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Abstract. Finite difference method is an important methodology in the approximation

of waves. In this paper, we will study two implicit finite difference schemes for the simu-

lation of waves. They are the weighted alternating direction implicit (ADI) scheme and

the locally one-dimensional (LOD) scheme. The approximation errors, stability condi-

tions, and dispersion relations for both schemes are investigated. Our analysis shows

that the LOD implicit scheme has less dispersion error than that of the ADI scheme.

Moreover, the unconditional stability for both schemes with arbitrary spatial accuracy

is established for the first time. In order to improve computational efficiency, numeri-

cal algorithms based on message passing interface (MPI) are implemented. Numerical

examples of wave propagation in a three-layer model and a standard complex model

are presented. Our analysis and comparisons show that both ADI and LOD schemes are

able to efficiently and accurately simulate wave propagation in complex media.
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1. Introduction

A basic and yet important problem in geophysical exploration is to determine the re-

sponse to the excitation of an impulsive source. This step involves the numerical solution of

the wave equation. In seismic exploration and imaging, modeling of wave mechanisms by

the acoustic wave equation is accurate and widely used (Claerbout, 1985). There are four

important techniques for the simulation of wave propagation: the finite element method

(Ciarlet, 1978; Cohen, et al., 2001), the discontinuous Galerkin method (Chung, et al.,
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2006,2009), the Fourier method (Fornberg, 1975,1990; Orszag 1980; Gazdag, 1981), and

the finite difference method. In this paper, we will study the finite difference method.

The simulation of waves by the finite difference method was introduced as early as

1974 by Alford (Alford, 1974). Since then, many authors have made contributions to this

direction, to list a few, Bayliss, 1986; Fornberg, 1990; Levander, 1988; Marfurt, 1984;

Virieux, 1984, 1986; Sei, 1995; Minkoff, 2002. Among them, the staggered-grid finite

difference method has become the most popular method for acoustic or elastic wave sim-

ulation. The staggered-grid finite difference method, which solves the velocity and stress

simultaneously, is an explicit scheme proposed by Virieux in 1984 (Virieux, 1984). It has

several advantages for seismic exploration modeling (Levander, 1988): (1) It is stable for

all values of Poisson’s ratio. Thus it is ideal for problems in which the materials concerned

have high Poisson’s ratio. (2) It has relatively small grid dispersion and grid anisotropy, and

is relatively insensitive to Poisson’s ratio. (3) It can easily incorporate with the free-surface

boundary conditions. The dispersion relation and stability condition of the staggered-grid

schemes are given by Sei (Sei, 1995). Fornberg compared the accuracy of high-order

staggered-grid finite difference scheme with the pseudospectral method (Fornberg, 1988).

In general, explicit finite difference schemes have good computational efficiency, however,

they are only conditionally stable.

Contrary to explicit schemes, implicit schemes are not very popular in the simulation of

wave propagation due to the fact that implicit schemes typically have lower computational

efficiency. In particular, at each time step, an implicit scheme requires the solution of large

linear systems. While these linear systems are diagonal or banded with small bandwidth

for problems in one spatial dimension, they are neither diagonal nor narrow-banded for

problems in higher spatial dimensions. Hence solving them requires significant amount of

computational time. However, implicit schemes still attract some attention due to their un-

conditional stability. Using the splitting technique, which is commonly used for parabolic

problems (Thomas 1995), we may split the two (or three) dimensional problem into sev-

eral one dimensional problems. Therefore, we only need to invert banded linear systems

with small bandwidth.

It is our main goal in this paper to investigate this approach for enhancing efficiency of

implicit schemes. We will consider two implicit schemes, the alternating direction implicit

(ADI) scheme and the locally one dimensional (LOD) scheme (Fairweather and Mitchell,

1965; Samarskii, 1964). Our aims are the investigation of the error bounds, stability con-

ditions, and dispersion curves of ADI and LOD. Moreover, we will apply a spatial parallel

scheme for the numerical computations with the message passing interface (MPI). Numer-

ical tests for a three-layer model and the benchmark Marmousi model are performed. Our

results demonstrate that the wave propagation phenomena are simulated accurately by the

ADI and LOD schemes.

The paper is organized as follows. The error analysis and unconditional stability for

ADI and LOD schemes with arbitrary spatial accuracy are established in Sections 2 and 3

respectively. In Section 4, dispersion analysis and curves both for ADI and LOD schemes

are given. In Section 5, we present accuracy comparisons of ADI and LOD schemes. In

Section 6, parallel computations based on MPI environment for a three-layer model and
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Marmousi model are implemented. Finally, we give conclusions in Section 7.

2. ADI scheme

The acoustic wave equation in two dimensions can be written as

∂ 2u

∂ t2
= K

�

∂

∂ x

�

1

ρ

∂ u

∂ x

�

+
∂

∂ y

�

1

ρ

∂ u

∂ y

��

, (2.1)

where the bulk modulus K is the product of the velocity v squared times the density ρ

K = ρv2. (2.2)

If the density ρ is smooth, which is the case usually adopted in seismic exploration (Claer-

bout, 1985), Eq. (2.1) can be simplified as

1

v2

∂ 2u

∂ t2
=
∂ 2u

∂ x2
+
∂ 2u

∂ y2
, (2.3)

where t denotes time, x and y are space variables, u(t, x , y) is the acoustic pressure and

v(x , y) is the propagation velocity.

Let ul
j,k

be the approximation of the exact solution u in (2.3) at the spatial grid point

with indices ( j, k) and time level with index l. Following standard finite difference method-

ology, we will express the values of second derivatives, such as ∂ 2u/∂ x2, in terms of

weighted sums of values of ul
i,k

about a grid point. In particular, the approximation of

∂ 2u/∂ x2 at the grid point ( j, k) to the 2M -th order can be written as

∂ 2u

∂ x2
=

1

∆x2

M
∑

m=−M

αmul
j+m,k, (2.4)

where the coefficients αm, m = −M ,−(M − 1), · · · , M − 1, M , are independent of u. It is

well known that for the second-order approximation, M = 1 and αm is given by

(α−1,α0,α1) = (1,−2,1).

For the fourth-order approximation, M = 2 and αm is given by

(α−2,α−1,α0,α1,α2) =
1

12
(−1,16,−30,16,−1).

For the sixth-order approximation, M = 3 and αm is given by

(α−3,α−2,α−1,α0,α1,α2,α3) =
1

180
(2,−27,270,−490,270,−27,2).

Similarly, for ∂ 2u/∂ y2, we have the following order 2N approximation formula

∂ 2u

∂ y2
=

1

∆y2

N
∑

n=−N

βnul
j,k+n

(2.5)
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at the grid point ( j, k), where the coefficients βn, n = −N ,−(N − 1), · · · , N − 1, N , are

independent of u. To emphasize the effect of M in αm, we write αm as αM
m in appropriate

places. Similarly, we write βN
n instead of βn to emphasize the dependence on N . Because

of symmetry reason, we have αM
m = β

M
m .

Lemma 2.1. In general, the difference coefficients αM
m (m= 0,1, · · · , M) in Eq. (2.4) is given

by the following expressions:

αM
0 = −2

M
∑

m=1

1

m2
, (2.6)

αM
m =

2(−1)m−1

m2

C M
m

C M+m
m

, m= 1, · · · , M . (2.7)

where

C M
m =

M!

(M −m)!
. (2.8)

Proof. For consistency reasons, the coefficients αM
m satisfy

αM
0 + 2

M
∑

m=1

αM
m = 0. (2.9)

Since the formula (2.4) is 2M -th order accurate, we require

M
∑

m=1

αM
m m2 = 1,

M
∑

m=1

αM
m m2s = 0, s = 2, · · ·M . (2.10)

Writing (2.9) and (2.10) in matrix-vector form, we have















1 2 2 · · · 2 2 2

0 1 22 · · · (M − 2)2 (M − 1)2 M2
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1

0
...

0
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









. (2.11)

By using the Gram’s criterion and the properties of Vandermonde determinant, we obtain

αM
0 =− 2

M
∑

m=1

1

m2
, (2.12)

αM
m =
(−1)m−1

m2

∏

1¶i¶M ,i 6=m

i2

∏

1¶ j<m

(m2− j2)
∏

m< j¶M

( j2−m2)
=

2(−1)m−1

(M −m)!(M +m)!

∏

1¶i¶M ,i 6=m

i2

=
2(−1)m−1(M!)2

m2(M −m)!(M +m)!
=

2(−1)m−1

m2

C M
m

C M+m
m

, m = 1, · · · , M , (2.13)
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which are the expressions (2.6) and (2.7). �

Now we consider the following weighted ADI scheme

ũl+1
j,k
− 2ul

j,k
+ ul−1

j,k
= r2

x

M
∑

m=−M

αm

h

θ ũl+1
j+m,k

+ (1− 2θ)ul
j+m,k

+ θul−1
j+m,k

i

+ r2
y

N
∑

n=−N

βn

h

(1− 2θ)ul
j,k+n

+ 2θul−1
j,k+n

i

, (2.14)

ul+1
j,k
= ũl+1

j,k
+ θ r2

y

N
∑

n=−N

βn(u
l+1
j,k+n
− ul−1

j,k+n
), (2.15)

where 0 ≤ θ ≤ 1 is a weight coefficient, ∆x and ∆y are the spatial mesh sizes in x and y

directions respectively, ∆t is the time step and

rx =
v∆t

∆x
, ry =

v∆t

∆y
, ul

j,k
= u(l∆t, j∆x , k∆y). (2.16)

Eqs. (2.14) and (2.15) can be written in the form
 

1− θ r2
x

M
∑

m=−M

αm

!

ũl+1
j+m,k

= 2ul
j,k
− ul−1

j,k
+ r2

x

M
∑

m=−M

αm

h

(1− 2θ)ul
j+m,k

+ θul−1
j+m,k

i

+ r2
y

N
∑

n=−N

βn

h

(1− 2θ)ul
j,k+n

+ 2θul−1
j,k+n

i

(2.17)

 

1− θ r2
y

N
∑

n=−N

βn

!

ul+1
j,k+n

= ũl+1
j,k
− θ r2

y

N
∑

n=−N

βnul−1
j,k+n

, (2.18)

where each equation has three unknown values on the left-hand side. Thus, at each time

step, Eq. (2.14) or (2.17) is solved first for the x direction and then Eq. (2.15) or (2.18)

is solved for the y direction. Both calculations involve only the solution of tridiagonal

systems of equations. If the wavefield ũl+1 is eliminated, we obtain

ul+1
j,k
− 2ul

j,k + ul−1
j,k

=r2
x Sx

�

θul+1
j,k
+ (1− 2θ)ul

j,k
+ θul−1

j,k

�

+ r2
ySy

�

θul+1
j,k
+ (1− 2θ)ul

j,k
+ θul−1

j,k

�

− r2
x r2

yθ
2Sx Sy

�

ul+1
j,k
− ul−1

j,k

�

, (2.19)

where Sx and Sy are two difference operators defined as

Sxul
j,k
=

M
∑

m=−M

αmul
j+m,k

, Syul
j,k
=

N
∑

n=−N

βnul
j,k+n

. (2.20)

The truncation error is O (∆t2 +∆x2M +∆y2N ). In fact, using the relationship

ul+1
j,k
− 2ul

j,k
+ ul−1

j,k
=∆t2

∂ 2u

∂ t2
+
∆t4

12

∂ 4u

∂ t4
+ O (∆t6), (2.21)
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we have

Sx

h

θul+1
j,k
+ (1− 2θ)ul

j,k
+ θul−1

j,k

i

=

M
∑

m=−M

αmul
j+m,k + θ

M
∑

m=−M

αm

�

ul+1
j+m,k
− 2ul

j+m,k + ul−1
j+m,k

�

=

�

∆x2
∂ 2u

∂ x2
+O (∆2+2M ) + O (∆x6M)

�

+ θ

M
∑

m=−M

αm



∆t2

�

∂ 2u

∂ t2

�l

j+m,k

+ O (∆t4)





=∆x2
∂ 2u

∂ x2
+ θ∆t2

�

∆x2
∂ 4u

∂ t2∂ x2
+ O (∆x2+2M )

�

+ O (∆x2+2M +∆t4∆x2). (2.22)

Analogously, we have

Sy

h

θul+1
j,k
+ (1− 2θ)ul

j,k
+ θul−1

j,k

i

=∆y2
∂ 2u

∂ y2
+ θ∆t2

�

∆y2
∂ 4u

∂ t2∂ y2
+ O (∆y2+2N )

�

+ O (∆y2+2N +∆t4∆y2), (2.23)

SxSy

�

ul+1
j,k
− un

j,l

�

=SxSy

�

2∆t
∂ u

∂ t
+ O (∆t3)

�

=2∆tSxSy

�

∂ u

∂ t

�

+ O (∆t3∆x2∆y2)

=2∆t

�

∆x2∆y2
∂ 5u

∂ t∂ x2∂ y2
+O (∆y2∆x2+2M ) +O (∆x2∆y2+2N )

�

+O (∆t3∆x2∆y2). (2.24)

Therefore, inserting expressions (2.20)–(2.24) into Eq. (2.19), we have

1

v2

∂ 2u

∂ t2
+ O (∆t2)−

�

∂ 2u

∂ x2
+
∂ 2u

∂ y2

�

+ O (∆x2M +∆y2N ) = 0 (2.25)

which shows that the truncation error of the weighted ADI scheme is second-order accurate

in time and O (∆x2M +∆y2N ) order accurate in space.

Before we prove the stability condition of the ADI implicit scheme, we first prove the

following theorem.

Theorem 2.1. The following inequality

M
∑

m=−M

αM
m eimθ

¶ 0 (2.26)

is always true, where θ is any real number, M is any positive integer and αM
m is the difference

coefficients defined in Eqs. (2.6) and (2.7).
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Proof. It can be verified that the coefficients αM
m have the following properties:

1◦

|αM
m | =

�

�

�

�

�

2(−1)m−1

m2

C M
m

C M+m
m

�

�

�

�

�

¶
2

m2
, m = 1, · · · , M . (2.27)

2◦ For a fixed M , the sequence {αM
m } (1¶ m ¶ M) is an alternating series and αM

1 > 0.

3◦ Note that

�

�αM
m

�

� >
�

�αM
m+1

�

�, m = 1, · · · , M − 1. (2.28)
�

�αM+1
m

�

� >
�

�αM
m

�

�, m = 1, · · · , M . (2.29)

We observe that the required expression (2.26) is equivalent to

αM
0 + 2

M
∑

m=1

αM
m cos mθ ¶ 0, θ ∈ R. (2.30)

Using the periodicity of cos mθ , we only need to consider θ ∈ [0,2π]. Let

f (θ) = αM
0 + 2

M
∑

m=1

αM
m cos mθ . (2.31)

Then it is obvious that f (0) = f (2π) = 0 for consistency reason. Furthermore, using the

property 2◦ we have

f (π) = αM
0 + 2

M
∑

m=1

αM
m (−1)m < 0. (2.32)

Notice that

f ′(θ) = −2

M
∑

m=1

αM
m m sin mθ , f ′(π) = 0. (2.33)

Thus we need to prove

f ′(θ)< 0, ∀θ ∈ (0,π). (2.34)

As

lim
θ→0+

f ′(θ) = −2

M
∑

m=1

αM
m m2θ = −2θ < 0 (2.35)

and f ′(θ) is continuous in the interval (0,π), proving the expression (2.34) is equivalent

to proofing

f ′(θ) 6≡ 0, ∀θ ∈ (0,π). (2.36)

We will prove this by contradiction as follows.

Suppose ∃θ ∈ (0,π) with f ′(θ) = 0. Let θ
(1)
1 ∈ (0,π) and

f ′(θ (1)
i
) = 0, i = 1.
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where the superscript of θi is only an index for different θi . Using the fact that f ′(0) =
f ′(π) = 0, we conclude by the Rolle’s theorem that there exist θ

(2)
1 ,θ

(2)
2 ∈ (0,π) such that

f ′′(θ (2)
i
) = 0, i = 1,2.

Thus ∃ θ (3)1 ∈ (0,π) with

f (3)(θ
(3)

i
) = 0, i = 1.

Using the relation f (3)(0) = f (3)(π) = 0, we conclude that there exist θ
(4)
1 ,θ

(4)
2 ∈ (0,π)

such that

f (4)(θ
(4)

i
) = 0, i = 1,2.

But

f (4)(θ) |θ=0= 2

M
∑

m=1

αM
m m4 cos mθ

�

�

θ=0
= 0.

Thus there are three null points on the interval [0,π] satisfying

f (4)(θ
(4)

i
) = 0, i = 1,2,3.

Iteratively applying Rolle’s theorem, we have the following facts:

(1) There are M + 1 zero points on the interval [0,π] satisfying

f (2M−1)(θ) = 0, M > 1. (2.37)

(2) There are M + 1 zero points on the interval [0,π] satisfying

f (2M)(θ) = 0, M ¾ 1. (2.38)

So f (2M)(θ) has M + 1 zero points on the interval [0,π]. However,

f (2M)(θ) = 2(−1)M
M
∑

m=1

αM
m m2M cos mθ

and cos mθ can be expressed as (Hua, 2009)

cos mθ =

[m/2]
∑

k=0

(−1)kCm
2k(1− cos2 θ)k cosm−2k θ := Pm(cosθ),

where [·] denotes the integer part of the variable, Pm is a polynomial with degree not more

than m, and the coefficient of cosm θ is 2m−1. So f (2M)(θ) is a polynomial with degree less

than or equal to M and has at most M roots. This contradicts with the above statement that

f (2M)(θ) has M + 1 roots on the interval [0,π]. One notes that θ and cosθ is one-to-one

in the interval (0,π). Therefore, we conclude f ′(θ) < 0, ∀θ ∈ (0,π). Similarly, we can

prove f ′(θ) > 0, ∀θ ∈ (π, 2π). So f (θ) attains its maximum at the end points of interval
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[0,2π]. However, f (0) = f (2π) = 0. Therefore, f (θ) ¶ 0. Also, from the facts above we

know the equality sign is satisfied if and only if θ = 2kπ ∀k ∈ Z. This completes proof. �

Now we consider the stability condition of the ADI scheme (2.14)–(2.15) or equiva-

lently the combined form (2.18). We will use the von Neumann method to analyse its

stability. We consider a Fourier component of the computational error ǫ l
j,k

at grid point

( j, k) and time step l. For a grid with mesh sizes ∆x and ∆y in directions x and y respec-

tively, the Fourier component of the computational error is given by

ǫ l
j,k = G l eikx∆x eiky∆y , (2.39)

where kx and ky are the wave number corresponding to x and y respectively. Substituting

expression (2.39) into Eq. (2.18), we obtain

G l+1 − 2G l + G l−1

=



r2
x

M
∑

m=−M

αmeimkx∆x + r2
y

N
∑

n=−N

βneinky∆y





h

θG l+1 + (1− 2θ)G l + θG l−1
i

− θ2r2
x r2

y

M
∑

m=−M

αmeimkx∆x
N
∑

n=−N

βneinky∆y
�

G l+1− G l−1
�

. (2.40)

Rewriting this equation into a simple form as

aG l+1+ bG l + cG l−1 = 0, (2.41)

where

a = 1− θ r2
x

M
∑

m=−M

αmeimkx∆x − θ r2
y

N
∑

n=−N

βneinky∆y

+ θ2r2
x r2

y

M
∑

m=−M

αmeimkx∆x
N
∑

n=−N

βneinky∆y , (2.42)

b = −2− (1− 2θ)



r2
x

M
∑

m=−M

αmeimkx∆x + r2
y

N
∑

n=−N

βneinky∆y



 , (2.43)

c = 1− θ r2
x

M
∑

m=−M

αmeimkx∆x − θ r2
y

N
∑

n=−N

βneinky∆y

− θ2r2
x r2

y

M
∑

m=−M

αmeimkx∆x
N
∑

n=−N

βneinky∆y . (2.44)

Eq. (2.41) can be used to proof a sufficient condition for stability by considering the ratio

of the error amplitudes as a function of time step. Let γ = G l+1/G l = G l/G l−1 be the ratio

of error amplitudes in successive iterations. Then, we can insure stability by requiring that

|γ| ≤ 1. We can consider the stability in terms of G by dividing Eq. (2.41) by G l−1 to obtain

γ2+ b̃γ+ c̃ = 0, (2.45)
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where

b̃ =
b

a
, c̃ =

c

a
. (2.46)

Eq. (2.45) is a second-order equation with one variable. The condition |γ|¶ 1 is equivalent

to the following two inequalities

|c̃| ≤ 1, | b̃| ≤ 1+ c̃. (2.47)

It is easy to check that the first inequality of (2.47) is always satisfied. Notice that a is

always positive by Theorem 2.1. The second inequality can be rewritten as

−a− c ¶ b ¶ a+ c. (2.48)

The left inequality of (2.48) is

r2
x

M
∑

m=−M

αmeimkx∆x + r2
y

N
∑

n=−N

βneinky∆y
¶ 0, (2.49)

which is always true by Theorem 2.1, and the right inequality of (2.48) is

 

r2
x

M
∑

m=−M

αmeimkx∆x + r2
y

N
∑

n=−N

βneinky∆y

!

(4θ − 1)¶ 4, (2.50)

which gives the stability condition of the ADI scheme: when θ ≥ 1/4, the ADI is uncondi-

tional stable while

r2
x

M
∑

m=−M

αmeimkx∆x + r2
y

N
∑

n=−N

αmeinky∆y
¶

4

4θ − 1
, θ <

1

4
. (2.51)

In practical computations we usually choose θ = 1/2, which means this ADI scheme has

unconditional stability.

3. LOD scheme

We will use the idea of LOD method to split the Eq. (2.3). A LOD form for the 2-D wave

equation is

1

2

1

v2

∂ 2u

∂ t2
=
∂ 2u

∂ x2
, (3.1)

1

2

1

v2

∂ 2u

∂ t2
=
∂ 2u

∂ y2
. (3.2)
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At each half time step, we use the following Crank-Nicolson scheme to approximate the

above equations as

1

2

u
l+ 1

2

j,k
− 2ul

j,k
+ u

l− 1

2

j,k

(∆t/2)2
=

1

2∆x2

M
∑

m=−M

αm

�

u
l+ 1

2

j+m,k
+ u

l− 1

2

j+m,k

�

, (3.3)

1

2

ul+1
j,k
− 2u

l+ 1

2

j,k
+ ul

j,k

(∆t/2)2
=

1

2∆y2

N
∑

n=−N

βn

�

ul+1
j,k+n

+ ul
j,k+n

�

, (3.4)

which can be written as





�

u
l+ 1

2

j,k
+ u

l− 1

2

j,k

�− r2
x

4

M
∑

m=−M

αm

�

u
l+ 1

2

j+m,k
+ u

l− 1

2

j+m,k

�



= 2ul
j,k

,





�

ul+1
j,k
+ ul

j,k

�−
r2

y

4

N
∑

n=−N

βn

�

ul+1
j,k+n

+ ul
j,k+n

�



= 2u
l+ 1

2

j,k
,

or equivalently

�

1− r2
x

4
Sx

�
�

u
l+ 1

2

j,k
+ u

l− 1

2

j,k

�

= 2ul
j,k

, (3.5)

 

1−
r2

y

4
Sy

!

�

ul+1
j,k
+ ul

j,k

�

= 2u
l+ 1

2

j,k
, (3.6)

where rx =∆t/∆x and rx =∆t/∆y . Sx and Sy are the operators defined as in (2.20).

In the following, we will analyse the truncation error of LOD scheme (3.5)–(3.6). First

we rewrite the Eq. (3.6) as

 

1−
r2

y

4
Sy

!

�

ul
j,k + ul−1

j,k

�

= 2u
l− 1

2

j,k
. (3.7)

Substituting Eqs. (3.6) and (3.7) into (3.5) yields

�

1− r2
x

4
Sx

�
 

1−
r2

y

4
Sy

!

�

ul+1
j,k
− 2ul

j,k
+ ul−1

j,k

�

=

 

r2
x
Sx + r2

y
Sy −

r2
x
r2

y

4
SxSy

!

ul
j,k

. (3.8)
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Using the following relationships

ul+1
j,k
− 2ul

j,k
+ ul−1

j,k
=∆t2

�

∂ 2u

∂ t2

�l

j,k

+
∆t4

12

�

∂ 4u

∂ t4

�l

j,k

+ O
�

∆t6
�

, (3.9)

r2
x

4
Sx

�

ul+1
j,k
− 2ul

j,k
+ ul−1

j,k

�

=
∆t2

4



∆t2

�

∂ 4u

∂ t2∂ x2

�l

j,k

+O
�

∆t2∆x2M
�

+ O
�

∆t4
�



 , (3.10)

r2
y

4
Sy

�

ul+1
j,k
− 2ul

j,k
+ ul−1

j,k

�

=
∆t2

4



∆t2

�

∂ 4u

∂ t2∂ y2

�l

j,k

+ O
�

∆t2∆y2M
�

+O
�

∆t4
�



 , (3.11)

r2
x
Sxul

j,k
=∆t2

�

∂ 2u

∂ x2

�l

j,k

+ O
�

∆t2∆x2M
�

, (3.12)

r2
y
Syul

j,k
=∆t2

�

∂ 2u

∂ y2

�l

j,k

+ O
�

∆t2∆y2M
�

, (3.13)

r2
x
r2

y
SxSyul

j,k
=∆t4

�

∂ 4u

∂ x2∂ y2

�l

j,k

+O
�

∆t4
�

∆x2M +∆y2N
��

, (3.14)

and substituting expressions (3.9)–(3.14) into (3.8), we obtain

∆t2

�

∂ 2u

∂ t2

�l

j,k

+
∆t4

12

�

∂ 4u

∂ t4

�l

j,k
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�

∆t6
�

+

�

∆t4

16

�

∂ 4u

∂ x2∂ y2

�

+ O
�

∆t4
�

∆x2M +∆y2N
��

�

−
�

∆t4

4

∂ 4u

∂ t2∂ x2
+
∆t4

4

∂ 4u

∂ t2∂ y2
+O

�

∆t4
�

+ O
�

∆t4
�

∆x2M +∆y2N
��

�
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�

∂ 2u
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�l
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∆t2
�

∆x2M +∆y2N
��

− ∆t4
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∂ 4u
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�

∆t4
�
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��

, (3.15)

i.e.,
�

∂ 2u

∂ t2

�l
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−
�

∂ 2u

∂ x2
+
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∂ y2

�l

j,k

+O
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∆t2
�

=− ∆t2
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�l
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4

�

∂ 4u
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�l
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+
1

4



∆t2
∂ 2

∂ t2

�

∂ 2u

∂ x2
+
∂ 2u

∂ y2

�l

j,k

+ O
�

∆t2
�

∆x2M +∆y2N
��





− ∆t4

16
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∂ 4u
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�l
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+ O
�

∆t2
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+ O
�

∆t4
�
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��

=O
�
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�

+O
�

∆t2
�

. (3.16)
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Thus the truncation error of the LOD scheme is O (∆t2 +∆x2M +∆y2N ).

For stability analysis, we use the Fourier analysis method. We set the error components

as

ǫ l
j,k = G l eikx j∆x eiky k∆y . (3.17)

One notes the error satisfies the original difference equation. Substituting (3.17) into

(3.8), we obtain the following relation for amplification factor G = V l+1/V l :

a1G l+1 − (2+ b1)G
l + a1G l−1 = 0, (3.18)

where

a1 = 1− r2
x

4

M
∑

m=−M

αmeikx m∆x −
r2

y

4

N
∑

n=−N

βneiky n∆y +
r2

x
r2

y

16

M
∑

m=−M

αmeikx m∆x

N
∑

n=−N

βneiky n∆y , (3.19)

b1 =−
r2

x

2

M
∑

m=−M

αmeikx m∆x −
r2

y

2

N
∑

n=−N

βneiky n∆y +
r2

x
r2

y

8

M
∑

m=−M

αmeikx m∆x

N
∑

n=−N

βneiky n∆y . (3.20)

Thus the ratio γ= G l+1/G l of the amplification factor in successive iterations satisfies

a1γ
2 − (2+ b1)γ+ a1 = 0. (3.21)

Round-off error will not grow and the method is stable if and only if
�

�

�

�

2+ b1

a1

�

�

�

�

≤ 2 (3.22)

which leads to the inequalities

−2a1− 2¶ b1 ¶ 2a1 − 2, (3.23)

since a1 is positive by Theorem 2.1. It can be verified that the left and right inequalities of

(3.23) are always satisfied. Thus the LOD implicit scheme (3.3)–(3.4) is unconditionally

stable.

4. Dispersion analysis

To analyze the dispersion properties, we consider an uniform infinite medium and a

plane wave

u(x , y, t) = ûei(kx x+ky y−ωt). (4.1)

Then the dispersion relation for Eq. (2.3) is

ω(kx , ky) = ±v
Æ

k2
x + k2

y . (4.2)

Now we consider the discrete dispersion relation (Thomas, 1995). It can be obtained by

inserting (4.1) into the concerned difference scheme. For the ADI scheme with θ = 1/2,

the discrete dispersion relation is

ω(kx , ky) = −a tan
Im[γ1]

Re[γ1]
, (4.3)
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where γ1 is given by

γ1 =

¨

2+ (1− 2θ)
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r2
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. (4.4)

Similarly, for the LOD implicit scheme, the discrete dispersion relation is

ω(kx , ky) = −a tan
Im[γ2]

Re[γ2]
, (4.5)

where

γ2 =
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. (4.6)

In Figs. 1–4, we present the dispersion curves of the ADI and LOD implicit schemes.

For simplicity, we set∆x =∆y = h. All the implicit schemes used here are second-order in
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(a) (b)

(c)Figure 1: The dispersion 
urves with various CFL numbers for the (a) se
ond-order, (b) fourth-orderand (
) sixth-order ADI di�eren
e s
hemes.
time. The CFL number is defined by v∆t/h. Figs. 1(a), 1(b) and 1(c) show the dispersion

curves for ADI implicit schemes (θ = 1/2) with the second-order, fourth-order and sixth-

order accuracy in space respectively. Five curves are shown in each figure to represent

five different CFL numbers. The five CFL numbers are chosen as 0.2, 0.4, 0.6, 0.8 and

1.0. The wave number ky in Fig. 1 is set as π/4. From Fig. 1, we see that the dispersion

error increases as the CFL number grows. In Fig. 2, we set the CFL number as 1.0, and

investigate the behavior of dispersion error with respect to propagation angle in the x

direction. Angles in Fig. 2 are chosen as 5◦, 20◦, 35◦, 50◦ and 65◦. The results for the

ADI scheme (θ = 1/2) with a fixed CFL number are plotted in Fig. 2, and we see that the

dispersion error increases as the propagation angle grows.

Figs. 3 and 4 show the dispersion curves for the LOD implicit schemes. Figs. 3(a), 3(b)

and 3(c) are the curves with various CFL numbers for the second-order, fourth-order and

sixth-order accurate schemes respectively. Figs. 4(a), 4(b) and 4(c) are the curves with

various propagating angles in the x direction for the second-order, fourth-order and sixth-

order accurate schemes respectively. The phenomena and conclusions are similar to that of

the ADI implicit schemes. Fig. 3 shows that dispersion error increases as the CFL number

grows. Fig. 4 shows that dispersion error increases as the propagation angle increases.
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(a) (b)

(c)Figure 2: The dispersion 
urves with various propagation angles for the (a) se
ond-order, (b) fourth-orderand (
) sixth-order ADI di�eren
e s
hemes.
By comparing the dispersion curves above, we see that the second-order scheme has

much lower accuracy than the fourth-order and sixth-order schemes. Moreover, the accu-

racy difference between the fourth-order and sixth-order schemes is not obvious, though

the LOD scheme has a little higher accuracy than the ADI scheme.

We also provide comparisons of ADI/LOD with the standard explicit scheme. Without

loss of generality, we choose a fourth-order standard explicit scheme. Fig. 5(a) demon-

strates dispersion curves with various CFL numbers. Fig. 5(b) demonstrates dispersion

curves with various propagating angles. Comparing Figs. 3(b) and 4(b) with 5(a) and

5(b), we see that the error of the fourth-order standard explicit scheme is slightly less than

that of the fourth-order ADI/LOD schemes. The comparisons for the second-order and

sixth-order schemes are similar to the fourth-order case. Therefore, we omit the details.

5. Comparisons with analytical solutions

In this section, we present accuracy comparisons of the ADI and LOD schemes. The ana-

lytical solution of Eq. (2.3) is sinβ v t sin[β(x + y)/
p

2]. The solution domain is [0,200]×
[0,200]. We choose parameter β = 0.6 and v = 100. The boundary and initial conditions
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(a) (b)

(c)Figure 3: The dispersion 
urves with various CFL numbers for the (a) se
ond-order, (b) fourth-orderand (
) sixth-order LOD di�eren
e s
hemes.
are obtained from this analytical solution.

Fig. 6 is a comparison of wave vibration between the approximation and the exact

solution at position (x0, y0) = (80,80). In computations we set ∆t = 0.001 and ∆x =

∆y = 0.005. In Fig. 6(a), we plot the results of ADI schemes with the second-order, fourth-

order and sixth-order accurate schemes respectively. The exact solution is also plotted for

comparison. The results for LOD schemes are also plotted in Fig. 6(b). Tables 1 and 2

are the maximum norm and the L2-norm errors of ADI and LOD schemes respectively.

From Fig. 5 and Tables 1 and 2, we see that the second-order scheme has much lower

accuracy than that of the fourth-order and the sixth-order schemes. Both the fourth-order

and sixth-order ADI/LOD schemes are able to fit the exact solution well. The fourth-order

LOD scheme is a little more accurate than the fourth-order ADI scheme, and the sixth-order

LOD scheme is more accurate than the sixth-order ADI scheme. However, the differences

are not observable by naked eyes. In many applications, the fourth-order schemes can

meet practical requirements. Finally we show the convergence order of L2-norm errors

over different grids. To save space, we present the result of fourth-order LOD scheme. The

result for different time and space steps is given in Table 3. The log-log plot for the L2

norm errors for the fourth-order LOD scheme is shown in Fig. 7. The slope of the line is
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(a) (b)

(c)Figure 4: The dispersion 
urves with various propagation angles for the (a) se
ond-order, (b) fourth-orderand (
) sixth-order LOD di�eren
e s
hemes.

(a) (b)Figure 5: The dispersion 
urves with (a) various CFL numbers and (b) various propagating angles forthe fourth-order standard expli
it di�eren
e s
heme.
4.70 which suggests the order of convergence of this LOD scheme is 4.70. More about the

convergence order can be found in the reference of Geiser (2008).
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hemes.
norm ADI 2nd ADI 4th ADI 6th

∞ norm 0.789387 0.068770 0.019773

L2 norm 0.136455 0.015305 0.004671Table 2: Maximum and L2 norm errors for LOD s
hemes.
norm LOD 2nd LOD 4th LOD 6th

∞ norm 0.775119 0.058133 0.008514

L2 norm 0.134237 0.013062 0.002056Table 3: L2 norm errors for fourth-order LOD s
heme.
∆t ∆x L2-norm errors

1/500 1/50 1.617492E-02

1/600 1/60 7.086813E-03

1/800 1/80 1.894149E-03

1/1000 1/100 6.114570E-04

1/1200 1/120 2.562042E-04

1/1400 1/140 1.355431E-04

6. MPI parallel computations

Generally speaking, the computational efficiency of implicit schemes is lower than that

of explicit schemes. The main reason is that the implicit scheme requires the solution of

a linear algebraic system at each time step. However, computational efficiency of implicit

schemes can be improved by parallel algorithms. Here we adopt the spatial parallelism as it

is the most efficient way to parallelize finite difference simulations. We have implemented

a domain decomposition scheme by dividing the solution domain into several subdomains.

(a) (b)Figure 6: A 
omparison between numeri
al and exa
t solutions for (a) ADI s
heme with the se
ond-order,fourth-order and sixth-order spatial a

ura
y respe
tively and (b) LOD s
heme with the se
ond-order,fourth-order and sixth-order spatial a

ura
y respe
tively.
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Figure 7: A log-log plot for the L2 norm errors for the fourth-order LOD s
heme.
In order to balance workload and to minimize the communication time, all the subdomains

have the same size. At each time step, the wavefield data is required to exchange along the

boundaries of the subdomains. The information about the neighboring grid points comes

from the adjacent subdomains.

The accuracy of the wave propagation is first tested by simulating the wavefield for a

three-layer model. This model is described by a 150× 150 grid, and the velocities of the

three layers are 1200m/s, 1500m/s and 1700m/s respectively. In computations we choose

∆x = ∆z = 20m and ∆t = 0.002s. The source position is at the center of the model,

i.e, at grid point (75,75). The source pulse is a banded Ricker wavelet with a dominant

frequency of 30Hz. It is depicted by e−100t2

sin(30t). The shape of Ricker wavelet may

simulate a real exploration in oil geophysical exploration. Fig. 8 shows the snapshots of the

acoustic propagation in this layered model. The numerical scheme used in this simulation

is second-order accurate in time and fourth-order accurate in space. Fig. 8(a) shows the

results computed by the ADI scheme while Fig. 8(b) shows the results obtained by the LOD

(a) (b)Figure 8: Wave propagation in a three-layer model simulated by (a) the ADI impli
it s
heme and (b)the LOD impli
it s
heme. Both s
hemes are fourth-order a

urate in spa
e.
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Figure 9: Marmousi velo
ity model.

(a) (b)Figure 10: Wave propagation in Marmousi model simulated by (a) the ADI impli
it s
heme and (b) theLOD impli
it s
heme. Both s
hemes are fourth-order a

urate in spa
e.
scheme. In Fig. 8, the reflected wave and transmitted wave caused by the two interfaces

are clearly observed. The wavefront is very sharp. Since the material is heterogeneous, the

wavefront is not a circle.

The next model for testing our MPI algorithm is the so-called Marmousi model shown

in Fig. 9. The Marmousi model is a benchmark model created by the Institute Fran-

cais du Pétrole in 1988. It is widely used for testing the ability and accuracy of inver-

sion/migration methods (cf., Zhang, et al., 2000). Here we simulate the wave propagation

in this model. The velocity varies from the minimum value of 1500 m/s to the maxi-

mum value of 5500 m/s, represented by grey level from white to black. We choose a

grid with Nx × Nz = 400× 750. The computational results by the fourth-order ADI and

LOD schemes are shown in Fig. 10, while Fig. 11 demonstrates the results computed by

the sixth-order ADI and LOD schemes. From these figures we see that the forth-order or

sixth-order ADI and LOD schemes behave similarly for this model. In addition, the wave-

fronts of wave propagation in the complicated media are accurately simulated, and the
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(a) (b)Figure 11: Wave propagation in Marmousi model simulated by (a) the ADI impli
it s
heme and (b) theLOD impli
it s
heme. Both s
hemes are sixth-order a

urate in spa
e.
outermost wavefront is gradually spread. We also observe the reflection waves from the

inner wavefronts. As we expected, the differences between the simulating results from

the ADI and LOD schemes are very small. For computational costs, the number of oper-

ations for ADI scheme (2.14)–(2.15) (with θ = 1/2 and N = M ) and (3.3)–(3.4) are

(4M + 6N)nxny + 31nx ny − 15(nx + ny) and 4(M + N)nx ny + 30nx ny − 15(nx + ny),

respectively, where nx denotes the grid number in direction x , and ny the grid number

in direction y. For simplicity, we provide only comparisons of computational costs for

the fourth-order schemes. The real computational time for the fourth-order ADI and LOD

schemes are 4m1.656s and 3m55.701s, respectively, both on the same PC with 2.1Ghz.

Thus the cost of LOD is slightly less than that of ADI, which is consistent with our theoret-

ical analysis.

7. Conclusions

In this paper, parallel simulation with implicit schemes are investigated. For both ADI

and LOD implicit schemes, we have analyzed their truncation error, stability conditions

and dispersion curves. We proved that both the ADI scheme with θ ≥ 1/4 and LOD

scheme are unconditionally stable for any spatial accuracy. The dispersion analysis shows

that the error increases as the CFL number grows or as the propagation angle increases.

For the same order accuracy in space, the LOD implicit scheme has a little less dispersion

error than that of ADI. Moreover, the LOD scheme can be easily extended to the three

dimensional cases than the ADI scheme. From this point of view, the LOD implicit scheme

is superior. Numerical experiments are performed for a three-layer model and a standard

complex model named Marmousi model. The wave propagation are clearly simulated. All

computations are implemented based on the MPI environment. The results in this paper

show that implicit schemes can be used to simulate wave propagation in the complex

media.
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