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Abstract. In this paper, we will investigate the error estimates and the superconver-
gence property of mixed finite element methods for a semilinear elliptic control problem
with an integral constraint on control. The state and co-state are approximated by the
lowest order Raviart-Thomas mixed finite element and the control variable is approx-
imated by piecewise constant functions. We derive some superconvergence properties
for the control variable and the state variables. Moreover, we derive L∞- and H−1-error
estimates both for the control variable and the state variables. Finally, a numerical
example is given to demonstrate the theoretical results.

AMS subject classifications: 49J20, 65N30

Key words: Semilinear elliptic equations, optimal control problems, superconvergence, error esti-
mates, mixed finite element methods.

1. Introduction

As far as we know, there have been extensive studies in superconvergence of finite el-
ement approximations for optimal control problems, see, for example, [6, 17–19, 21, 24]
for standard finite element methods and [4, 5, 8, 9, 20] for mixed finite element methods.
In [21], Meyer and Rösch constructed a postprocessing projection operator and derived a
quadratic superconvergence of the control by finite element methods. In [18], Liu and Yan
considered recovery type superconvergence and a posteriori error estimates for control
problem governed by Stokes equations. Next, Yan [24] analyzed the superconvergence
property of finite element method for an optimal control problem governed by integral
equations. A priori error estimates and superconvergence for an optimal control problem
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of bilinear type are obtained in [23]. Compared with standard finite element methods,
the mixed finite element methods have many advantages. When the objective functional
contains gradient of the state variable, we will firstly choose the mixed finite element meth-
ods. In [5], we used the postprocessing projection operator, which was defined by Meyer
and Rösch (see [21]) to prove a quadratic superconvergence of the control by mixed finite
element methods. We derived error estimates and superconvergence of mixed methods for
convex optimal control problems in [9]. But in that paper, the convergence order is h3/2

since the analysis was restricted by the low regularity of the control. Recently, in [8] we
derived superconvergence and L∞-error estimates of RT1 mixed finite element methods
for semilinear elliptic control problems with an integral control constraint, however, we
didn’t considered the superconvergence property of the vector functions.

The goal of this paper is to derive the superconvergence property, the L∞-error esti-
mates and the H−1-error estimates of the lowest order mixed finite element approximation
for a semilinear elliptic control problem with an integral control constraint. Firstly, we
derive the superconvergence property between average L2 projection and the approxima-
tion of the control variable, the convergence order is h2 instead of h3/2 in [9], which is
caused by the different admissible set. Then, we will derive some superconvergence prop-
erties for the state variables. We also derive the L∞-error estimates for both the control
variable and the state variables. Next, we give some applications of the superconvergence
results. We derive a superconvergence result for the control variable by using a recovery
operator instead of a projection of the discrete adjoint state zh in the reference [8]. Fur-
thermore, we shall obtain H−1-error estimates for both the control variable and the state
variables. Finally, we present a numerical experiment to demonstrate the practical side of
the theoretical results about superconvergence and L∞-error estimates.

We consider the following semilinear optimal control problems for the state variables
p, y, and the control u with an integral control constraint:

min
u∈Uad

n1

2
‖p − pd‖

2 +
1

2
‖y − yd‖

2 +
ν

2
‖u‖2
o

(1.1)

subject to the state equation

−div(A(x)grady) +φ(y) = Bu, x ∈ Ω, (1.2)

which can be written in the form of the first order system

divp +φ(y) = Bu, p = −A(x)grady, x ∈ Ω, (1.3)

and the boundary condition

y = 0, x ∈ ∂Ω, (1.4)

where Ω is a rectangular domain in R2. Uad denotes the admissible set of the control
variable, defined by

Uad =

�

u ∈ L∞(Ω) :

∫

Ω

ud x ≥ 0

�

. (1.5)
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B is a linear continuous operator from Uad to L2(Ω). We assume that the function φ(·) ∈
W 2,∞(−R,R) ∩ H3(−R,R) for any R > 0, φ′(y) ∈ L2(Ω) for any y ∈ H1(Ω), and φ′ ≥ 0.
Moreover, we assume that yd ∈ H1(Ω) and pd ∈ (H

2(Ω))2. ν is a fixed positive number.
The coefficient A(x) = (ai j(x)) is a symmetric matrix function with ai j(x) ∈ W 1,∞(Ω),
which satisfies the ellipticity condition

c∗|ξ|
2 ≤

2
∑

i, j=1

ai j(x)ξiξ j , ∀(ξ, x) ∈ R2× Ω̄, c∗ > 0.

The plan of this paper is as follows. In Section 2, we construct the mixed finite element
approximation scheme for the optimal control problem (1.1)-(1.4) and give its necessary
optimality conditions. The main results of this paper are stated in Section 3. In Section 3,
we derive the superconvergence properties and the L∞-error estimates for optimal control
problem. In Section 4, we will give some applications of the results obtained in Section
3. In Section 5, we obtain H−1-error estimates for both the control variable and the state
variables. In Section 6, we present a numerical example to demonstrate our theoretical
results. In the last section, we briefly summarize the results obtained and some possible
future extensions.

In this paper, we adopt the standard notation W m,p(Ω) for Sobolev spaces on Ω with a
norm ‖ · ‖m,p given by ‖v‖pm,p =

∑

|α|≤m ‖D
αv‖p

Lp(Ω)
, a semi-norm | · |m,p given by |v|pm,p =

∑

|α|=m ‖D
αv‖p

Lp(Ω)
. We set W

m,p
0 (Ω) = {v ∈ W m,p(Ω) : v|∂Ω = 0}. For p = 2, we denote

Hm(Ω) = W m,2(Ω), Hm
0 (Ω) = W

m,2
0 (Ω), and ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖ = ‖ · ‖0,2. In addition C

denotes a general positive constant independent of h, where h is the spatial mesh-size for
the control and state discretization.

2. Mixed methods for optimal control problems

In this section, we shall construct mixed finite element approximation scheme of the
control problem (1.1)-(1.4). Now, we introduce the co-state elliptic equation

−div(A(x)(gradz + p − pd)) +φ
′(y)z = y − yd , x ∈ Ω, (2.1)

which can be written in the form of the first order system

divq +φ′(y)z = y − yd , q = −A(x)(gradz + p − pd), x ∈ Ω, (2.2)

and the boundary condition

z = 0, x ∈ ∂Ω. (2.3)

By modifying the proofs of Lemma 2.1 in [7] and Lemma 3.2 in [12], using the regu-
larity argument of elliptic problems in [2,3], we can get that y, z ∈ H3(Ω).
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In this paper, we shall employ duality respect to H1(Ω) in place of H1
0(Ω); i.e., if ϕ ∈

L2(Ω), then

‖ϕ‖−1 = ‖ϕ‖−1,2 = sup
06=ψ∈H1(Ω)

(ϕ,ψ)

‖ψ‖1
.

Nothing of interest would change if the usual dual space H−1(Ω) = (H1
0(Ω))

∗ is used.
Let

V = H(div;Ω) =
�

v ∈ (L2(Ω))2, divv ∈ L2(Ω)
	

, W = L2(Ω). (2.4)

We recast (1.1)-(1.4) as the following weak form: find (p, y,u) ∈ V ×W × Uad such
that

min
u∈Uad

�

1

2
‖p − pd‖

2 +
1

2
‖y − yd‖

2 +
ν

2
‖u‖2
�

, (2.5a)

(A−1p, v)− (y, divv) = 0, ∀v ∈ V, (2.5b)

(divp, w) + (φ(y), w) = (Bu, w), ∀w ∈W. (2.5c)

If the triplet (p, y,u) is one of the solution of (2.5a)-(2.5c) then there exists a co-state
(q , z) ∈ V ×W such that (p, y,q , z,u) satisfies the following optimality conditions:

(A−1p, v)− (y, divv) = 0, ∀v ∈ V , (2.6a)

(divp , w) + (φ(y), w) = (Bu, w), ∀w ∈W, (2.6b)

(A−1q , v)− (z, divv) = −(p − pd , v), ∀v ∈ V , (2.6c)

(divq , w) + (φ′(y)z, w) = (y − yd , w), ∀w ∈W, (2.6d)

(νu+ B∗z, ũ− u) ≥ 0, ∀ũ ∈ Uad , (2.6e)

where (·, ·) is the inner product of L2(Ω) and B∗ is the adjoint operator of B.
In [10], the expression of the control variable is given. Here, we adopt the same

method to derive the following operator

u = (max{0, B∗z} − B∗z)/ν , (2.7)

where B∗z =
∫

Ω
B∗z/
∫

Ω
1 denotes the integral average on Ω of the function B∗z.

Let T h denote a uniform rectangulation of the rectangular domain Ω, hT denotes the
diameter of T and h = max hT . Let Vh ×Wh ⊂ V ×W denote the lowest order Raviart-
Thomas mixed finite element space [22], namely,

Vh :=
�

vh ∈ V : ∀T ∈ Th, vh|T ∈Q1,0(T )×Q0,1(T )
	

, (2.8a)

Wh :=
�

wh ∈W : ∀T ∈ Th, wh|T ∈ Q0,0(T )
	

, (2.8b)

where Qm,n(T ) indicates the space of polynomials of degree no more than m and n in x

and y on T , respectively.
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And the approximated space of control is given by

Uh :=
�

ũh ∈ Uad : ∀T ∈ Th, ũh|T = constant
	

. (2.9)

Before the mixed finite element scheme is given, we introduce two operators. Firstly,
we define the standard L2(Ω)-projection [13] Ph : W →Wh, which satisfies: for any φ ∈W

(Phφ −φ, wh) = 0, ∀wh ∈Wh, (2.10a)

‖φ − Phφ‖−r ≤ Ch1+r‖φ‖1, r = 0,1, ∀φ ∈ H1(Ω), (2.10b)

‖φ − Phφ‖0,ρ ≤ Ch‖φ‖1,ρ , 2≤ ρ ≤∞, ∀φ ∈W 1,ρ(Ω). (2.10c)

Next, recall the Fortin projection (see [1] and [13]) Πh : V → Vh, which satisfies: for
any q ∈ V

(div(Πhq − q), wh) = 0, ∀wh ∈Wh, (2.11a)

‖q −Πhq‖0,ρ ≤ Ch‖q‖1,ρ , 2≤ ρ ≤∞, ∀q ∈ (W 1,ρ(Ω))2, (2.11b)

‖div(q −Πhq)‖−r ≤ Ch1+r‖divq‖1, r = 0,1, ∀divq ∈ H1(Ω). (2.11c)

We have the commuting diagram property

div ◦Πh = Ph ◦ div : V →Wh and div(I −Πh)V ⊥Wh,

where and after, I denotes the identity operator.
We assume that

‖vh‖0,∞ ≤ Ch−1‖vh‖, ∀vh ∈ Vh, (2.12a)

‖wh‖0,∞ ≤ Ch−1‖wh‖, ∀wh ∈Wh. (2.12b)

Then the mixed finite element discretization of (2.5a)-(2.5c) is as follows: find the
triplet (ph, yh,uh) ∈ Vh×Wh× Uh such that

min
uh∈Uh

�

1

2
‖ph− pd‖

2 +
1

2
‖yh− yd‖

2 +
ν

2
‖uh‖

2

�

, (2.13a)

(A−1ph, vh)− (yh, divvh) = 0, ∀vh ∈ Vh, (2.13b)

(divph, wh) + (φ(yh), wh) = (Buh, wh), ∀wh ∈Wh. (2.13c)

Similarly, if the triplet (ph, yh,uh) is one of the solution of (2.13a)-(2.13c) then there exists
a co-state (qh, zh) ∈ Vh×Wh such that (ph, yh,qh, zh,uh) satisfies the following optimality
conditions:

(A−1ph, vh)− (yh, divvh) = 0, ∀vh ∈ Vh, (2.14a)

(divph, wh) + (φ(yh), wh) = (Buh, wh), ∀wh ∈Wh, (2.14b)

(A−1qh, vh)− (zh, divvh) = −(ph− pd , vh), ∀vh ∈ Vh, (2.14c)

(divqh, wh) + (φ
′(yh)zh, wh) = (yh− yd , wh), ∀wh ∈Wh, (2.14d)

(νuh+ B∗zh, ũh− uh)≥ 0, ∀ũh ∈ Uh. (2.14e)
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In the rest of the paper, we shall use some intermediate variables. For any control
function ũ ∈ Uad , we first define the state solution (p(ũ), y(ũ),q(ũ), z(ũ))∈ (V × W )2

associated with ũ that satisfies

(A−1p(ũ), v)− (y(ũ), divv) = 0, ∀v ∈ V , (2.15a)

(divp(ũ), w) + (φ(y(ũ)), w) = (Bũ, w), ∀w ∈W, (2.15b)

(A−1q(ũ), v)− (z(ũ), divv) = −(p(ũ)− pd , v), ∀v ∈ V , (2.15c)

(divq(ũ), w) + (φ′(y(ũ))z(ũ), w) = (y(ũ)− yd , w), ∀w ∈W. (2.15d)

Then, we define the discrete state solution (ph(ũ), yh(ũ),qh(ũ), zh(ũ)) ∈ (Vh ×Wh)
2

associated with ũ that satisfies

(A−1ph(ũ), vh)− (yh(ũ), divvh) = 0, ∀vh ∈ Vh, (2.16a)

(divph(ũ), wh) + (φ(yh(ũ)), wh) = (Bũ, wh), ∀wh ∈Wh, (2.16b)

(A−1qh(ũ), vh)− (zh(ũ), divvh) = −(ph(ũ)− pd , vh), ∀vh ∈ Vh, (2.16c)

(divqh(ũ), wh) + (φ
′(yh(ũ))zh(ũ), wh) = (yh(ũ)− yd , wh), ∀wh ∈Wh. (2.16d)

Thus, as we defined, the exact solution and its approximation can be written in the
following way:

(p, y,q , z) = (p(u), y(u),q(u), z(u)),

(ph, yh,qh, zh) = (ph(uh), yh(uh),qh(uh), zh(uh)).

3. Superconvergence and L∞-error estimates

In this section, we will derive superconvergence and L∞-error estimates for the optimal
control problem. In the rest of this paper, we assume that B = a(x) ∈W 1,∞(Ω).

By modifying the proof of Lemma 4.2 in [8], we derive the following superconvergence
results for the intermediate solutions which are very important for our following work.

Lemma 3.1. Let (p, y,q , z) ∈ (V×W )2 and (ph(u), yh(u),qh(u), zh(u)) ∈ (Vh×Wh)
2 be the

solutions of (2.15a)-(2.15d) and (2.16a)-(2.16d) with ũ= u respectively. Assume that

p, q ∈ (H2(Ω))2, y, z ∈W 1,∞(Ω),

then we have

‖Ph y − yh(u)‖ ≤ Ch2, (3.1a)

‖Phz − zh(u)‖ ≤ Ch2. (3.1b)

Let (ph(Phu), yh(Phu),qh(Phu), zh(Phu)) and (ph(u), yh(u),qh(u), zh(u)) be the solutions
of (2.16a)-(2.16d) with ũ = Phu and ũ = u, respectively. We can get the following error
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equations

(A−1(ph(Phu)− ph(u)), vh)− (yh(Phu)− yh(u), divvh) = 0, (3.2a)

(div(ph(Phu)− ph(u)), wh) + (φ(yh(Phu))−φ(yh(u)), wh)

= ((a− Pha)(Phu− u), wh), (3.2b)

(A−1(qh(Phu)− qh(u)), vh)− (zh(Phu)− zh(u), divvh)

= −(ph(Phu)− ph(u), vh), (3.2c)

(div(qh(Phu)− qh(u)), wh) + (φ
′(yh(Phu))zh(Phu)−φ′(yh(u))zh(u), wh)

= (yh(Phu)− yh(u), wh), (3.2d)

for any vh ∈ Vh and wh ∈Wh.

Lemma 3.2. Let (ph(Phu), yh(Phu),qh(Phu), zh(Phu)) and (ph(u), yh(u),qh(u), zh(u)) be the

solutions of (2.16a)-(2.16d) with ũ = Phu and ũ = u, respectively. Assume that u ∈ H1(Ω)

and all the conditions in Lemma 3.1 are valid, then we have

‖yh(u)− yh(Phu)‖+ ‖ph(u)− ph(Phu)‖ ≤ Ch2, (3.3a)

‖zh(u)− zh(Phu)‖+ ‖qh(u)− qh(Phu)‖ ≤ Ch2. (3.3b)

Proof. Note that

((a− Pha)(Phu− u), wh)≤ Ch2‖a‖1,∞‖u‖1‖wh‖, ∀wh ∈Wh. (3.4)

Then, it follows from (3.2a)-(3.2b), (3.4), the assumptions on A and φ, and the standard
stability estimate that

‖yh(u)− yh(Phu)‖+ ‖ph(u)− ph(Phu)‖ ≤ Ch2‖a‖1,∞‖u‖1. (3.5)

Now, we rewrite (3.2d) as

(div(qh(Phu)− qh(u)), wh) + (φ
′(yh(Phu))(zh(Phu)− zh(u)), wh)

=((φ′(yh(u))−φ
′(yh(Phu)))zh(u), wh) + (yh(Phu)− yh(u), wh). (3.6)

For the first term on the right-hand side of (3.6), we have

((φ′(yh(u))−φ
′(yh(Phu)))zh(u), wh)

≤C‖φ‖2,∞‖yh(u)− yh(Phu)‖ · ‖zh(u)‖0,∞‖wh‖

≤C‖φ‖2,∞(‖z‖0,∞ + ‖z − Phz‖0,∞ + ‖Phz − zh(u)‖0,∞)‖yh(u)− yh(Phu)‖ · ‖wh‖

≤C‖φ‖2,∞(‖z‖0,∞ + h−1‖Phz − zh(u)‖)‖yh(u)− yh(Phu)‖ · ‖wh‖. (3.7)

It follows from (3.1b), (3.2c), (3.5)-(3.7), the assumptions on A and φ, and the standard
stability estimate that

‖zh(u)− zh(Phu)‖+ ‖qh(u)− qh(Phu)‖

≤C(‖yh(u)− yh(Phu)‖+ ‖ph(u)− ph(Phu)‖) + Ch−1‖Phz − zh(u)‖ · ‖yh(u)− yh(Phu)‖

≤Ch2. (3.8)
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Thus, we complete the proof. �

By modifying the proof of Theorem 4.1 in [20], we derive the following L∞-error
estimate for the control variable.

Theorem 3.1. Let (p, y,q , z,u) ∈ (V×W )2×Uad and (ph, yh,qh, zh,uh) ∈ (Vh×Wh)
2×Uh be

the solutions of (2.6a)-(2.6e) and (2.14a)-(2.14e) respectively. Assume that p,q ∈ (H2(Ω))2

and u ∈W 1,∞(Ω), then we have

‖u− uh‖0,∞ ≤ Ch. (3.9)

We assume that we have a sequence of functional Jh(·) : L2(Ω)→ R:

Jh(u) =
1

2
‖ph(u)− pd‖

2 +
1

2
‖yh(u)− yd‖

2 +
ν

2
‖u‖2. (3.10)

It is can be shown that

(J ′h(u), v) = (νu+ B∗zh(u), v), (3.11a)

(J ′
h
(uh), v) = (νuh+ B∗zh, v), (3.11b)

(J ′h(Phu), v) = (νPhu+ B∗zh(Phu), v). (3.11c)

In many applications, Jh(u) is local convex near the optimal solution u. The local
convexity of Jh(·) is closely related to the second order sufficient conditions of the control
problem, which are assumed in many studies on numerical methods of the problem. Then,
there exists a constant c > 0, independent of sufficiently small h, such that

(J ′h(Phu)− J ′h(uh), Phu− uh)≥ c‖Phu− uh‖
2, (3.12)

where u and uh are solutions of (2.6a)-(2.6e) and (2.14a)-(2.14e) respectively, Phu is the
orthogonal projection of u which is defined in (2.10a).

Theorem 3.2. Let u be the solution of (2.6a)-(2.6e) and uh be the solution of (2.14a)-
(2.14e), respectively. Assume that all the conditions in Lemmas 3.1 and 3.2 are valid. Then,

we have

‖Phu− uh‖ ≤ Ch2. (3.13)

Proof. We choose ũ = uh in (2.6e) and ũh = Phu in (2.14e) to get the following two
inequalities:

(νu+ B∗z,uh− u)≥ 0 (3.14)

and

(νuh+ B∗zh, Phu− uh)≥ 0. (3.15)
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Note that uh− u = uh− Phu+ Phu− u. Adding the two inequalities (3.14) and (3.15),
we have

(νuh+ B∗zh− νu− B∗z, Phu− uh) + (νu+ B∗z, Phu− u)≥ 0. (3.16)

Thus, by (3.12) and (3.16), we find that

c‖Phu− uh‖
2 ≤(J ′h(Phu)− J ′h(uh), Phu− uh)

=ν(Phu− uh, Phu− uh) + (B
∗zh(Phu)− B∗zh, Phu− uh)

=ν(Phu− u, Phu− uh) + ν(u− uh, Phu− uh)

+ (B∗zh(Phu)− B∗zh, Phu− uh)

≤(B∗zh− B∗z, Phu− uh) + (νu+ B∗z, Phu− u)

+ (B∗zh(Phu)− B∗zh, Phu− uh)

=(B∗zh(Phu)− B∗zh(u), Phu− uh) + (B
∗zh(u)− B∗Phz, Phu− uh)

+ (B∗Phz − B∗z, Phu− uh) + (νu+ B∗z, Phu− u). (3.17)

By Lemma 3.1 and Lemma 3.2, we find that

(B∗zh(u)− B∗Phz, Phu− uh)≤ Ch4 +
c

4
‖Phu− uh‖

2 (3.18)

and

(B∗zh(Phu)− B∗zh(u), Phu− uh)≤ Ch4 +
c

4
‖Phu− uh‖

2. (3.19)

For the third term on the right-hand side of (3.17), we have

(B∗Phz − B∗z, Phu− uh) =((a− Pha)(Phz − z), Phu− uh)

≤Ch4‖a‖21,∞‖z‖
2
1 +

c

4
‖Phu− uh‖

2. (3.20)

From (2.7), we know that

νu+ B∗z =max{0, B∗z} = const. (3.21)

Thus, we have

(νu+ B∗z, Phu− u) = (νu+ B∗z)

∫

Ω

(Phu− u) = 0. (3.22)

Combining (3.17)-(3.20) with (3.22), we derive (3.13). �

From Eqs. (2.6a)-(2.6d) and (2.14a)-(2.14d), using (2.10a) and (2.11a), we can easily
obtain the following error equations

(A−1(Πhp − ph), vh)− (Ph y − yh, divvh) = −(A
−1(p −Πhp), vh), (3.23a)

(div(Πhp − ph), wh) = −(φ(y)−φ(yh), wh) + (a(u− uh), wh), (3.23b)

(A−1(Πhq − qh), vh)− (Phz − zh, divvh)

= −(A−1(q −Πhq), vh)− (p −Πhp, vh)− (Πhp − ph, vh), (3.23c)

(div(Πhq − qh), wh) = (φ
′(yh)zh−φ

′(y)z, wh) + (Ph y − yh, wh), (3.23d)
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for any vh ∈ Vh and wh ∈Wh.
Similar to Lemma 3.1, we can obtain

Theorem 3.3. Let (y, z) and (yh, zh) be the solutions of (2.6a)-(2.6e) and (2.14a)-(2.14e)
respectively. Assume that all the conditions in Lemmas 3.1 and 3.2 are valid, then we have

‖Ph y − yh‖+ ‖Phz − zh‖ ≤ Ch2. (3.24)

Now, we can derive the following superconvergence properties for vector-valued func-
tions.

Theorem 3.4. Let (p,q) and (ph,qh) be the solutions of (2.6a)-(2.6e) and (2.14a)-(2.14e)
respectively. Assume that p, q ∈ (H2(Ω))2, y, z ∈W 1,∞(Ω) and u ∈ H1(Ω), then we have

‖Πhp − ph‖+ ‖Πhq − qh‖ ≤ Ch
3
2 . (3.25)

Proof. Choosing vh = Πhp − ph in (3.23a) and wh = Ph y − yh in (3.23b), respectively.
Then adding the two equations to get

(A−1(Πhp − ph),Πhp − ph) =− (A
−1(p −Πhp),Πhp − ph)− (φ(y)−φ(yh), Ph y − yh)

+ (a(u− uh), Ph y − yh). (3.26)

By applying the proof of Theorems 4.1, 5.1 and Example 6.2 in [14], we can prove

(A−1(p −Πhp),Πhp − ph)≤ Ch
3
2 (‖p‖2‖Πhp − ph‖+ ‖p‖1‖div(Πhp − ph)‖). (3.27)

Using (2.10a) and (2.10c), for some function ỹ , we get

(φ(y)−φ(yh), Ph y − yh) = (φ
′( ỹ)(y − yh), Ph y − yh)

=((φ′( ỹ)− Ph(φ
′( ỹ)))(y − Ph y), Ph y − yh) + (φ

′( ỹ)(Ph y − yh), Ph y − yh)

≤Ch2‖φ‖2,∞‖y‖1‖Ph y − yh‖+ C‖φ‖1,∞‖Ph y − yh‖
2. (3.28)

Moreover,

(a(u− uh), Ph y − yh) =(a(u− Phu), Ph y − yh) + (a(Phu− uh), Ph y − yh)

=((a− Pha)(u− Phu), Ph y − yh) + (a(Phu− uh), Ph y − yh)

≤C(h2‖a‖1,∞‖u‖1 + ‖a‖0,∞‖Phu− uh‖)‖Ph y − yh‖. (3.29)

Using (3.26)-(3.29), Theorems 3.2 and 3.3 and the standard stability estimate, we find
that

‖Πhp − ph‖ ≤ Ch
3
2 . (3.30)

Choosing vh = Πhq−qh in (3.23c) and wh = Phz−zh in (3.23d), respectively. Then adding
the two equations to get

(A−1(Πhq − qh),Πhq − qh) =− (A
−1(q −Πhq),Πhq − qh)− (p −Πhp,Πhq − qh)

− (Πhp − ph,Πhq − qh)+ (Ph y − yh, Phz − zh)

+ (φ′(yh)zh−φ
′(y)z, Phz − zh). (3.31)
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Similar to (3.27), we have

(A−1(q −Πhq),Πhq − qh)≤ Ch
3
2 (‖q‖2‖Πhq − qh‖+ ‖q‖1‖div(Πhq − qh)‖) (3.32)

and

(p −Πhp,Πhq − qh)≤ Ch
3
2 (‖p‖2‖Πhq − qh‖+ ‖p‖1‖div(Πhq − qh)‖). (3.33)

From (3.30) and Theorem 3.3, we can see that

(Πhp − ph,Πhq − qh)≤ Ch
3
2 ‖Πhq − qh‖ (3.34)

and

(Ph y − yh, Phz − zh)≤ Ch2‖Phz − zh‖. (3.35)

Finally, for the last term on the right-hand side of (3.31), using (2.10a), (2.10c), (3.24)
and the inverse inequality, we have

(φ′(yh)zh−φ
′(y)z, Phz − zh)

=(φ′(yh)zh−φ
′(y)zh, Phz − zh) + (φ

′(y)zh−φ
′(y)z, Phz − zh)

=((φ′(yh)−φ
′(y))(zh− z), Phz − zh) + ((φ

′(yh)−φ
′(y))z, Phz − zh)

+ (φ′(y)(zh− Phz), Phz − zh) + (φ
′(y)(Phz − z), Phz − zh)

=((φ′(yh)−φ
′(y))(zh− Phz), Phz − zh) + ((φ

′(yh)−φ
′(y))(Phz − z), Phz − zh)

+ ((φ′(yh)−φ
′(Ph y))z, Phz − zh) + ((φ

′(y)− Ph(φ
′(y)))(Phz − z), Phz − zh)

+ ((φ′(Ph y)−φ′(y))z, Phz − zh) + (φ
′(y)(zh− Phz), Phz − zh)

≤C‖φ‖2,∞(‖y − Ph y‖+ ‖Ph y − yh‖)‖zh− Phz‖0,∞‖Phz − zh‖

+ Ch‖φ‖2,∞(‖y − Ph y‖+ ‖Ph y − yh‖)‖z‖1,∞‖Phz − zh‖

+ C‖φ‖2,∞‖z‖0,∞‖Ph y − yh‖ · ‖Phz − zh‖+ Ch2‖φ‖2‖z‖1,∞‖Phz − zh‖

+ C‖φ‖1,∞‖Phz − zh‖
2 + ((φ′(Ph y)−φ′(y))z, Phz − zh)

≤Ch2‖Phz − zh‖+ ((φ
′(Ph y)−φ′(y))z, Phz − zh). (3.36)

For some ŷ, we have

φ′(Ph y)−φ′(y) = φ′′( ŷ)(Ph y − y). (3.37)

Thus, we can get

((φ′(Ph y)−φ′(y))z, Phz − zh) =(zφ
′′( ŷ)(Ph y − y), Phz − zh)

=((zφ′′( ŷ)− Ph(zφ
′′( ŷ)))(Ph y − y), Phz − zh)

≤Ch2‖zφ′′( ŷ)‖1‖y‖1,∞‖Phz − zh‖

≤Ch2‖φ‖3‖z‖1,∞‖y‖1,∞‖Phz − zh‖. (3.38)
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Substituting (3.38) into (3.36), we get

(φ′(yh)zh−φ
′(y)z, Phz − zh)≤ Ch2‖Phz − zh‖. (3.39)

Using (3.31)-(3.35), (3.39), Theorem 3.3 and the standard stability estimate, we find that

‖Πhq − qh‖ ≤ Ch
3
2 . (3.40)

Thus, we complete the proof. �

Now, combining (2.10c), (2.11b), Theorem 3.3, Theorem 3.4 with the inverse inequal-
ity, we give the following L∞-error estimates for the state variables.

Theorem 3.5. Let (p, y,q , z,u) ∈ (V ×W )2 × Uad and (ph, yh,qh, zh,uh) ∈ (Vh ×Wh)
2 ×

Uh be the solutions of (2.6a)-(2.6e) and (2.14a)-(2.14e) respectively. Assume that p ,q ∈
(H2(Ω))2 ∩ (W 1,∞(Ω))2 and y, z ∈W 1,∞(Ω), then we have

‖y − yh‖0,∞ + ‖z − zh‖0,∞ ≤ Ch, (3.41a)

‖p − ph‖0,∞ + ‖q − qh‖0,∞ ≤ Ch
1
2 . (3.41b)

4. Application

In this paper, some applications of the results derived in Section 3 will be presented.
First, we will apply a higher order interpolation postprocessing method presented by

Lin and Yan [16] to obtain global superconvergence for the mixed finite element approxi-
mations. We first construct a larger rectangular elements partition T2h, which is the coarse
meshes of Th. That is, each element τ of T2h of composed of four neighboring rectangular
elements of Th. Based on this coarse meshes, we denote V2h ×W2h to express the order
k = 1 Raviart-Thomas mixed finite element spaces:

V2h :=
�

v ∈ V : ∀τ ∈ T2h, v |τ ∈Q2,1(τ)×Q1,2(τ)
	

, (4.1a)

W2h :=
�

w ∈W : ∀τ ∈ T2h, w|τ ∈Q1,1(τ)
	

, (4.1b)

and the related Raviart-Thomas projection (see [13] and [22]):

Π2h× P2h : V ×W → V2h×W2h,

which satisfies the following properties [16]:

P2hPh = P2h and ‖P2hwh‖ ≤ C‖wh‖, for all wh ∈Wh. (4.2a)

Π2hΠh = Π2h and ‖Π2hvh‖ ≤ C‖vh‖, for all vh ∈ Vh. (4.2b)

By using the interpolation operators Π2h and P2h and their properties, we immediately
obtain the following global superconvergence theorem.
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Theorem 4.1. Let (y, p , z,q) and (yh, ph, zh,qh) be the solutions of (2.6a)-(2.6e) and

(2.14a)-(2.14e), respectively. Assume that all the conditions in Theorems 3.2-3.5 are valid.

Then we have

‖y − P2h yh‖+ ‖z − P2hzh‖ ≤ Ch2, (4.3a)

‖p −Π2hph‖+ ‖q −Π2hqh‖ ≤ Ch
3
2 . (4.3b)

Proof. From the property (4.2a) of the operator P2h, we get

y − P2h yh = y − P2h y + P2h(Ph y − yh).

Thus, by the approximation property, the property (4.2a) of the operator P2h, and Theorem
3.3 that

‖y − P2h yh‖ ≤ ‖y − P2h y‖+ C‖Ph y − yh‖ ≤ Ch2.

Similarly, we can estimate other terms of Theorem 4.1. �

Secondly, let us construct the recovery operator Gh. Let Ghv be a continuous piecewise
linear function (without zero boundary constraint). The value of Ghv on the nodes are de-
fined by least-squares argument on an element patches surrounding the nodes, the details
can be refer to the definition of Rh in [17].

Theorem 4.2. Let u and uh be the solutions of (2.6a)-(2.6e) and (2.14a)-(2.14e), respec-

tively. Assume that all the conditions in Theorem 3.2 are valid and u ∈ H2(Ω). Then we

have

‖u− Ghuh‖ ≤ Ch2. (4.4)

Proof. Let Phu be defined in (2.10a). Then

‖u− Ghuh‖ ≤‖u− Ghu‖+ ‖Ghu− GhPhu‖+ ‖GhPhu− Ghuh‖. (4.5)

It can be proved by the standard technique (see, e.g., [11]) that

‖u− Ghu‖ ≤ Ch2‖u‖2. (4.6)

Using the definition of Gh, we find that

Ghu = GhPhu (4.7)

and

‖GhPhu− Ghuh‖ ≤ C‖Phu− uh‖. (4.8)

Combining (4.5)-(4.8) with Theorem 3.2, we complete the proof. �
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5. H−1-error estimates

In this section, we will obtain H−1-error estimates for the optimal control problem.
First, we can derive the H−1-error estimates for the scalar functions.

Theorem 5.1. Let (y, z,u) and (yh, zh,uh) be the solutions of (2.6a)-(2.6e) and (2.14a)-
(2.14e) respectively. Assume that all the conditions in Theorem 3.5 are valid. Then we have

‖u− uh‖−1 ≤ Ch2, (5.1a)

‖y − yh‖−1 + ‖z − zh‖−1 ≤ Ch2. (5.1b)

Proof. Using (2.10b) and Theorem 3.2, it is easy to see that

‖u− uh‖−1 ≤‖u− Phu‖−1 + ‖Phu− uh‖−1

≤Ch2‖u‖1 + C‖Phu− uh‖

≤Ch2. (5.2)

Similarly, we can derive (5.1b). Thus, we complete the proof. �

Next, we consider the H−1-error estimates for the divergence of the vector-valued func-
tions.

Theorem 5.2. Let (p,q) and (ph,qh) be the solutions of (2.6a)-(2.6e) and (2.13b)-(2.14c),
respectively. Assume that all the conditions in Theorem 5.1 are valid. Then we have

‖div(p − ph)‖−1+ ‖div(q − qh)‖−1 ≤ Ch2. (5.3)

Proof. It follows from (3.23a)-(3.23d), (2.10c), (2.11b)-(2.11c) and the standard sta-
bility estimate that

‖y − yh‖+ ‖p − ph‖div ≤ Ch, (5.4a)

‖z − zh‖+ ‖q − qh‖div ≤ Ch. (5.4b)

Let ϕ ∈ H1(Ω). Then, by (3.23b), (2.10a) and (2.10c),

(div(p − ph),ϕ) =(div(p − ph), Phϕ) + (div(p − ph),ϕ− Phϕ)

=(a(u− uh), Phϕ)− (φ(y)−φ(yh), Phϕ) + (div(p − ph),ϕ− Phϕ)

=((a− Pha)(u− Phu), Phϕ) + (a(Phu− uh), Phϕ)

− ((φ′( ỹ)− Ph(φ
′( ỹ)))(y − Ph y), Phϕ)

− (φ(Ph y)−φ(yh), Phϕ) + (div(p − ph),ϕ− Phϕ)

≤Ch2‖a‖1,∞‖u‖1‖Phϕ‖+ C‖a‖0,∞‖Phu− uh‖ · ‖Phϕ‖

+ Ch2‖φ‖2,∞‖y‖1‖Phϕ‖+ C‖φ‖1,∞‖Ph y − yh‖ · ‖Phϕ‖

+ Ch‖div(p − ph)‖ · ‖ϕ‖1. (5.5)
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Using (5.4a)-(5.5) and Theorems 3.2 and 3.3, we find that

‖div(p − ph)‖−1 ≤ Ch2. (5.6)

Similarly, by (3.23d) and (2.10c),

(div(q − qh),ϕ) =(div(q − qh), Phϕ) + (div(q − qh),ϕ− Phϕ)

=(Ph y − yh, Phϕ) + (φ
′(yh)zh−φ

′(y)z, Phϕ) + (div(q − qh),ϕ− Phϕ)

=(Ph y − yh, Phϕ) + (φ
′(yh)(zh− z), Phϕ−ϕ)

+ ((φ′(yh)−φ
′(y))z, Phϕ−ϕ) + (φ

′(yh)(zh− z),ϕ)

+ (φ′(yh)−φ
′(Ph y), zϕ) + (φ′(Ph y)−φ′(y), zϕ − Ph(zϕ))

+ (φ′(Ph y)−φ′(y), Ph(zϕ)) + (div(q − qh),ϕ− Phϕ)

≤C‖Ph y − yh‖ · ‖Phϕ‖+ Ch‖φ‖1,∞‖z − zh‖ · ‖ϕ‖1
+ Ch‖φ‖2,∞‖z‖0,∞‖y − yh‖ · ‖ϕ‖1 + C‖z − zh‖−1‖φ‖2,∞‖ϕ‖1

+ C‖φ‖2,∞‖yh− Ph y‖ · ‖z‖0,∞‖ϕ‖+ Ch2‖φ‖2,∞‖y‖1‖z‖1,∞‖ϕ‖1

+ Ch2‖φ‖3‖y‖1,∞‖z‖0,∞‖ϕ‖+ Ch‖div(q − qh)‖ · ‖ϕ‖1. (5.7)

It follows from (5.1b), (5.4a)-(5.4b), (5.7) and Theorem 3.3 that

‖div(q − qh)‖−1 ≤ Ch2. (5.8)

Combining (5.6) and (5.8), we complete the proof. �

Finally, we consider the H−1-error estimates for the vector-valued functions.

Theorem 5.3. Assume that all the conditions in Theorem 3.5 are valid. Let (p,q) and

(ph,qh) be the solutions of (2.6a)-(2.6e) and (2.14a)-(2.14e), respectively. Then we have

‖p − ph‖−1 + ‖q − qh‖−1 ≤ Ch2. (5.9)

Proof. Forψ ∈ (H1(Ω))2, let ϕ ∈ H2(Ω)∩H1
0(Ω) be the solution of the Dirichlet problem

− div(A∇ϕ) = divψ, x ∈ Ω, (5.10a)

ϕ = 0, x ∈ ∂Ω. (5.10b)

Then,

‖ϕ‖2 ≤ C‖divψ‖ ≤ C‖ψ‖1. (5.11)

Furthermore, ψ = −A∇ϕ+ θ , where divθ = 0 and

‖θ‖1 ≤ C‖ψ‖1. (5.12)

Now,

(A−1(q − qh),ψ) =− (A
−1(q − qh),A∇ϕ) + (A

−1(q − qh),θ )

=(div(q − qh),ϕ) + (A
−1(q − qh),θ ). (5.13)
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Using (5.8) and (5.11), we have

(div(q − qh),ϕ)≤ C‖div(q − qh)‖−1‖ϕ‖1 ≤ Ch2‖ψ‖1. (5.14)

Then, since divθ = 0 and by (3.23c), (2.11b) and (5.4a)-(5.4b)

(A−1(q − qh),θ ) =(A
−1(q − qh),Πhθ ) + (A

−1(q − qh),θ −Πhθ )

=(Phz − zh, divΠhθ )− (p − ph,Πhθ ) + (A
−1(q − qh),θ −Πhθ )

=(Phz − zh, divθ )− (p − ph,Πhθ − θ )

− (p − ph,θ ) + (A−1(q − qh),θ −Πhθ )

≤Ch(‖p − ph‖+ ‖q − qh‖)‖θ‖1 + C‖p − ph‖−1‖θ‖1
≤C(h2+ ‖p − ph‖−1)‖θ‖1. (5.15)

Using (5.15), we conclude that

‖q − qh‖−1 ≤ C(h2+ ‖p − ph‖−1). (5.16)

Similarly, we can prove

‖p − ph‖−1 ≤ Ch2. (5.17)

Thus, we complete the proof. �

6. Numerical experiments

In this section, we present below an example to illustrate the theoretical results. The
optimization problems were solved numerically by projected gradient methods, with codes
developed based on AFEPack [15]. The discretization was already described in previous
sections: the control function u was discretized by piecewise constant functions, whereas
the state (y, p) and the co-state (z,q) were approximated by the lowest order Raviart-
Thomas mixed finite element functions. In the following example, we choose the domain
Ω = [0,1]× [0,1], ν = 1 and A= I and B = I .

Example 6.1. We consider the following two-dimensional elliptic optimal control problem

min
u∈Uad

�

1

2
‖p − pd‖

2 +
1

2
‖y − yd‖

2 +
1

2
‖u‖2
�

(6.1)

subject to the state equation

divp + y3 = f + u, p = −grady, (6.2)

where

y = sin(πx1) sin(πx2), z = sin(2πx1) sin(2πx2), (6.3a)

u=max(0, z̄)− z, f = 2π2 y + y3 − u, (6.3b)

yd = y − 8π2z − 3y2z, pd = −

�

π cos(πx1) sin(πx2)

π sin(πx1) cos(πx2)

�

. (6.3c)



Mixed Methods for Optimal Control Problems 653Table 1: The errors of ‖u− uh‖, ‖u− uh‖0,∞, ‖Phu− uh‖ and ‖u− Ghuh‖.
Resolution ‖u− uh‖ ‖u− uh‖0,∞ ‖Phu− uh‖ ‖u− Ghuh‖

16× 16 6.52138e-02 1.80716e-01 3.18016e-03 4.97599e-02

32× 32 3.27741e-02 9.07962e-02 8.01988e-04 1.24764e-02

64× 64 1.63034e-02 4.57632e-02 2.00159e-04 3.11442e-03

128× 128 8.24428e-03 2.29653e-02 5.06837e-05 8.07687e-04Table 2: The errors of ‖y − yh‖0,∞, ‖z− zh‖0,∞, ‖p − ph‖0,∞ and ‖q − qh‖0,∞.
Resolution ‖y − yh‖0,∞ ‖z − zh‖0,∞ ‖p − ph‖0,∞ ‖q − qh‖0,∞

16× 16 9.07822e-02 1.80955e-01 2.69974e-01 1.05850e+00

32× 32 4.49827e-02 9.08409e-02 1.92094e-01 7.57435e-01

64× 64 2.25492e-02 4.57749e-02 1.35471e-01 5.31751e-01

128× 128 1.14949e-02 2.30624e-02 9.68302e-02 3.79788e-01

In the numerical implementation, we choose the solution u which satisfies
∫

Ω
ud x = 0.

In Table 1, the errors ‖u − uh‖, ‖u − uh‖0,∞, ‖Phu − uh‖ and ‖u − Ghuh‖ obtained on a
sequence of uniformly refined meshes are shown. Table 2 displays the errors ‖y − yh‖0,∞,
‖z−zh‖0,∞, ‖p−ph‖0,∞ and ‖q−qh‖0,∞. In Fig. 1, the profile of the numerical solution of
u on the 64×64 mesh grid is plotted. Moreover, in Figs. 2 and 3, we show the convergence
orders by slopes. Theoretical results are clearly recognized from the data.

0
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1
−1

−0.5

0

0.5

1

Figure 1: The pro�le of the numerial solution of u on 64× 64 mesh.
7. Conclusions

In this paper, we discussed the lowest order Raviart-Thomas mixed finite element meth-
ods for the semilinear elliptic optimal control problem (1.1)-(1.4). We have derived some
superconvergence results of the mixed finite element methods for the control problem.
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Figure 3: Convergene orders of y − yh, z − zh, p − ph and q − qh in L∞-norm.
Moreover, we derive L∞- and H−1-error estimates both for the control variable and the
state variables. We also give some applications of the superconvergence results. In our
future work, we will investigate the superconvergence of mixed finite element methods for
optimal control problems governed by nonlinear parabolic equations.
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