ≤ C2eC1 T , nh≤ T. (3.12)

The proof of this lemma can be found in [4].

4. Convergence analysis

The objective of this section is to analyze the block-by-block method (2.4) or (2.8). First, we
derive the error estimate.

Theorem 4.1. For α > 0, the truncation error order of the block-by-block method (2.4) is at least 3.
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Proof. It is known that the error of quadratic Lagrange interpolating polynomial is

f (3)(ξk, y(ξk))

6
(t − t2k)(t − t2k+1)(t − t2k+2), ξk ∈ (t2k, t2k+2).

Notice that f (t, y(t)) is three times continuously differentiable, so there exists a constant C such
that

| f (3)(t, y(t))|

6
≤ C , t ∈ [0, T].

Then the truncation error of the first formula of Eq.(2.4) is
�

�

�

�

�

m
∑

k=0

1

Γ(α)

∫ t2k+2

t2k

(t2m+2− τ)
α−1 f (3)(ξk, y(ξk))

6
(τ− t2k)(τ− t2k+1)(τ− t2k+2)dτ

�

�

�

�

�

≤
C

Γ(α)

m
∑

k=0

∫ t2k+2

t2k

(t2m+2− τ)
α−1
�

�(τ− t2k)(τ− t2k+1)(τ− t2k+2)
�

� dτ. (4.1)

Let estimate the integrals on the right-hand side of (4.1):

1

Γ(α)

m
∑

k=0

∫ t2k+2

t2k

(t2m+2 − τ)
α−1
�

�(τ− t2k)(τ− t2k+1)(τ− t2k+2)
�

� dτ

=
2α+2hα+3

Γ(α+ 2)

m
∑

k=0

�

(k+ 1)α+1+ kα+1+

�

k+
1

2

�α+1

+ 6
kα+2 − (k+ 1)α+2

α+ 2

+12
(k+ 1)α+3+ kα+3− 2

�

k+ 1
2

�α+3

(α+ 2)(α+ 3)







=
2α+2hα+3

Γ(α+ 2)

m
∑

k=0

ak. (4.2)

According to Lemma 3.1, we have

h3+α
m
∑

k=0

ak = h3O ([hm]α) = h3O (Tα) = O (h3). (4.3)

Consequently the order of error is at least 3. The error analysis for Eq.(2.4b) has the same conclu-
sion at the expense of more additional work. �

Remark. In fact, instead of using complicated Lemma 3.1, one can obtain Theorem 4.1 from
formula (4.1) directly. The reason why we established Lemma 3.1 is that based on the method of
proving this lemma, one can explicitly explain why the numerical convergence order often demon-
strate as 3+α with 0< α ≤ 1 and 4 with α > 1 in many numerical experiments. Actually, when the
right hand side function f (t, y(t)) of Eq.(2.1) is three-time continuously differentiable, then the
values of f (3)(t, y(t)) do not occur fierce changes on a small interval. Thus the truncation error of
formula (2.4) may be approximately represented as

C1

6Γ(α)

m
∑

k=0

∫ t2k+2

t2k

(t2m+2 − τ)
α−1(τ− t2k)(τ− t2k+1)(τ− t2k+2)dτ

=
C12α+2hα+3

6Γ(α+ 2)

m
∑

k=0

a′
k
, (4.4)
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where C1 is a value of f (3)(t, y(t)) at a certain point and

a′
k
= 12

(k+ 1)3+α− k3+α

(2+α)(3+α)
− 6
(k+ 1)2+α+ k2+α

2+α
+ (k+ 1)1+α− k1+α.

Using similar method for proving Lemma 3.1, one can know the series
∑∞

k=0 a′
k

is convergent for
0< α ≤ 1, and

m
∑

k=0

a′
k
= O (mα−1) for α > 1.

Thus we know the reason that some numerical convergence order approach 3+α with 0 < α ≤ 1
and 4 with α > 1.

Finally, we state the main result of this paper, i.e., the convergence order of the block-by-block
method is at least 3. Thus this method can provide enough accuracy in practical computation.

Theorem 4.2. The block-by-block scheme (2.8) for Eq.(2.1) is convergent. Moreover,

|en| ≡ |y(tn)− yn|= O (h
3) for n= 1,2, · · · . (4.5)

Proof. According to the mean value theorem, there exists L j holding that

f (t j, y(t j))− f (t j, y j) = L j(y(t j)− y j) = L je j, j = 0,1, · · · , 2N ,

where e j = y(t j)− y j. In terms of f (t, y) satisfying Lipschitz condition and f y (x , y) ∈ C(Ω), then
|L j | ≤ L. Thanks to Lemma 3.2, there exists a constant C satisfying

max{|ω0|, |ω1|, |̟0|, |̟1|} ≤ C , max{|ω j |, |̟ j |} ≤ C jα−1, j = 2, · · · , 2m+ 2.

Note that

y(t2m+2) =g(t2m+2) + hα
2m
∑

j=0

ω2m+2− j f (t j, y(t j)) + hαω1 f (t2m+1, y(t2m+1))

+ hαω0 f (t2m+2, y(t2m+2)) +O (h
3),

y(t2m+1) =g(t2m+1) + hα
2m
∑

j=0

̟2m+2− j f (t j, y(t j)) + hα̟1 f (t2m+1, y(t2m+1))

+ hα̟0 f (t2m+2, y(t2m+2)) + O (h
3),

and

y2m+2 =g2m+2 + hα
2m
∑

j=0

ω2m+2− j f (t j, y j) + hαω1 f (t2m+1, y2m+1)

+ hαω0 f (t2m+2, y2m+2),

y2m+1 =g2m+1 + hα
2m
∑

j=0

̟2m+2− j f (t j, y j) + hα̟1 f (t2m+1, y2m+1)

+ hα̟0 f (t2m+2, y2m+2).
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We then obtain










e2m+2 = hα
2m
∑

j=0
ω2m+2− j L je j + hαω1 L2m+1e2m+1 + hαω0 L2m+2e2m+2 + O (h

3),

e2m+1 = hα
2m
∑

j=0
̟2m+2− j L je j + hα̟1 L2m+1e2m+1 + hα̟0 L2m+2e2m+2 + O (h

3).
(4.6)

Consequently,










|e2m+2| ≤ LChα
2m
∑

j=0
(2m+ 2− j)α−1|e j |+ LChα|e2m+1|+ LChα|e2m+2|+ O (h

3),

|e2m+1| ≤ LChα
2m
∑

j=0
(2m+ 2− j)α−1|e j |+ LChα|e2m+1|+ LChα|e2m+2|+ O (h

3).
(4.7)

Set |ε2i+1| = |ε2i+2| = max{|e2i+1|, |e2i+2|} for i = 0,1, · · · , m, and note that |ε0| = |e0| = 0. For the
sufficient small h and any α > 0, there exists a constant C3 such that

1< (1− 2LChα)−1 ≤ C3.

For 0< α ≤ 1, the inequalities in (4.7) lead to

|ε2m+1| ≤ LChα
2m
∑

j=0

(2m+ 1− j)α−1|ε j |+ 2LChα|ε2m+1|+O (h
3). (4.8)

After further transformation and by Lemma 3.3, we obtain

|ε2m+1| ≤ O (h
3)Eα(C3 LCΓ(α)Tα) = O (h3). (4.9)

For α > 1, from (4.7) we get

|ε2m+1| ≤ LCTα−1h

2m
∑

j=0

|ε j |+ 2LChα|ε2m+1|+ O (h
3).

With a similar treatment for 0< α ≤ 1, it deduces that

|ε2m+1| ≤ O (h
3)eC3 LC Tα = O (h3). (4.10)

Therefore the block-by-block method (2.8) is convergent with order 3. �

5. Numerical experiments

In this section, we verify the convergence order by numerical experiments.
Example 1. Consider the following equations where y(t) ∈ C3+⌈α⌉[0,1] and Dα∗ y(t) ∈ C3[0,1]

Dα∗ y(t) =
Γ(5+α)

24
t4 + t8+2α− y2(t) (5.1)

with initial condition y(0) = 0 for the case 0 < α ≤ 1 and y(0) = y′(0) = 0 for 1 < α ≤ 2. The
exact solution of this equation is given as

y(t) = t4+α.
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Notice that the function y(t) satisfies the Lemma 2.1 and its remark. The comparisons of numerical
solution and exact solution for α = 0.5 and α = 1.5 are shown in Fig.1. For this case, we take
stepsize h = 0.05. It can be seen that our numerical results are in excellent agreement with the
exact solution. From Tables 1 and 2, we find that as the stepsize h decreasing, the error is reduced.
For α = 0.5, the numerical convergence order is about 3.5; while α = 1.5, the convergence order
almost approaches 4. Thus the numerical results are consistent with the theoretical analysis in
Section 4.
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Figure 1: The omparison of numerial solution and exat solution for di�erent α in Example 1.Table 1: The errors for di�erent stepsize h and α= 0.5 in Example 1.
stepsize h max

�

�y
�

t i

�

− yi

�

� convergence order
1/10 6.790480279114108e-004
1/20 6.115764018488346e-005 3.47290897206878
1/40 5.326621723589220e-006 3.52124000532623
1/80 4.578516905606733e-007 3.54026857517293

1/160 3.923653379978020e-008 3.54461084656701
1/320 3.360732248047782e-009 3.54535008607147

Example 2. The following equations where y(t) /∈ C3+⌈α⌉[0,1] and Dα∗ y(t) ∈ C3[0,1]

Dα∗ y(t) =
40320

Γ(9−α)
t8−α− 3

Γ(5+α/2)

Γ(5−α/2)
t4−α/2+

9

4
Γ(α+ 1)

+

�

3

2
tα/2 − t4

�3

− [y(t)]3/2 (5.2)

subject to the initial conditions y (k)(0) = 0, k = 0, · · · , ⌈α⌉−1 with 0< α < 2. The exact solution is

y(t) = t8− 3t4+α/2+
9

4
tα.

From Tables 3 and 4, we know that these numerical results are in good agreement with the theo-
retical analysis.
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stepsize h max

�

�y
�

t i

�

− yi

�

� convergence order
1/10 3.925338639648723e-004
1/20 2.535081665921979e-005 3.95271299240205
1/40 1.598769163946301e-006 3.98699866595346
1/80 9.970496439581922e-008 4.00315250268271
1/160 6.191967605317927e-009 4.00919551060856
1/320 3.851163832280236e-010 4.00703152050329Table 3: The errors for di�erent stepsize h and α= 0.4 in Example 2.

stepsize h max
�

�y
�

x i

�

− yi

�

� convergence order
1/10 0.00338693729077
1/20 4.105770707192313e-004 3.04425631016298
1/40 4.457995720869024e-005 3.20318592336832
1/80 4.585147059199546e-006 3.28135532062425
1/160 4.576406376077813e-007 3.32468093459055
1/320 4.486848470541816e-008 3.35044079896980Table 4: The errors for di�erent stepsize h and α= 1.6 in Example 2.

stepsize h max
�

�y
�

x i

�

− yi

�

� convergence order
1/10 0.00186448622110
1/20 1.309261948120866e-004 3.83195245959574
1/40 8.614536457729471e-006 3.92583679231980
1/80 5.493969965075785e-007 3.97085223961853
1/160 3.454578240136286e-008 3.99126753153549
1/320 2.160079393132008e-009 3.99935334239282

6. Concluding remarks

A block-by-block method, proposed by Kumar and Agrawal for a class of initial value problems
of fractional differential equations with Caputo derivatives, has been rewritten. On this basis, the
error estimate and the proof of convergence are given under the assumptions Dα∗ y(t) ∈ C3[0, T]

and f y (x , y) ∈ C(Ω). And the convergence order of this scheme is shown to be at least 3. The
numerical examples have verified the theoretical results. It is demonstrated that this block-by-block
method is an effective and convergent numerical scheme in solving a variety of FDEs.
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