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Abstract. In this paper, a new discontinuous Galerkin method is developed for the
parabolic equation with jump coefficients satisfying the continuous flow condition. The-
oretical analysis shows that this method is L2 stable. When the finite element space con-
sists of interpolative polynomials of degrees k, the convergent rate of the semi-discrete
discontinuous Galerkin scheme has an order of O (hk). Numerical examples for both 1-
dimensional and 2-dimensional problems demonstrate the validity of the new method.
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1. Introduction

The parabolic equations with discontinuous coefficients play a great role in many phys-
ical applications. For example, in the numerical simulation of radiation hydrodynamics,
since energy is usually transported in a variety of media, the conductivity coefficients are
discontinuous on the media interface. Sometimes the conductivity coefficients are with
several quantity differences. Therefore, it is of great theoretical significance and practi-
cal value to study the numerical methods with high order accuracy [1]. There have been
some works for solving parabolic problems with discontinuous coefficients by finite differ-
ence methods, finite volume methods, and finite element methods. Samarskii [2] studied
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the classical θ -scheme. Shashkov [3] developed support-operators method to solve diffu-
sion equations with rough coefficients. Zhu et al. [4] presented explicit/implicit schemes.
Sinha et al. [5] studied the error estimates of finite element method. Huang and Li [6]
gave the immersed methods combined with finite difference method and Ewing et al. [7]
and Li et al. [8] combined immersed methods with finite element approximations to obtain
the numerical solution of the interface problem. The Discontinuous Galerkin (DG) method
was first introduced by Reed and Hill [9] for solving neutron transport problems. A major
development of the DG method was carried out by Cockburn and Shu [10–13] for solving
hyperbolic conservation laws. It now becomes an active research area for solving hyper-
bolic, elliptic and parabolic equations. The DG method uses a completely discontinuous
piecewise polynomial as the solution and test function space, and it has the good proper-
ties: local conservation on each element, suitability for hp-adaptive implementation; easily
treating rough coefficient problems and effectively capturing discontinuities. For time-
dependent convection diffusion problems, DG methods provide substantial computational
advantages if explicit time integrations are used. Motivated by the successful realization
in solving hyperbolic equations, the DG method is applied to solve equations with high
order derivatives and developed as the local discontinuous Galerkin (LDG) method [14],
the DG method based on dGRP flux (diffusive generalized Riemann problem) [15,16], and
direct discontinuous Galerkin (DDG) method [17, 18]. In recent years, the DG methods
have been applied to solve the elliptic equations and advection-diffusion equations with
discontinuous coefficients. Ern et al. [19–21] developed a (symmetric) weighted interior
penalty (WIP) method which replaces the arithmetic mean with suitably weighted aver-
ages where the weights depend on the coefficients of the problem. Cai et al. [22] proposed
three different weight averages and established a priori and a posteriori error estimates.

The present paper based on the continuous flow condition constructs a new discontin-
uous Galerkin method which satisfies the consistent numerical flux. The new DG method
needs not introduce auxiliary variables and has high efficiency compared with the LDG
method. In meantime, the new DG method can ensure high accuracy and stability and
sharply capture the contacts with discontinuous derivatives.

The paper is organized as follows. In Section 2, we construct the new DG scheme for
one-dimensional heat conduction equation with jump coefficient and prove the L2 stability
and error estimate. In Section 3, this DG method is extended to two-dimensional heat
conduction equation. The stability and convergence analysis are studied. Numerical exam-
ples are presented in Section 4 to illustrate the efficiency and accuracy of the new method.
Some conclusions are given in the last section.

2. DG scheme for 1D problem

Consider the 1D heat conduction equation:

ρc
∂ U

∂ t
− ∂
∂ x

�

κ(x)
∂ U

∂ x

�

= f (x , t), xL < x < xR, t > 0 (2.1)
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with boundary conditions,

a1U − b1κ(x)
∂ U

∂ x
= g1, x = xL; a2U − b2κ(x)

∂ U

∂ x
= g2, x = xR

and initial condition,

U(x , 0) = U0(x).

The conductive coefficient κ(x) ≥ κ0 > 0, ρ is medium density, c is specific heat and
f (x , t) is the source term. We take ρ = 1, c = 1 for simplicity. When b1 = b2 = 0,
Eq. (2.1) has the Dirichlet boundary conditions and a1 = a2 = 0 corresponds to the Neu-
mann boundary conditions. Otherwise Eq. (2.1) has been called with Robin boundary
conditions. Assume that κ(x) has discontinuity at x = ξ ∈ (xL, xR) and holds

κ(ξ−)
∂ U

∂ x
(ξ−, t) = κ(ξ+)

∂ U

∂ x
(ξ+, t). (2.2)

Then the problem (2.1) has a unique weak solution U(x , t), which is smooth on [xL,ξ]×
[0, T] and [ξ, xR]× [0, T] respectively, and satisfy the joint condition

U(ξ−, t) = U(ξ+, t), κ(ξ−)
∂ U

∂ x
(ξ−, t) = κ(ξ+)

∂ U

∂ x
(ξ+, t). (2.3)

2.1. DG scheme

The computational domain [xL, xR] is divided into N uniform elements, xL = x 1
2
<

x 3
2
< · · · < xN+ 1

2
= xR, and the discontinuity point x = ξ typically falls on one grid points.

Denote the cell by I j = (x j− 1
2
, x j+ 1

2
) with the cell center x j = (x j− 1

2
+ x j+ 1

2
)/2 and the size

of cell ∆x = (xR− xL)/N . The DG approximation space is defined as

Vh =
¦

v : v ∈ Pk(I j), x ∈ I j , j = 1, · · · , N
©

, (2.4)

where Pk(I j) is the set of polynomials of degree less than or equal to k. Here we restrict
Eq. (2.1) with Robin boundary conditions and assume b1 = b2 = 1, a1 > 0, a2 > 0. It can
be easily extended to other boundary conditions. The semi-discrete DG scheme of Eq. (2.1)
is defined as follows: Find u ∈ Vh such that, for all test functions v ∈ Vh, there are

∫

I j

ut vd x +

∫

I j

κ(x)ux vx d x − (ĥ(u)v−) j+ 1
2
+ (ĥ(u)v+) j− 1

2
=

∫

I j

f vd x, (2.5a)

∫

I j

u(x , 0)vd x =

∫

I j

U0(x)vd x . (2.5b)

The "hat" terms in (2.5) are numerical fluxes, which are single-valued functions defined at
the cell interfaces and depend on the discontinuous numerical solutions from both sides
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of the interface. Referring to the paper [16], the numerical flux is defined on interior
interface,

ĥ(u) j+ 1
2
=
β0

∆x
(α[u]) j+ 1

2
+ (β(κ−u−x ) + γ(κ

+u+x )) j+ 1
2
, j = 1, · · · , N − 1, (2.6)

and on boundary points,

ĥ(u) 1
2
= a1u(x+L , t)− g1(t), ĥ(u)N+ 1

2
= g2(t)− a2u(x−R , t),

where

α j+ 1
2
=

p

κ jκ j+1
p

κ j +
p

κ j+1

max(
p

κ j ,
p

κ j+1),

β j+ 1
2
=

p

κ j+1
p

κ j +
p

κ j+1

, γ j+ 1
2
=

p

κ j

p

κ j +
p

κ j+1

,

β0 is a positive constant, κ j = κ(x j). The jump at interface x j+ 1
2

is defined as [u] j+ 1
2
=

(u+− u−) j+ 1
2
.

This numerical flux (2.6) has the following desired properties: (i) it is consistent with
the analytical solution; (ii) it is conservative in the sense of being single-valued at interface;
(iii) it ensures the L2-stability; and (iv) it contributes to the high accuracy of the method.
Property (i) is satisfied by the joint condition (2.3). Property (ii) is also easily satisfied by
the definition of the numerical flux (2.6). In the next section we will prove properties (iii)
and (iv).

2.2. Time discretization

We get the ordinary differential equation systems after DG space discretization of the
Eq. (2.1)

d

d t
Uh = L(Uh, t). (2.7)

The system (2.7) is discretized in time by third-order SSP Runge-Kutta method as fol-
lows [23]:

U
(1)
h
= Un

h +∆t L(Un
h, tn), (2.8a)

U
(2)
h
=

3

4
Un

h
+

1

4
U
(1)
h
+

1

4
∆t L(U

(1)
h

, tn +∆t), (2.8b)

U
(3)
h
=

1

3
Un

h +
2

3
U
(2)
h
+

2

3
∆t L
�

U
(2)
h

, tn +
1

2
∆t
�

. (2.8c)
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2.3. The stability analysis

For simplicity, set κ̃ j =maxx∈I j
κ(x), κ∗j =minx∈I j

κ(x), κ̃=max j=1,··· ,N κ̃ j , and define
norm:

‖u‖2I j
=

∫

I j

u2d x , |‖u‖|2 =
N
∑

j=1

‖u‖2I j
.

Summing up for the equalities (2.5) over j = 1, · · · , N and integrating over [0, T], we
have the following identity:

B(u, v) = L(v), ∀v ∈ Vh, (2.9)

where

B(u, v) =

∫ T

0

� N
∑

j=1

∫

I j

ut vd x +

N
∑

j=1

∫

I j

κ(x)ux vx d x +

N−1
∑

j=1

(ĥ(u)[v]) j+ 1
2

�

d t

+

∫ T

0

�

a1u(x+L , t)v(x+L , t) + a2u(x−R , t)v(x−R , t)
�

d t,

L(v) =

∫ T

0

� N
∑

j=1

∫

I j

f vd xd t +

∫ T

0

(g1v(x+L , t) + g2v(x−R , t))

�

d t.

We have the following trace inequalities:

|(u−x ) j+ 1
2
| ≤ Cp

∆x
‖ux‖I j

, |(u+x ) j+ 1
2
| ≤ Cp

∆x
‖ux‖I j+1

, (2.10)

where C is a constant independent of ∆x and u. Throughout C is used to denote a generic
positive constant, not necessarily the same at each occurrence.

To prove the L2-stability, we set v = u in (2.9) and get

B(u,u) = L(u), (2.11)

where

B(u,u) =
1

2
(|‖u(·, T )‖|2− |‖u(·, 0)‖|2) +

∫ T

0

� N
∑

j=1

∫

I j

κ(x)u2
x d x

+

N−1
∑

j=1

(ĥ(u)[u]) j+ 1
2

�

d t +

∫ T

0

�

a1u2(x+L , t) + a2u2(x−R , t)
�

d t. (2.12)
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By using the numerical flux (2.6) and trace inequalities (2.10), we have:

(ĥ(u)[u]) j+ 1
2

=
β0

∆x
(α[u]2) j+ 1

2
+
�

β(κ−u−x ) + γ(κ
+u+x )
�

j+ 1
2
[u] j+ 1

2

≥ β0

∆x
(α[u]2) j+ 1

2
− Cp

∆x

�

β j+ 1
2
κ̃ j‖ux‖I j

+ γ j+ 1
2
κ̃ j+1‖ux‖I j+1

�

|[u] j+ 1
2
|

≥ β0

∆x
(α[u]2) j+ 1

2
− Cp

∆x

p

κ̃ jκ̃ j+1
p

κ j +
p

κ j+1

�
p

κ̃ j‖ux‖I j
+
p

κ̃ j+1‖ux‖I j+1

�

|[u] j+ 1
2
|

≥ β0

∆x
(α[u]2) j+ 1

2
− 2Cp

∆x
σ j+ 1

2

�

κ̃ j‖ux‖2I j
+ κ̃ j+1‖ux‖2I j+1

�
1
2 |[u] j+ 1

2
|,

where σ j+ 1
2
=
p

κ̃ jκ̃ j+1/(
p

κ j +
p

κ j+1). Then by Cauchy-Schwarz inequality and Young

inequality, there is

N−1
∑

j=1

(ĥ(u)[u]) j+ 1
2

≥
N−1
∑

j=1

β0

∆x
(α[u]2) j+ 1

2
−
� N−1
∑

j=1

(κ̃ j‖ux‖2I j
+ κ̃ j+1‖ux‖2I j+1

)

� 1
2
� N−1
∑

j=1

� 2Cp
∆x
(σ[u]) j+ 1

2

�2
� 1

2

≥
N−1
∑

j=1

β0

∆x
(α[u]2) j+ 1

2
−
�

2
N
∑

j=1

(κ̃ j‖ux‖2I j
)

�
1
2
� N−1
∑

j=1

� 2Cp
∆x
(σ[u]) j+ 1

2

�2
�

1
2

≥
N−1
∑

j=1

β0

∆x
(α[u]2) j+ 1

2
− ǫ

N
∑

j=1

(κ̃ j‖ux‖2I j
)− 2C2

ǫ∆x

N−1
∑

j=1

σ2
j+ 1

2

[u]2
j+ 1

2

.

Replacing the previous estimates into (2.12), there is

B(u,u) ≥1

2
(|‖u(·, T )‖|2− |‖u(·, 0)‖|2)+

∫ T

0

N
∑

j=1

∫

I j

(κ(x)− ǫκ̃ j)u
2
x d xd t

+

∫ T

0

N−1
∑

j=1

� β0

∆x
α j+ 1

2
− 2C2

ǫ∆x
σ2

j+ 1
2

�

[u]2
j+ 1

2

d t

+

∫ T

0

(a1u2(x+L , t) + a2u2(x−R , t))d t. (2.13)

Taking ǫ small enough so that ǫ ≤ κ0/2κ̃, then we have κ(x)−ǫκ̃ j ≥ κ0/2. Assuming that

β0 ≥
3C2

ǫ

σ2
j+ 1

2

α j+ 1
2

,



A New Discontinuous Galerkin Method for Parabolic Equations with Discontinuous Coefficient 331

then we get
β0

∆x
α j+ 1

2
− 2C2

ǫ∆x
σ2

j+ 1
2

≥ C2

ǫ∆x
σ2

j+ 1
2

.

Defining

σ̃ =
C2

ǫ
max

j=1,··· ,N−1

n

σ2
j+ 1

2

o

,

we finally get the estimate for the left hand of (2.11) by (2.13):

B(u,u) ≥1

2
(|‖u(·, T )‖|2− |‖u(·, 0)‖|2) + κ0

2

∫ T

0

N
∑

j=1

∫

I j

u2
x d xd t

+
σ̃

∆x

∫ T

0

N−1
∑

j=1

[u]2
j+ 1

2

d t +

∫ T

0

(a1u2(x+L , t) + a2u2(x−R , t))d t. (2.14)

For the right hand side of (2.11), L(u), by using the Hölder inequality and Young inequality,
we have

L(u) =

∫ T

0

N
∑

j=1

∫

I j

f ud xd t +

∫ T

0

(g1u(x+L , t) + g2u(x−R , t))d t

≤1

2

∫ T

0

|‖ f ‖|2d t +
1

2

∫ T

0

|‖u(·, t)‖|2d t +

∫ T

0

a1u2(x+L , t)d t +

∫ T

0

a2u2(x−R , t)d t

+
1

4a1

∫ T

0

g2
1(t)d t +

1

4a2

∫ T

0

g2
2(t)d t. (2.15)

Replacing (2.14) and (2.15) into (2.11), there is

|‖u(·, T )‖|2+ κ0

∫ T

0

N
∑

j=1

∫

I j

u2
x d xd t +

2σ̃

∆x

∫ T

0

N−1
∑

j=1

[u]2
j+ 1

2

d t

≤|‖u(·, 0)‖|2+
∫ T

0

|‖ f ‖|2d t +
1

2a1

∫ T

0

g2
1(t)d t

+
1

2a2

∫ T

0

g2
2(t)d t +

∫ T

0

|‖u(·, t)‖|2d t. (2.16)

By the Gronwall inequality

|‖u(·, T )‖|2+ κ0

∫ T

0

N
∑

j=1

∫

I j

u2
x d xd t +

2σ̃

∆x

∫ T

0

N−1
∑

j=1

[u]2
j+ 1

2

d t

≤C

�

|‖u(·, 0)‖|2+
∫ T

0

|‖ f ‖|2d t +
1

2a1

∫ T

0

g2
1(t)d t +

1

2a2

∫ T

0

g2
2(t)d t

�

. (2.17)

So we get the stability theorem by the previous estimates as follows.
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Theorem 2.1 (L2 stability). Consider the DG scheme with numerical flux (2.6) for Eq. (2.1).
Taking the β0 in (2.6) large enough, then we get the following estimate

|‖u(·, T )‖|2 ≤ C

�

|‖u(·, 0)‖|2+
∫ T

0

|‖ f ‖|2d t+
1

2a1

∫ T

0

g2
1(t)d t+

1

2a2

∫ T

0

g2
2(t)d t

�

. (2.18)

2.4. Convergence analysis

We introduce the L2 projection operator P from H1(Ω) to finite element space Vh satis-
fying that

∫

I j

(P(U)− U)vd x = 0, ∀v ∈ Vh. (2.19)

Then u(x , 0) = P(U0(x)) by the above projection operator and (2.5). And the projection
operator defined by (2.19) satisfies the following estimates.

Lemma 2.1 (L2 projection properties). Let U ∈ Hs+1(I j), j = 1, · · · , N, s ≥ 0. Then the

following estimates hold

(i) |P(U)− U |m,I j
≤ C∆x (min{k,s}+1−m)|U |s+1,I j

, m ≤ k+ 1, (2.20a)

(ii) |∂ m
x (P(U)− U) j+ 1

2
| ≤ C∆x (min{k,s}+ 1

2
−m)|U |s+1,I

j+1
2

, m ≤ k+
1

2
, (2.20b)

where m is nonnegative integer, I j+ 1
2
= I j

⋃

I j+1, | · |m,I j
denotes the seminorm of Hm(I j).

Lemma 2.2. Let U be the analytical solution of Eq. (2.1). Then for the numerical flux (2.6),
we have

(i) |‖(P(U)− U)(·, T )‖| ≤ C∆x k+1|‖∂ k+1
x U‖|,

|‖(P(U)− U)x(·, T )‖| ≤ C∆x k|‖∂ k+1
x U‖|, (2.21a)

(ii)

∫ T

0

N−1
∑

j=1

ĥ(P(U)− U)2
j+ 1

2

d t ≤ C∆x2k−1|‖∂ k+1
x U‖|2. (2.21b)

Proof. The estimate (2.21a) is easily proved by (2.20a) in Lemma 2.1. For (2.21b) by
using (2.20b) in Lemma 2.1, we have

�

�ĥ(P(U)− U) j+ 1
2

�

� =
β0

∆x
α j+ 1

2

�

�[P(U)− U] j+ 1
2

�

�+ β j+ 1
2

�

�κ−(P(U)− U)−x
�

�

j+ 1
2

+ γ j+ 1
2

�

�κ+(P(U)− U)+x

�

�

j+ 1
2
. (2.22)

Taking square and summing up for (2.22), we get (2.21b). �

It is easy to verify that the exact solution U of (2.1) also satisfies

B(U , v) = L(v), ∀v ∈ Vh. (2.23)
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Subtracting (2.23) from (2.9), we obtain the error equation

B(u− U , v) = 0, ∀v ∈ Vh. (2.24)

In order to obtain the error estimate, we rewrite e = u−U into e = u−P(U)+P(U)−U =

θ −ρ, where θ = u− P(U), ρ = U − P(U). By triangle inequality, we have

|‖e‖| ≤ |‖θ‖|+ |‖ρ‖|. (2.25)

Taking v = θ in (2.24), we have

B(θ ,θ) = B(ρ,θ). (2.26)

For the left hand side of (2.26), noting that θ(x , 0) = 0, we get by (2.14)

B(θ ,θ) ≥1

2
|‖θ(·, T )‖|2+ κ0

2

∫ T

0

N
∑

j=1

∫

I j

θ2
x d xd t +

σ̃

∆x

∫ T

0

N−1
∑

j=1

[θ]2
j+ 1

2

d t

+

∫ T

0

(a1θ
2(x+L , t) + a2θ

2(x−R , t))d t. (2.27)

For the right hand side of (2.26), we have

B(ρ,θ) =

∫ T

0

� N
∑

j=1

∫

I j

ρtθd x +

N
∑

j=1

∫

I j

κ(x)ρxθx d x +

N−1
∑

j=1

(ĥ(ρ)[θ]) j+ 1
2

�

d t

+

∫ T

0

�

a1ρ(x
+
L , t)θ(x+L , t) + a2ρ(x

−
R , t)θ(x−R , t)
�

d t

=T1 + T2 + T3 + T4.

We estimate T1, T2, T3, T4 in the following, respectively.

Firstly, when θ ∈ Vh, we have that T1 =
∫ T

0

∑N

j=1

∫

I j
ρtθd xd t = 0 by using (2.19).

Secondly, by using the Hlder inequality and Young inequality, we have

T2 =

∫ T

0

N
∑

j=1

∫

I j

κ(x)ρxθx d xd t ≤
∫ T

0

N
∑

j=1

∫

I j

κ̃ jρxθx d xd t

≤
∫ T

0

N
∑

j=1

∫

I j

�κ0

2
θ2

x +
κ̃2

j

2κ0
ρ2

x

�

d xd t ≤ κ0

2

∫ T

0

|‖θx‖|2d t +
κ̃2

2κ0

∫ T

0

|‖ρx‖|2d t.

Then

T3 =

∫ T

0

N−1
∑

j=1

(ĥ(ρ)[θ]) j+ 1
2
)d t ≤ σ̃

∆x

∫ T

0

N−1
∑

j=1

[θ]2
j+ 1

2

d t +
∆x

4σ̃

∫ T

0

N−1
∑

j=1

ĥ(ρ)2
j+ 1

2

d t.
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Finally

T4 =

∫ T

0

�

a1ρ(x
+
L , t)θ(x+L , t) + a2ρ(x

−
R , t)θ(x−R , t)
�

d t

≤
∫ T

0

�

a1θ
2(x+L , t) + a2θ

2(x−R , t)
�

d t +

∫ T

0

�a1

4
ρ2(x+L , t) +

a2

4
ρ2(x−R , t)
�

d t.

Replacing T1, T2, T3, T4 estimations and the inequality (2.27) into (2.26), we get

|‖θ(·, T )‖|2 ≤ κ̃
2

κ0

∫ T

0

|‖ρx‖|2d t +
∆x

2σ̃

∫ T

0

N−1
∑

j=1

ĥ(ρ)2
j+ 1

2

d t

+

∫ T

0

�a1

2
ρ2(x+L , t) +

a2

2
ρ2(x−R , t)
�

d t. (2.28)

By Lemma 2.2, we have

|‖θ(·, T )‖|2 ≤ C∆x2k|‖∂ k+1
x U‖|2. (2.29)

At last (2.25), (2.29) and Lemma 2.2 give the error estimate:

Theorem 2.2 (Convergence). The numerical solution u of the semi-discrete DG scheme (2.5)
and the exact solution U of Eq. (2.1) satisfy the following error estimate,

|‖e(·, T )‖| ≤ C∆x k|‖∂ k+1
x U‖|. (2.30)

3. DG scheme for 2D problem

In this section, we consider the 2-dimensional parabolic equation,

ρc
∂ U

∂ t
−∇ · (κ(x , y)∇U) = f (x , y, t), (x , y) ∈ Ω, t > 0 (3.1)

with boundary conditions,

aU + bκ(x , y)
∂ U

∂ n
= g,

and initial condition,
U(x , y, 0) = U0(x , y),

where 0 < κ0 ≤ κ(x , y), ρ, c are defined as same as in 1D case. We take Robin boundary
condition by setting b = 1, a > 0. Ω denotes a bounded convex domain in R2 and Ω =
Ω1

⋃

Ω2, Ω1

⋂

Ω2 = Γ. The diffusive coefficient κ(x , y) is smooth in Ω1,Ω2 respectively
but has discontinuity on Γ,

κ(x , y) =

¨

κ1(x , y), (x , y) ∈ Ω1,
κ2(x , y), (x , y) ∈ Ω2,
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and satisfying the following joint condition

[U]Γ = 0,
h

κ
∂ U

∂ n

i

Γ
= 0. (3.2)

There is a unique solution of Eq. (3.1) satisfying (3.2). We assume the exact solution is
smooth enough locally on each subdomain.

3.1. DG scheme

Let Ω̃1, Ω̃2 be polygonal approximation of Ω1, Ω2 and Ω̃1

⋂

Ω̃2 = Γh. Assume that Th,1,
Th,2 are shape-regular triangulation of Ω̃1, Ω̃2 and Th = Th,1

⋃Th,2. We assume that the
partition is aligned with the interface Γh. Let E ∈ Th and ∆E denotes the diameter of the
element E, and the mesh size ∆ is given by ∆=maxE∈Th

{∆E}. We denote by E o
h

the set of

all interior edges of Th and by E ∂
h

the set of all boundary faces of Th and set Eh = E o
h

⋃E ∂
h

.
Define the DG approximation space as

Vh =
�

v ∈ L2(Ω) : v|E ∈ Pk(E), ∀E ∈ Th

	

, (3.3)

where Pk(E) is a set of polynomials of degree less than or equal to k on element E.
The DG scheme of problem (3.1) can be written as: find u ∈ Vh, for all test functions

v ∈ Vh, there are
∫

E

ut vd xd y +

∫

E

κ∇u · ∇vd xd y −
∫

∂ E

ĥuvds =

∫

E

f vd xd y, (3.4a)

∫

E

u(x , y, 0)vd xd y =

∫

E

U0(x , y)vd xd y, (3.4b)

where ĥu in (3.4) is a numerical flux. Let e ∈ E o be an interior face shared by two neigh-
boring elements Ee

1 and Ee
2. Denoting by we

1 and we
2 the trace of w(x , y) on face e taken

from within Ee
1 and Ee

2 respectively. We define the jump of w at (x , y) ∈ e by [w] = we
2−we

1.
Assume that the unit normal vector n on boundary e denote oriented from Ee

1 to Ee
2. Then

the numerical flux on common edge e is defined as

ĥu = ĥ(ue
1,ue

2,n) =
β0

∆e

αe[u] + βe(κ∇u ·n)e2 + γe(κ∇u · n)e1, (3.5)

where

αe =

p
κ1κ2p

κ1 +
p
κ2

max(
p
κ1,
p
κ2), βe =

p
κ1p

κ1 +
p
κ2

, γe =

p
κ2p

κ1 +
p
κ2

.

We denote∆e as the maximum diameter of two neighboring cells sharing face e and denote
κ1,κ2 as the values of κ(x , y) on the center of element Ee

1 and Ee
2 respectively. If e ∈ E ∂

h
,

we define a numerical flux as ĥu = g−au. Then the numerical flux (3.5) is consistent with
the flux condition (3.2). The numerical flux is also conservative because ĥu is single-valued
on interface. The proof of the numerical solution stability and error analysis is as follows.
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3.2. Stability and error analysis

Analogous to the 1D case, we define the norm |‖u‖|2 =∑E∈Th

∫

E
u2d xd y. Summing up

for the equalities (3.4) over all elements and integrating over [0, T], we have the following
identity:

B(u, v) = L(v), ∀v ∈ Vh, (3.6)

where

B(u, v) =

∫ T

0

�

∑

E∈Th

∫

E

ut vd xd y +
∑

E∈Th

∫

E

κ∇u · ∇vd xd y

+
∑

e∈E o
h

∫

e

ĥu[v]ds+
∑

e∈E ∂
h

∫

e

auvds

�

d t,

L(v) =

∫ T

0

�

∑

E∈Th

∫

E

f vd xd y +
∑

e∈E ∂
h

∫

e

gvds

�

d t.

Set v = u in (3.6). Then there has

1

2
|‖u(·, T )‖|2− 1

2
|‖u(·, 0)‖|2+
∫ T

0

� ∑

E∈Th

∫

E

κ(∇u)2d xd y
�

d t +

∫ T

0

�∑

e∈E o
h

∫

e

ĥu[u]ds
�

d t

+

∫ T

0

� ∑

e∈E ∂
h

∫

e

au2ds
�

d t =

∫ T

0

� ∑

E∈Th

∫

E

f ud xd y +
∑

e∈E ∂
h

∫

e

guds
�

d t. (3.7)

We first give a estimate of the fourth term on the left hand side of (3.7). By using the
definition of numerical flux (3.5) and trace inequality, we have

∫

e

ĥu[u]ds =

∫

e

β0

∆e

αe[u]
2 +
�

βe(κ∇u · n)e2 + γe(κ∇u · n)e1
�

[u]ds

≥
∫

e

β0

∆e

αe[u]
2ds−
�

βe‖(κ∇u · n)e2‖L2(e)+ γe‖κ(∇u · n)e1‖L2(e)

�

‖[u]‖L2(e)

≥
∫

e

β0

∆e

αe[u]
2ds− C
�βeκ̃2p
∆e
‖∇u‖L2(Ee

2)
+
γeκ̃1p
∆e
‖∇u‖L2(Ee

1)

�

‖[u]‖L2(e)

≥
∫

e

β0

∆e

αe[u]
2ds− C

2σep
∆e

�

κ̃2‖∇u‖2
L2(Ee

2)
+ κ̃1‖∇u‖2

L2(Ee
1)

�
1
2 ‖[u]‖L2(e),

where

σe =

p

κ̃1κ̃2p
κ1 +
p
κ2

, κ̃1 = max
(x ,y)∈Ee

1

{κ(x , y)}, κ̃2 = max
(x ,y)∈Ee

2

{κ(x , y)}.



A New Discontinuous Galerkin Method for Parabolic Equations with Discontinuous Coefficient 337

Denote κ̃E = max(x ,y)∈E{κ(x , y)} and κ̃ = maxE∈Th
{κ̃E}. By the triangle inequality and

Young inequality, we get

∑

e∈E o
h

∫

e

ĥu[u]ds

≥
∑

e∈E o
h

β0

∆e

αe‖[u]‖2L2(e)
− C
n∑

e∈E o
h

(κ̃2‖∇u‖2
L2(Ee

2)
+ κ̃1‖∇u‖2

L2(Ee
1)
)
o

1
2
n∑

e∈E o
h

4σ2
e

∆e
‖[u]‖2

L2(e)

o
1
2

≥
∑

e∈E o
h

β0

∆e

αe‖[u]‖2L2(e)
− C
n ∑

E∈Th

2κ̃E‖∇u‖2
L2(E)

o
1
2
n∑

e∈E o
h

4σ2
e

∆e
‖[u]‖2

L2(e)

o
1
2

≥
∑

e∈E o
h

� β0

∆e

αe −
2σ2

e C2

ǫ∆e

�

‖[u]‖2
L2(e)
−
∑

E∈Th

ǫκ̃E‖∇u‖2
L2(E)

.

Replacing the above estimate into (3.7) and by the Hlder inequality and Young inequality,
we obtain

1

2
|‖u(·, T )‖|2− 1

2
|‖u(·, 0)‖|2+
∫ T

0

∑

E∈Th

∫

E

(κ− ǫκ̃E)(∇u)2d xd yd t

+

∫ T

0

∑

e∈E o
h

� β0

∆e

αe −
2σ2

e

ǫ∆e

�

‖[u]‖2
L2(e)

d t

≤1

2

∫ T

0

|‖ f ‖|2d t +
1

2

∫ T

0

|‖u(·, t)‖|2d t +

∫ T

0

∑

e∈E ∂
h

∫

e

g2

4a
dsd t.

Taking ǫ small enough so that κ0 − ǫκ̃≥ 0 and β0 large enough so that

β0

∆e

αe −
2σ2

e

ǫ∆e
≥ 0,

we complete the proof of stability of the DG scheme (3.4) by the Gronwall inequality.

Theorem 3.1 (L2 stability). Assume that β0 is large enough in numerical flux (3.5). Then

the numerical solution of (3.4) satisfies

|‖u(·, T )‖|2 ≤ C

�

|‖u(·, 0)‖|2+
∫ T

0

|‖ f ‖|2d t +

∫ T

0

∑

e∈E ∂
h

∫

e

g2

2a
dsd t

�

. (3.8)

Theorem 3.2 (Error analysis). Assume that U is the exact solution of (3.1) and u is the

numerical solution of (3.4). Set that e = u− U. Then the following a priori error estimate

holds

|‖e(·, T )‖| ≤ C∆k|‖U‖|Hk+1(Th)
. (3.9)

The proof of Theorem 3.2 is analogous to 1D case and is omitted here.
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4. Numerical results

In this section, we apply the new DG method to some examples. The first two ex-
amples solve 1D parabolic problems and the third example solves 2D parabolic equation
with rough coefficients. We show the high order accuracy of the method through these nu-
merical examples. We also illustrate the capacity which the new DG method captures the
sharp gradient. We take β0 = 4 for P1 element and β0 = 10 for P2 element in numerical
examples.

Example 4.1. Consider a simple linear problem (2.1) with the Dirichlet boundary condi-
tion. The diffusion coefficients are defined as follows

κ(x) =

(

0.1− 0.09x , x ∈ �0, 2
3

�

,

0.01, x ∈ �2
3
, 1
�

.

The boundary conditions are U(0, t) = U(1, t) = 0. The exact solution is

U(x , t) =

(

exp(−0.1π2t) sin(πx), (x , t) ∈ �0, 2
3

�× (0, T],

exp(−0.1π2t) sin(4πx), (x , t) ∈ �2
3
, 1
�× (0, T].

The initial condition can be derived directly with the exact solution, and the source term
f (x , t) can be derived by substituting the exact solution and the diffusion coefficients into
the original problem (2.1). Numerical results at T = 0.1 are presented in Table 1. It
shows optimal 2nd order accuracy for P1 approximation and 2nd order convergence for P2

approximation. However the error magnitude of P2 approximation is less than that of P1

approximation. The result is plotted in Fig. 1 from 0 to 1 in time t.Table 1: The error analysis for Example 4.1.
N P1 element P2 element

L2 error order L2 error order

15 1.02E-002 6.56E-004

30 2.64E-003 1.95 1.62E-004 2.02

60 6.68E-004 1.98 4.07E-005 1.99

120 1.68E-004 1.99 1.02E-005 2.00

Example 4.2. Now consider problem (2.1) with Neumann boundary condition. The diffu-
sion coefficients, initial conditions and right term are

κ(x) =

(

4
9
, x ∈ [0,π],

4, x ∈ (π, 2π],

∂ U

∂ x
(0, t) =

∂ U

∂ x
(1, t) = 0, f = 0.

Then the exact solution is

U(x , t) =

¨

exp(−4t) cos(3x), (x , t) ∈ [0,π]× (0, T],
exp(−4t) cos(x), (x , t) ∈ (π, 2π]× (0, T].
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Figure 1: Numerial result for Example 4.1 in 0 ≤ t ≤ 1.
The error and convergence order are listed in Table 2 at T = 0.1. We obtain k-th order
accuracy for even k and (k+ 1)-th order accuracy for odd k in (2.4).Table 2: The error analysis for Example 4.2.

N P1 element P2 element

L2 error order L2 error order

20 3.65E-002 8.06E-003

40 9.54E-003 1.94 2.05E-003 1.97

80 2.44E-003 1.97 5.49E-004 1.90

160 5.88E-004 2.05 1.29E-004 2.09

Example 4.3. Consider the 2D problem (3.1) with diffusion coefficient

κ(x , y) =

(

d1,
p

x2+ y2 ≤ 0.5,

d2,
p

x2+ y2 > 0.5.

The computational domain Ω = [−1,1]2 and interface is Γ = {(x , y) :
p

x2+ y2 = R2
1}.

The exact solution of this problem is

U(x , y, t) =







et
�

1
4d1
(R2

1− x2− y2) + 1
4d2
(R2

2− R2
1)
�

,
p

x2+ y2 ≤ 0.5,

e t

4d2
(R2

2− x2− y2),
p

x2+ y2 > 0.5.

The initial condition and source term f (x , y, t) can be derived according to the above given
information. Here we take R1 = 0.5, R2 =

p
2. The error analysis for P1 approximation

in two cases: d1 = 0.1, d2 = 1 and d1 = 0.01, d2 = 1 at T = 0.1 are listed in Table
3. Simulation results verify the correctness of the theoretical analysis. The calculation
grid is illustrated in Fig. 2(a). The numerical results at T = 1 for different diffusion
coefficients are plotted in Figs. 2(b) and (c), respectively. As expected our DG method has
the capability to capture the contacts with discontinuous derivatives.
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κ(x , y) Number of elements mesh scale L∞ error L2 error L2 error order

262 2.58E-1 2.28E-2 1.35E-2 -
d1 = 0.1, d2 = 1 968 1.33E-1 7.05E-3 3.83E-3 1.82

3868 6.78E-2 1.74E-3 9.46E-4 2.02

262 2.58E-1 1.66E-1 9.59E-2 -
d1 = 0.01, d2 = 1 968 1.33E-1 5.53E-2 2.75E-2 1.80

3868 6.78E-2 1.59E-2 7.03E-3 1.97
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(a) Grid for Example 4.3.
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(b) Numerical result with d1 = 0.1, d2 = 1. (c) Numerical result with d1 = 0.01, d2 = 1.Figure 2: Grid and numerial result for Example 4.3 at T = 1.
5. Conclusions

In this paper a new DG method for parabolic equation with discontinuous coefficient
is developed. Its stability and convergence properties are proved. The convergent order
of numerical solutions is coincided with theoretical analysis. Moreover this method has a
fine resolution for sharp gradient. A further work is to extend the DG scheme to nonlinear
parabolic equations with jump coefficient.
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