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Abstract. In this paper, we present and analyze a single interval Legendre-Gauss
spectral collocation method for solving the second order nonlinear delay differential

equations with variable delays. We also propose a novel algorithm for the single

interval scheme and apply it to the multiple interval scheme for more efficient im-
plementation. Numerical examples are provided to illustrate the high accuracy of

the proposed methods.
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1. Introduction

Delay differential equations (DDEs) constitute basic mathematical models for real

phenomena, for instance in engineering, chemical process, economics and biological

systems. Over the past few decades, rapid progress has been made in numerical meth-

ods for various DDEs, see, for example, [2, 3, 6, 33] for an overview. Many numerical

schemes mainly based on the Taylor’s expansions or quadrature formulas introduced

for initial value problems of ordinary differential equations (ODEs) have also been fre-

quently used for numerical solutions of DDEs (cf. [7,16,17,20]).

As we know, spectral methods are widely used in numerical solutions of partial

differential equations (cf. [4, 5, 8, 10–12, 24, 25]), which have become powerful tools

for solving many kinds of differential equations arising in various fields of engineer-

ing and science. Among many types of spectral methods that are more applicable and

∗Corresponding author. Email addresses: ylj5152@shnu.edu.cn (L. Yi), zqwang@shnu.edu.cn (Z. Wang)

http://www.global-sci.org/nmtma 149 c©2014 Global-Science Press



150 L. Yi and Z. Wang

frequently used are collocation methods. In recent years, spectral collocation methods

have become increasingly popular in numerical solutions of initial value problems of

ODEs and DDEs due to their high-order accuracy and easy implementation. For in-

stance, Guo et al. developed several Legendre-Gauss-type spectral collocation methods

for initial value problems of ODEs (cf. [13–15,26]); Kanyamee and Zhang [19] investi-

gated the Legendre/Chebyshev-Gauss-Lobatto spectral collocation method for solving

Hamiltonian dynamical systems; Ito et al. [18] proposed a Legendre-tau method for

linear DDEs with one constant delay; Ali et al. [1] developed a Legendre collocation

method for linear DDEs with vanishing proportional delays; Wei and Chen [28, 29]

studied Legendre collocation methods for linear Volterra integro-differential equations

and linear Volterra integro-differential equations with pantograph delay. Actually, due

to the nature of the DDEs and the behavior of the solutions, it is a difficult task to de-

sign efficient codes for the numerical solutions of DDEs, particularly, for the nonlinear

DDEs. Very recently, we note that Wang et al. [27, 30] presented Legendre-Gauss-type

spectral collocation methods for solving first order nonlinear DDEs. However, to the

best of our knowledge, there are few discussions on the numerical methods for second

order nonlinear DDEs.

The aim of this paper is to develop a Legendre-Gauss spectral collocation method

for solving the second order nonlinear DDE with variable delay:

{
U ′′(t) = f(U(t), U ′(t), V (t),W (t), t), 0 < t ≤ T,

U(t) = ϕ(t), U ′(t) = ϕ′(t), t ≤ 0,
(1.1)

where V (t) = U(t − θ(t)),W (t) = U ′(t − θ(t)), f, ϕ are given functions and the delay

variable θ(t) ≥ 0.

We first propose a single interval Legendre-Gauss spectral collocation scheme for

problem (1.1) motivated by [15, 27], and design a novel algorithm by full utilizing

properties of the Legendre polynomials. Roughly speaking, we expand the numerical

solution by a truncated shifted Legendre polynomial series, and collocate the numerical

scheme at the Legendre-Gauss points to determine the expansion coefficients. For more

efficient implementation, we also introduce a multiple interval Legendre-Gauss spectral

collocation scheme. These approaches we present here have several striking features:

• The single interval Legendre-Gauss collocation scheme can be implemented easily

and efficiently for nonlinear problems due to the proposed novel algorithm (see

Subsection 2.2).

• The multiple interval Legendre-Gauss collocation scheme enable us to solve the

resultant system efficiently and economically. Specifically, if T is large, we can

divide the solution interval (0, T ) into subintervals and solve the subsystems suc-

cessively. Moreover, the resultant system for the expansion coefficients of the

numerical solution with a modest number of unknowns can be solved quickly.

• In actual computation, we only need to store the expansion coefficients of the
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numerical solution in the related “delay” subintervals to recover the solution in

the current subinterval, which saves a lot of work.

Some numerical examples are given to confirm the theoretical results. It is shown

that the proposed single/multiple interval Legendre-Gauss collocation scheme and the

algorithm are numerically stable and possess the desired spectral accuracy.

The rest of this paper is arranged as follows. In Section 2, we introduce the sin-

gle interval Legendre-Gauss spectral collocation method and design an algorithm for

it. The error analysis is also given for the single interval scheme. In Section 3, we

propose the multiple interval scheme for more efficient implementation. In Section 4,

we present some numerical experiments to demonstrate the theoretical results. We end

with some concluding remarks in Section 5.

2. Single interval Legendre-Gauss collocation method

In this section, we shall introduce and analyze a single interval Legendre-Gauss

collocation method for the DDE (1.1), based on the Legendre-Gauss interpolation.

2.1. Preliminaries

Let Ll(x), x ∈ [−1, 1] be the standard Legendre polynomial of degree l. It can be

defined as the normalized eigenfunction of the singular Strum-Liouville problem

((1− x2)L′
l(x))

′ + l(l + 1)Ll(x) = 0, x ∈ [−1, 1], l ≥ 0. (2.1)

The shifted Legendre polynomial LT,l(t) is defined by (cf. [13])

LT,l(t) = Ll

(2t
T

− 1
)
, t ∈ [0, T ], l = 0, 1, 2 · · · .

Particularly,

LT,0(t) = 1, LT,1(t) =
2t

T
− 1, LT,2(t) =

6t2

T 2
−

6t

T
+ 1, (2.2a)

LT,3(t) =
5

2

(2t
T

− 1
)3

−
3t

T
+

3

2
. (2.2b)

Using the properties of the standard Legendre polynomials we can get (cf. [13])

(l + 1)LT,l+1(t)− (2l + 1)
(2t
T

− 1
)
LT,l(t) + lLT,l−1(t) = 0, l ≥ 1, (2.3)

and

L′
T,l+1(t)− L′

T,l−1(t) =
2(2l + 1)

T
LT,l(t), l ≥ 1. (2.4)

Obviously, the set of LT,l(t) forms a complete L2(0, T )-orthogonal system, namely,

∫ T

0
LT,l(t)LT,m(t)dt =

T

2l + 1
δl,m, (2.5)
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where δl,m is the Kronecker symbol. Hence for any v ∈ L2(0, T ), there holds

v(t) =
∞∑

l=0

v̂lLT,l(t), v̂l =
2l + 1

T

∫ T

0
v(t)LT,l(t)dt. (2.6)

Moreover, by (2.1) we have

∫ T

0
L′
T,l(t)L

′
T,m(t)t(T − t)dt =

l(l + 1)T

2l + 1
δl,m, l,m ≥ 1. (2.7)

Using some classical properties of the Jacobi polynomials, we can deduce that

∫ T

0
L′′
T,l(t)L

′′
T,m(t)t2(T − t)2dt =

(l + 2)(l + 1)l(l − 1)T

2l + 1
δl,m, l,m ≥ 2. (2.8)

Let tNj , 0 ≤ j ≤ N be the nodes of the standard Legendre-Gauss interpolation on

the standard interval (−1, 1), and ωN
j , 0 ≤ j ≤ N be the corresponding Christoffel

numbers. Accordingly, the nodes of the shifted Legendre-Gauss interpolation on the

interval (0, T ) are the zeros of LT,N+1(t), denoted by tNT,j, 0 ≤ j ≤ N . It can be easily

verify that tNT,j =
T
2 (t

N
j + 1) and ωN

T,j =
T
2 ω

N
j for 0 ≤ j ≤ N .

Denote by PN (0, T ) the set of polynomials of degree not exceeding N . By the prop-

erty of the standard Legendre-Gauss quadrature, we obtain for any φ ∈ P2N+1(0, T )
(cf. [13]),

∫ T

0
φ(t)dt =

T

2

∫ 1

−1
φ
(T
2
(t+1)

)
dt =

T

2

N∑

j=0

ωN
j φ

(T
2
(tNj +1)

)
=

N∑

j=0

ωN
T,jφ(t

N
T,j). (2.9)

Next, let (u, v)T and ‖v‖T be the inner product and norm of the space L2(0, T ), respec-

tively, i.e.,

(u, v)T =

∫ T

0
u(t)v(t)dt, ‖v‖T = (v, v)

1

2

T .

The discrete inner product and the discrete norm are defined as

(u, v)T,N =
N∑

j=0

ωN
T,ju(t

N
T,j)v(t

N
T,j), ‖v‖T,N = (v, v)

1

2

T,N .

For any φψ ∈ P2N+1(0, T ) and ϕ ∈ PN (0, T ), we have by (2.9) that (cf. [13])

(φ,ψ)T = (φ,ψ)T,N , ‖ϕ‖T = ‖ϕ‖T,N . (2.10)

The shifted Legendre-Gauss interpolation operator IT,Nv(t) : C(0, T ) → PN (0, T ) is

defined as

IT,Nv(t
N
T,j) = v(tNT,j), 0 ≤ j ≤ N.
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By (2.10), there holds for any φ ∈ PN+1(0, T ) that

(IT,Nv, φ)T = (IT,Nv, φ)T,N = (v, φ)T,N . (2.11)

Note that the shifted Legendre-Gauss interpolation IT,Nv(t) can be expanded as

IT,Nv(t) =
N∑

l=0

ṽlLT,l(t). (2.12)

We can infer from (2.6) and (2.11) that

ṽl =
2l + 1

T
(IT,Nv, LT,l)T =

2l + 1

T
(v, LT,l)T,N . (2.13)

For any ψ ∈ PN+1(0, T ), let

ψ(t) =

N+1∑

l=0

ψ̂lLT,l(t) and IT,Nψ(t) =

N∑

l=0

ψ̃lLT,l(t). (2.14)

Then, it can be verified that (cf. [13])

ψ̃l = ψ̂l, 0 ≤ l ≤ N. (2.15)

Moreover, for any φ ∈ PN+1(0, T ) there holds (cf. (2.10) of [13])

‖φ‖T,N ≤ ‖φ‖T . (2.16)

The discrete norm of the higher order polynomial can be bounded by the continuous

norm, as stated below.

Lemma 2.1. For any ψ ∈ PN+2(0, T ), there holds

‖ψ‖T,N ≤ γN‖ψ‖T , (2.17)

where

γN =

√
2 +

2N + 5

2(N + 2)2(2N + 1)
.

Proof. Let (u, v) and ‖v‖ be the inner product and norm of the space L2(−1, 1), and

let (u, v)N and ‖v‖N be the discrete inner product and norm of the space L2(−1, 1). We

set ϕ(x) = ψ(T2 (x+ 1)) with x ∈ [−1, 1], then ϕ ∈ PN+2(−1, 1). We first show that

‖ϕ‖N ≤ γN‖ϕ‖. (2.18)

Let INϕ ∈ PN (−1, 1) be the standard Legendre-Gauss interpolation on the interval

(−1, 1), we can write

INϕ(x) =

N∑

l=0

ϕ̃lLl(x), ϕ(x) =

N+2∑

l=0

ϕ̂lLl(x). (2.19)
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Obviously,

ϕ̃l =
2l + 1

2
(INϕ,Ll) =

2l + 1

2
(ϕ,Ll)N = ϕ̂l, 0 ≤ l ≤ N − 1. (2.20)

Noting the fact LN+1(t
N
j ) = 0, 0 ≤ j ≤ N , and the recurrence relation

Ln+2(x) =
2n + 3

n+ 2
xLn+1(x)−

n+ 1

n+ 2
Ln(x), n ≥ 0,

we have

ϕ̃N =
2N + 1

2
(INϕ,LN ) =

2N + 1

2
(INϕ,LN )N =

2N + 1

2
(ϕ,LN )N

=
2N + 1

2

(N−1∑

l=0

ϕ̂lLl + ϕ̂NLN + ϕ̂N+1LN+1 + ϕ̂N+2LN+2, LN

)

N

=
2N + 1

2
(ϕ̂NLN + ϕ̂N+2LN+2, LN )N

=
2N + 1

2

(
ϕ̂NLN −

N + 1

N + 2
ϕ̂N+2LN , LN

)
N

=
2N + 1

2

(
ϕ̂N −

N + 1

N + 2
ϕ̂N+2

)
(LN , LN )N

= ϕ̂N −
N + 1

N + 2
ϕ̂N+2. (2.21)

Hence, using (2.20) and (2.21) we thus obtain for any ǫ > 0,

‖INϕ‖
2 =

N∑

l=0

2

2l + 1
ϕ̃2
l =

N−1∑

l=0

2

2l + 1
ϕ̂2
l +

2

2N + 1

(
ϕ̂N −

N + 1

N + 2
ϕ̂N+2

)2

=

N∑

l=0

2

2l + 1
ϕ̂2
l −

4(N + 1)

(2N + 1)(N + 2)
ϕ̂N ϕ̂N+2 +

2(N + 1)2

(2N + 1)(N + 2)2
ϕ̂2
N+2

≤
N∑

l=0

2

2l + 1
ϕ̂2
l +

2(N + 1)

(2N + 1)(N + 2)
(ǫ−1ϕ̂2

N + ǫϕ̂2
N+2) +

2(N + 1)2

(2N + 1)(N + 2)2
ϕ̂2
N+2

=

N−1∑

l=0

2

2l + 1
ϕ̂2
l +

(
1 +

(N + 1)

ǫ(N + 2)

) 2

2N + 1
ϕ̂2
N

+
(N + 1)(2N + 5)

(N + 2)(2N + 1)

(
ǫ+

N + 1

N + 2

) 2

2N + 5
ϕ̂2
N+2

≤ max
{
1 +

N + 1

ǫ(N + 2)
,
(N + 1)(2N + 5)

(N + 2)(2N + 1)

(
ǫ+

N + 1

N + 2

)}
‖ϕ‖2. (2.22)

Take

1 +
N + 1

ǫ(N + 2)
=

(N + 1)(2N + 5)

(N + 2)(2N + 1)

(
ǫ+

N + 1

N + 2

)
,
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and solve ǫ from this equation, then by a direct calculation we have

1 +
N + 1

ǫ(N + 2)
= 1 +

√
1 + 4(N + 1)2(N + 2)2(2N + 1)(2N + 5) + 1

2(N + 2)2(2N + 1)

≤ 1 +
2(N + 1)(N + 2)(2N + 3) + 1

2(N + 2)2(2N + 1)

= 2 +
2N + 5

2(N + 2)2(2N + 1)
. (2.23)

From (2.22) and (2.23) we deduce that

‖INϕ‖ ≤

√
1 +

N + 1

ǫ(N + 2)
‖ϕ‖ ≤

√
2 +

2N + 5

2(N + 2)2(2N + 1)
‖ϕ‖. (2.24)

Since

‖ϕ‖N = ‖INϕ‖N = ‖INϕ‖,

which together with (2.24) yields (2.18). Finally, a simple variable transformation of

(2.18) leads to (2.17). �

LetHr(0, T ) be the usual Sobolev space, and denote by ‖·‖r,T and |·|r,T its norm and

semi-norm, respectively. For simplicity of statement, we sometimes use the notations

∂tU and ∂2t U instead of U ′ and U ′′, respectively. In view of (5.4.33) and (5.4.34) of [8],

the following estimates are valid.

Lemma 2.2. For any u ∈ Hr(0, T ) with integer 1 ≤ r ≤ N + 1, there hold

‖IT,Nu− u‖T ≤ cT rN−r|u|r,T , (2.25)
∥∥∂t(IT,Nu− u)

∥∥
T
≤ cT r−1N

3

2
−r|u|r,T , (2.26)

∥∥∂2t (IT,Nu− u)
∥∥
T
≤ cT r−2N

7

2
−r|u|r,T . (2.27)

2.2. The single interval collocation scheme

In this subsection, we shall construct a single interval Legendre-Gauss spectral col-

location scheme for the delay differential equation (1.1). For this purpose, we denote

by ΛN :=
{
tNT,k : 0 ≤ k ≤ N

}
⊂ (0, T ) the grid set. The single interval collocation

scheme is to find uN (t) ∈ PN+2(0, T ), such that

{
∂2t u

N (t) = f(uN (t), ∂tu
N (t), vN (t), wN (t), t), ∀ t ∈ ΛN ,

]uN (0) = U(0) = ϕ(0), ∂tu
N (0) = ∂tU(0) = ∂tϕ(0),

(2.28)

with the delay term

vN (t) =

{
uN (t− θ(t)), ∀ t ∈ Λ1

N ,

ϕ(t− θ(t)), ∀ t ∈ Λ0
N ,

(2.29)
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and

wN (t) =

{
∂tu

N (t− θ(t)), ∀ t ∈ Λ1
N ,

∂tϕ(t− θ(t)), ∀ t ∈ Λ0
N ,

(2.30)

where

Λ0
N =

{
t ∈ ΛN : t ≤ θ(t)

}
, Λ1

N =
{
t ∈ ΛN : t > θ(t)

}
.

For convenience, we set ṽN (t) = uN (t− θ(t)) and w̃N (t) = ∂tu
N (t− θ(t)), then the

collocation scheme (2.28)-(2.30) can be rewritten as: find uN (t) ∈ PN+2(0, T ) such

that uN (0) = ϕ(0), ∂tu
N (0) = ∂tϕ(0) and

∂2t u
N (t) =

{
f
(
uN (t), ∂tu

N (t), ṽN (t), w̃N (t), t
)
, ∀ t ∈ Λ1

N ,

f
(
uN (t), ∂tu

N (t), ϕ(t− θ(t)), ∂tϕ(t− θ(t)), t
)
, ∀ t ∈ Λ0

N .
(2.31)

We have from (2.28) that

∂2t u
N (t) = IT,Nf(u

N (t), ∂tu
N (t), vN (t), wN (t), t). (2.32)

Next, let

uN (t) =

N+2∑

k=0

ûkLT,k(t). (2.33)

Clearly

∂tu
N (t) =

N+2∑

k=1

ûk∂tLT,k(t). (2.34)

Let

IT,Nf(u
N (t), ∂tu

N (t), vN (t), wN (t), t) =

N∑

k=0

f̂kLT,k(t). (2.35)

Using (2.13) and (2.10) we find for 0 ≤ k ≤ N ,

f̂k =
2k + 1

T
(IT,Nf(u

N , ∂tu
N , vN , wN , ·), LT,k)T

=
2k + 1

T
(f(uN , ∂tu

N , vN , wN , ·), LT,k)T,N

=
2k + 1

T

N∑

j=0

ωN
T,jf(u

N (tNT,j), ∂tu
N (tNT,j), v

N (tNT,j), w
N (tNT,j), t

N
T,j)LT,k(t

N
T,j). (2.36)
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Collecting (2.32)-(2.35), (2.2) and (2.4), we thus obtain (cf. [31])

∂2t u
N (t) =

N+2∑

k=2

ûk∂
2
t LT,k(t) =

N∑

k=0

f̂kLT,k(t) = f̂0 + f̂1LT,1(t) +

N∑

k=2

f̂kLT,k(t)

= f̂0 + f̂1LT,1(t) +
T

2

N∑

k=2

f̂k

2k + 1
∂tLT,k+1(t)−

T

2

N∑

k=2

f̂k

2k + 1
∂tLT,k−1(t)

= f̂0 + f̂1LT,1(t) +
T f̂N

2(2N + 1)
∂tLT,N+1(t) +

T f̂N−1

2(2N − 1)
∂tLT,N (t)

+
T

2

N−1∑

k=3

f̂k−1

2k − 1
∂tLT,k(t)−

T

2

N−1∑

k=1

f̂k+1

2k + 3
∂tLT,k(t)

=
T f̂N

2(2N + 1)
∂tLT,N+1(t) +

T f̂N−1

2(2N − 1)
∂tLT,N (t)

+
T

2

N−1∑

k=1

( f̂k−1

2k − 1
−

f̂k+1

2k + 3

)
∂tLT,k(t)

=:
N+1∑

k=1

f̃k∂tLT,k(t), (2.37)

where

f̃N+1 =
T f̂N

2(2N + 1)
, f̃N =

T f̂N−1

2(2N − 1)
, f̃k =

T

2

( f̂k−1

2k − 1
−

f̂k+1

2k + 3

)
(2.38)

for 1 ≤ k ≤ N − 1.

Moreover, using (2.37), (2.2) and (2.4), a direct computation yields (cf. [32])

∂2t u
N (t) =

N+2∑

k=2

ûk∂
2
t LT,k(t) =

N+1∑

k=1

f̃k∂tLT,k(t)

= f̃1∂tLT,1(t) + f̃2∂tLT,2(t) +
N+1∑

k=3

f̃k∂tLT,k(t)

= f̃1∂tLT,1(t) + f̃2∂tLT,2(t) +
T

2

N+1∑

k=3

f̃k

2k + 1
∂2t LT,k+1(t)−

T

2

N+1∑

k=3

f̃k

2k + 1
∂2t LT,k−1(t)

= f̃1∂tLT,1(t) + f̃2∂tLT,2(t) +
T f̃N+1

2(2N + 3)
∂2t LT,N+2(t) +

T f̃N

2(2N + 1)
∂2t LT,N+1(t)

+
T

2

N−1∑

k=3

f̃k

2k + 1
∂2t LT,k+1(t)−

T

2

N+1∑

k=3

f̃k

2k + 1
∂2t LT,k−1(t)
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=
T f̃N+1

2(2N + 3)
∂2t LT,N+2(t) +

T f̃N

2(2N + 1)
∂2t LT,N+1(t)

+
T

2

N∑

k=2

( f̃k−1

2k − 1
−

f̃k+1

2k + 3

)
∂2t LT,k(t).

From (2.8) we know that {∂2t LT,k(t)}k≥2 are mutually orthogonal polynomials. Hence,

comparing the expansion coefficients in terms of ∂2t LT,k(t), the above formula leads to

ûN+2 =
T f̃N+1

2(2N + 3)
, ûN+1 =

T f̃N

2(2N + 1)
, ûk =

T

2

( f̃k−1

2k − 1
−

f̃k+1

2k + 3

)
(2.39)

for 2 ≤ k ≤ N . Inserting (2.38) into (2.39) we find that

ûN+2 =
T 2

4(2N + 3)(2N + 1)
f̂N , (2.40a)

ûN+1 =
T 2

4(2N + 1)(2N − 1)
f̂N−1, N ≥ 1, (2.40b)

ûN =
T 2

4(2N − 1)(2N − 3)
f̂N−2 −

T 2

2(2N + 3)(2N − 1)
f̂N , N ≥ 2, (2.40c)

ûN−1 =
T 2

4(2N − 3)(2N − 5)
f̂N−3 −

T 2

2(2N + 1)(2N − 3)
f̂N−1, N ≥ 3, (2.40d)

ûk =
T 2

4(2k − 1)(2k − 3)
f̂k−2 −

T 2

2(2k + 3)(2k − 1)
f̂k

+
T 2

4(2k + 5)(2k + 3)
f̂k+2, 2 ≤ k ≤ N − 2, (2.40e)

where {f̂k}
N
k=0 is given by (2.36). Next, substituting t = 0 into (2.34) and noting the

fact ∂tLT,k(0) =
1
T
(−1)k−1k(k + 1), we have by (2.28) that

û1 =
T

2
∂tU(0) +

1

2

N+2∑

k=2

(−1)kk(k + 1)ûk. (2.41)

Furthermore, taking t = 0 in (2.33), a combination of (2.28), (2.41) and the fact

LT,k(0) = (−1)k yields

û0 = U(0) −
N+2∑

k=1

(−1)kûk = U(0) +
T

2
∂tU(0) +

1

2

N+2∑

k=2

(−1)k(k − 1)(k + 2)ûk. (2.42)

In actual computation, an iterative process can be used to obtain the expansion

coefficients {ûk}
N+2
k=0 , as stated below. This algorithm is much easier, simpler and faster

to implement.
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Algorithm 2.1

1: Compute the values of vN (t) and wN (t) for t ∈ Λ0
N ;

2: Provide an initial guess for the coefficients {ûk}
N+2

k=0
;

3: Compute the values of f(uN(tNT,j), ∂tu
N (tNT,j), v

N (tNT,j), w
N (tNT,j), t

N
T,j), 0 ≤ j ≤ N by (2.33)

and (2.34);

4: Compute the coefficients {f̂k}Nk=0
by (2.36);

5: Compute the coefficients {ûk}
N+2

k=0
by (2.40)-(2.42);

6: Renew the data of uN (t) and ∂tu
N(t) for t ∈ ΛN by (2.33) and (2.34), and the data of vN (t)

and wN (t) for t ∈ Λ1
N by (2.29) and (2.30);

7: Repeat steps 3–6.

8: Compute uN(T ) =
∑N+2

k=0
ûk by (2.33).

2.3. Error analysis

In this subsection, we shall analyze the convergence of the single interval colloca-

tion scheme (2.28). For this purpose, we set

EN (t) = uN (t)− IT,NU(t).

Let

GN
T,1(t) = IT,N∂

2
t U(t)− ∂2t IT,NU(t). (2.43)

Due to (1.1) and definition of the interpolation operator IT,N , there holds

IT,N∂
2
t U(t) = IT,Nf(U(t), ∂tU(t), V (t),W (t), t) = f(U(t), ∂tU(t), V (t),W (t), t)

for all t ∈ ΛN , which together with (2.43) implies that

∂2t IT,NU(t) = f(U(t), ∂tU(t), V (t),W (t), t) −GN
T,1(t), ∀ t ∈ ΛN .

Thus, we obtain

∂2t IT,NU(t)

=

{
f(U(t), ∂tU(t), V (t),W (t), t) −GN

T,1(t), t ∈ Λ1
N ,

f
(
U(t), ∂tU(t), ϕ(t − θ(t)), ∂tϕ(t− θ(t)), t

)
−GN

T,1(t), t ∈ Λ0
N .

(2.44)

Further, we denote

GN
T,2(t) =





f
(
uN (t), ∂tu

N (t), ṽN (t), w̃N (t), t
)

− f
(
uN (t), ∂tIT,NU(t), ṽN (t), w̃N (t), t

)
, t ∈ Λ1

N ,

f
(
uN (t), ∂tu

N (t), ϕ(t − θ(t)), ∂tϕ(t− θ(t)), t
)

− f
(
uN (t), ∂tIT,NU(t), ϕ(t− θ(t)), ∂tϕ(t− θ(t)), t

)
, t ∈ Λ0

N ,

(2.45)
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GN
T,3(t) =





f
(
uN (t), ∂tIT,NU(t), ṽN (t), w̃N (t), t

)

−f
(
IT,NU(t), ∂tIT,NU(t), ṽN (t), w̃N (t), t

)
, t ∈ Λ1

N ,

f
(
uN (t), ∂tIT,NU(t), ϕ(t− θ(t)), ∂tϕ(t− θ(t)), t

)

−f
(
IT,NU(t), ∂tIT,NU(t), ϕ(t − θ(t)), ∂tϕ(t− θ(t)), t

)
, t ∈ Λ0

N ,

(2.46)

GN
T,4(t) =





f
(
IT,NU(t), ∂tIT,NU(t), ṽN (t), w̃N (t), t

)

−f
(
IT,NU(t), IT,N∂tU(t), ṽN (t), w̃N (t), t

)
, t ∈ Λ1

N ,

f
(
IT,NU(t), ∂tIT,NU(t), ϕ(t − θ(t)), ∂tϕ(t− θ(t)), t

)

−f
(
IT,NU(t), IT,N∂tU(t), ϕ(t − θ(t)), ∂tϕ(t− θ(t)), t

)
, t ∈ Λ0

N ,

(2.47)

GN
T,5(t) =





f
(
IT,NU(t), IT,N∂tU(t), ṽN (t), w̃N (t), t

)

− f
(
IT,NU(t), IT,N∂tU(t), IT,NV (t), w̃N (t), t

)
, t ∈ Λ1

N ,

0, t ∈ Λ0
N ,

(2.48)

GN
T,6(t) =





f
(
IT,NU(t), IT,N∂tU(t), IT,NV (t), w̃N (t), t

)

− f
(
IT,NU(t), IT,N∂tU(t), IT,NV (t), IT,NW (t), t

)
, t ∈ Λ1

N ,

0, t ∈ Λ0
N .

(2.49)

Subtracting (2.44) from (2.31) yields




∂2tE
N (t) =

6∑

j=1

GN
T,j(t), t ∈ Λ0

N ∪ Λ1
N =

{
tNT,k : 0 ≤ k ≤ N

}
,

EN (0) = U(0) − IT,NU(0), ∂tE
N (0) = ∂tU(0)− ∂tIT,NU(0).

(2.50)

We now multiply the first formula of (2.50) by 2∂tE
N (tNT,k)ω

N
T,k, and sum the re-

sulting equation for 0 ≤ k ≤ N to obtain

2(∂tE
N , ∂2t E

N )T,N =

6∑

j=1

AN
T,j, (2.51)

where AN
T,j = 2(∂tE

N , GN
T,j)T,N . Since ∂tE

N ∈ PN+1(0, T ) and ∂2tE
N ∈ PN (0, T ), we

use (2.10) to assert that (∂tE
N , ∂2tE

N )T,N = (∂tE
N , ∂2tE

N )T . Thus, by using integra-

tion by parts, (2.51) reads

|∂tE
N (T )|2 =

6∑

j=1

AN
T,j + |∂tE

N (0)|2. (2.52)

Noting that GN
T,1 ∈ PN (0, T ), using (2.10) we find for any ε > 0,

|AN
T,1| = |2(∂tE

N , GN
T,1)T,N | = |2(∂tE

N , GN
T,1)T | ≤ ε‖∂tE

N‖2T +
1

ε
‖GN

T,1‖
2
T . (2.53)

Inserting the above inequality into (2.52) gives

|∂tE
N (T )|2 ≤

6∑

j=2

AN
T,j + ε‖∂tE

N‖2T +
1

ε
‖GN

T,1‖
2
T + |∂tE

N (0)|2. (2.54)
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Since for any v ∈ H1(0, T ) (see p. 279 of [13]),

max
t∈[0,T ]

|v(t)| ≤ T− 1

2‖v‖T + T
1

2 ‖∂tv‖T , (2.55)

The above inequality together with (2.26) and (2.27) yields for 0 ≤ t ≤ T that

|∂tIT,NU(t)− ∂tU(t)| ≤ T−
1

2‖∂t(IT,NU − U)‖T + T
1

2‖∂2t (IT,NU − U)‖T

≤ cT r− 3

2N
7

2
−r|U |r,T , (2.56)

which implies that

|∂tE
N (0)| = |∂tU(0)− ∂tIT,NU(0)| ≤ cT r− 3

2N
7

2
−r|U |r,T . (2.57)

Further, with the aid of (2.55), (2.25) and (2.26), we obtain for 0 ≤ t ≤ T that

|IT,NU(t)− U(t)| ≤ T− 1

2‖IT,NU − U‖T + T
1

2‖∂t(IT,NU − U)‖T

≤ cT r− 1

2N
3

2
−r|U |r,T . (2.58)

which implies that

|EN (0)| = |U(0) − IT,NU(0)| ≤ cT r− 1

2N
3

2
−r|U |r,T . (2.59)

Lemma 2.3. If U ∈ Hr(0, T ) with integer 3 ≤ r ≤ N + 1, then

‖GN
T,1‖T ≤ cT r−2N

7

2
−r|U |r,T . (2.60)

Proof. Utilizing (2.25) with ∂2tU and r − 2 instead of u and r, respectively, we have

for any integer 3 ≤ r ≤ N + 3,

‖IT,N∂
2
t U − ∂2tU‖T ≤ cT r−2N2−r|U |r,T , (2.61)

which together with (2.27) yields for any integer 3 ≤ r ≤ N + 1,

‖GN
T,1‖T ≤ ‖IT,N∂

2
t U − ∂2tU‖T + ‖∂2t (U − IT,NU)‖T ≤ cT r−2N

7

2
−r|U |r,T .

This ends the proof. �

We now consider several typical f and analyze the numerical errors. Hereafter,

β denotes a certain positive number less than 1, and c(ε) denotes a positive constant

depends on ε.

Case I. Consider (2.31) with the linear variable delay:

θ(t) = λt, 0 ≤ λ < 1. (2.62)
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We assume that f(z1, z2, z3, z4, t) satisfies the following Lipschitz conditions with

respect to z1, z2, z3 and z4, respectively. Namely, there exist real numbers γ1, γ2, γ3, γ4 ≥
0 such that

|f(z1, z2, z3, z4, t)− f(z′1, z2, z3, z4, t)| ≤ γ1|z1 − z′1|, (2.63)

|f(z1, z2, z3, z4, t)− f(z1, z
′
2, z3, z4, t)| ≤ γ2|z2 − z′2|, (2.64)

|f(z1, z2, z3, z4, t)− f(z1, z2, z
′
3, z4, t)| ≤ γ3|z3 − z′3|, (2.65)

|f(z1, z2, z3, z4, t)− f(z1, z2, z3, z
′
4, t)| ≤ γ4|z4 − z′4|. (2.66)

Clearly, in this case, Λ0
N = ∅. From (2.64) and (2.16) we obtain

‖GN
T,2‖T,N ≤ γ2‖∂t(u

N − IT,NU)‖T,N = γ2‖∂tE
N‖T,N ≤ γ2‖∂tE

N‖T . (2.67)

Using (2.63) and (2.17) we have

‖GN
T,3‖T,N ≤ γ1‖u

N − IT,NU‖T,N = γ1‖E
N‖T,N ≤ γ1γN‖EN‖T . (2.68)

From (2.64), (2.10), (2.25) and (2.26) we infer that

‖GN
T,4‖T,N ≤ γ2‖∂tIT,NU − IT,N∂tU‖T,N = γ2‖∂tIT,NU − IT,N∂tU‖T

≤ γ2
(
‖∂t(IT,NU − U)‖T + ‖∂tU − IT,N∂tU‖T

)

≤ cT r−1N
3

2
−r|U |r,T . (2.69)

Moreover, using (2.65), (2.17) and (2.25) we get

‖GN
T,5‖T,N ≤ γ3‖ṽ

N − IT,NV ‖T,N ≤ γ3γN‖ṽN − IT,NV ‖T

≤ γ3γN
(
‖ṽN − V ‖T + ‖V − IT,NV ‖T

)

≤ γ3γN (1− λ)−
1

2 ‖U − uN‖T + cT rN−r|U |r,T

≤ γ3γN (1− λ)−
1

2 ‖EN‖T + γ3γN (1− λ)−
1

2 ‖U − IT,NU‖T + cT rN−r|U |r,T

≤ γ3γN (1− λ)−
1

2 ‖EN‖T + cT rN−r|U |r,T . (2.70)

Similarly, using (2.66), (2.16), (2.25) and (2.26) we get

‖GN
T,6‖T,N ≤ γ4‖w̃

N − IT,NW‖T,N ≤ γ4‖w̃
N − IT,NW‖T

≤ γ4
(
‖w̃N −W‖T + ‖W − IT,NW‖T

)

≤ γ4(1− λ)−
1

2 ‖∂t(U − uN )‖T + γ4(1− λ)−
1

2 ‖∂tU − IT,N∂tU‖T

≤ γ4(1− λ)−
1

2 ‖∂tE
N‖T + γ4(1− λ)−

1

2 ‖∂t(U − IT,NU)‖T + cT r−1N1−r|U |r,T

≤ γ4(1− λ)−
1

2 ‖∂tE
N‖T + cT r−1N

3

2
−r|U |r,T . (2.71)

We now turn to the estimation of AN
T,j for 2 ≤ j ≤ 6. Thanks to (2.16) and (2.67)

we deduce that

|AN
T,2| = |2(∂tE

N , GN
T,2)T,N | ≤ 2‖∂tE

N‖T,N‖GN
T,2‖T,N ≤ 2γ2‖∂tE

N‖2T . (2.72)
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Combine (2.16) and (2.68) we infer that

|AN
T,3| = |2(∂tE

N , GN
T,3)T,N | ≤ 2‖∂tE

N‖T,N‖GN
T,3‖T,N ≤ ε‖∂tE

N‖2T +
1

ε
‖GN

T,3‖
2
T,N

≤ ε‖∂tE
N‖2T +

γ21γ
2
N

ε
‖EN‖2T . (2.73)

Next, we use (2.16) and (2.69) to get

|AN
T,4| = |2(∂tE

N , GN
T,4)T,N | ≤ 2‖∂tE

N‖T,N‖GN
T,4‖T,N

≤ ε‖∂tE
N‖2T + c(ε)T 2r−2N3−2r|U |2r,T . (2.74)

Moreover, using (2.16) and (2.70) we obtain

|AN
T,5| = |2(∂tE

N , GN
T,5)T,N | ≤ 2‖∂tE

N‖T,N‖GN
T,5‖T,N ≤ ε‖∂tE

N‖2T +
1

ε
‖GN

T,5‖
2
T,N

≤ ε‖∂tE
N‖2T +

2γ23γ
2
N (1− λ)−1

ε
‖EN‖2T + c(ε)T 2rN−2r|U |2r,T . (2.75)

Similarly, using (2.16) and (2.71) we have

|AN
T,6| = |2(∂tE

N , GN
T,6)T,N | ≤ 2‖∂tE

N‖T,N‖GN
T,6‖T,N ≤ ε‖∂tE

N‖2T +
1

ε
‖GN

T,6‖
2
T,N

≤ ε‖∂tE
N‖2T +

2γ24(1− λ)−1

ε
‖∂tE

N‖2T + c(ε)T 2r−2N3−2r|U |2r,T . (2.76)

Now, we are ready to present one of the main results of this section.

Theorem 2.1. Assume that the conditions (2.62)-(2.66) hold. If U ∈ Hr(0, T ) with

integer 3 ≤ r ≤ N + 1, and for certain ε > 0, there hold

(
2γ2 + 6ε+

3γ22 + 6γ2γ4(1− λ)−
1

2 + 5γ24(1− λ)−1

ε

)
T ≤ β < 1, (2.77)

and

4γ2N

(
4γ21 + 6γ1γ3(1− λ)−

1

2 + 5γ23(1− λ)−1
)

ε
(
1−

(
2γ2 + 6ε+

3γ22 + 6γ2γ4(1− λ)−
1

2 + 5γ24(1− λ)−1

ε

)
T
)T

3 ≤ β < 1. (2.78)

Then

‖U − uN‖T ≤ cβT
r− 1

2N
7

2
−r|U |r,T , (2.79)

‖∂t(U − uN )‖T ≤ cβT
r− 3

2N
7

2
−r|U |r,T , (2.80)

and

|U(T )− uN (T )| ≤ cβT
r−1N

7

2
−r|U |r,T , (2.81)

|∂tU(T )− ∂tu
N (T )| ≤ cβT

r−2N
7

2
−r|U |r,T . (2.82)
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In particular,

max
t∈[0,T ]

|U(t)− uN (t)| ≤ cβT
r−1N

7

2
−r|U |r,T , (2.83)

max
t∈[0,T ]

|∂tU(t)− ∂tu
N (t)| ≤ cβT

r−2N
7

2
−r|U |r,T , (2.84)

where cβ is a positive constant depending only on β.

Proof. We first inserting (2.60) and (2.57) into (2.54) to obtain that

|∂tE
N (T )|2

≤
6∑

j=2

AN
T,j + ε‖∂tE

N‖2T + c(ε)T 2r−4N7−2r|U |2r,T + cT 2r−3N7−2r|U |2r,T . (2.85)

Next, plugging (2.72)-(2.76) into (2.85) we get that

|∂tE
N (T )|2

≤
(
5ε+ 2γ2 +

2γ24(1− λ)−1

ε

)
‖∂tE

N‖2T +
(γ21γ2N + 2γ23γ

2
N (1− λ)−1

ε

)
‖EN‖2T

+ c(ε)T 2r−4N7−2r|U |2r,T + c(ε)T 2r−2N3−2r|U |2r,T + cT 2r−3N7−2r|U |2r,T

+ c(ε)T 2rN−2r|U |2r,T

≤
(
5ε+ 2γ2 +

2γ24(1− λ)−1

ε

)
‖∂tE

N‖2T +
(γ21γ2N + 2γ23γ

2
N (1− λ)−1

ε

)
‖EN‖2T

+ c(ε)(N7 + T 2N3 + TN7 + T 4)T 2r−4N−2r|U |2r,T . (2.86)

We now estimate the lower bound of |∂tE
N (T )|2. Obviously, for 0 ≤ t ≤ T ,

|∂tE
N (t)|2 = |∂tE

N (T )|2 −

∫ T

t

∂s(∂sE
N (s))2ds ≤ |∂tE

N (T )|2 + 2‖∂tE
N‖T ‖∂

2
tE

N‖T .

Integrating the above inequality with respect to t over the interval (0, T ) gives

‖∂tE
N‖2T ≤ T |∂tE

N (T )|2 + 2T‖∂tE
N‖T ‖∂

2
tE

N‖T

≤ T |∂tE
N (T )|2 + εT‖∂tE

N‖2T +
T

ε
‖∂2t E

N‖2T . (2.87)

Since ∂2tE
N , GN

T,1 ∈ PN (0, T ), we use (2.10), (2.50), (2.60) and (2.67)-(2.71) to de-

duce that

‖∂2tE
N‖T = ‖∂2tE

N‖T,N ≤
6∑

j=1

‖GN
T,j‖T,N

≤ (γ2 + γ4(1− λ)−
1

2 )‖∂tE
N‖T + (γ1γN + γ3γN (1− λ)−

1

2 )‖EN‖T

+ cT rN−r|U |r,T + cT r−2N
7

2
−r|U |r,T + cT r−1N

3

2
−r|U |r,T

≤ (γ2 + γ4(1− λ)−
1

2 )‖∂tE
N‖T + (γ1γN + γ3γN (1− λ)−

1

2 )‖EN‖T

+ c(T 2 +N
7

2 + TN
3

2 )T r−2N−r|U |r,T . (2.88)
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Putting (2.88) into (2.87), a direct calculation shows that

‖∂tE
N‖2T ≤ T |∂tE

N (T )|2 +
(
εT +

3T

ε
(γ2 + γ4(1− λ)−

1

2 )2
)
‖∂tE

N‖2T

+
3T

ε
(γ1γN + γ3γN (1− λ)−

1

2 )2‖EN‖2T

+ c(ε)(T 2 +N
7

2 + TN
3

2 )2T 2r−3N−2r|U |2r,T , (2.89)

which implies that

|∂tE
N (T )|2 ≥

( 1

T
− ε−

3

ε
(γ2 + γ4(1− λ)−

1

2 )2
)
‖∂tE

N‖2T

−
3

ε
(γ1γN + γ3γN (1− λ)−

1

2 )2‖EN‖2T

− c(ε)(T 2 +N
7

2 + TN
3

2 )2T 2r−4N−2r|U |2r,T . (2.90)

Therefore, in view of (2.86) and (2.90), there holds

( 1

T
− 2γ2 − 6ε−

3γ22 + 6γ2γ4(1− λ)−
1

2 + 5γ24(1− λ)−1

ε

)
‖∂tE

N‖2T

≤
γ2N
ε

(
4γ21 + 6γ1γ3(1− λ)−

1

2 + 5γ23(1− λ)−1
)
‖EN‖2T

+ c(ε)(N7 + T 2N3 + TN7 + T 4)T 2r−4N−2r|U |2r,T , (2.91)

or equivalently,

(
1−

(
2γ2 + 6ε+

3γ22 + 6γ2γ4(1− λ)−
1

2 + 5γ24(1− λ)−1

ε

)
T
)
‖∂tE

N‖2T

≤
γ2N
ε

(
4γ21 + 6γ1γ3(1− λ)−

1

2 + 5γ23(1− λ)−1
)
T‖EN‖2T

+ c(ε)(N7 + T 2N3 + TN7 + T 4)T 2r−3N−2r|U |2r,T , (2.92)

On the other hand, it is easy to verify that

|EN (t)|2 ≤ |EN (0)|2 + 2‖EN‖T ‖∂tE
N‖T . (2.93)

Integrating the above estimate with respect to t over the interval (0, T ), we get that

‖EN‖2T ≤ T |EN (0)|2 + 2T‖EN‖T ‖∂tE
N‖T

≤ T |EN (0)|2 +
1

2
‖EN‖2t + 2T 2‖∂tE

N‖2T , (2.94)

which implies

‖EN‖2T ≤ 2T |EN (0)|2 + 4T 2‖∂tE
N‖2T . (2.95)
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For convenience, we set

dT,ε,λ,γ2,γ4 = 1−
(
2γ2 + 6ε+

3γ22 + 6γ2γ4(1− λ)−
1

2 + 5γ24 (1− λ)−1

ε

)
T

and

dT,ε,λ,γ1,γ2,γ3,γ4,γN = 1−
4γ2N

εdT,ε,λ,γ2,γ4

(
4γ21 + 6γ1γ3(1− λ)−

1

2 + 5γ23(1− λ)−1
)
T 3.

Inserting (2.92) and (2.59) into (2.95) gives

dT,ε,λ,γ1,γ2,γ3,γ4,γN ‖E
N‖2T

≤cT 2rN3−2r|U |2r,T

+ c(ε)d−1
T,ε,λ,γ2,γ4

(N7 + T 2N3 + TN7 + T 4)T 2r−1N−2r|U |2r,T , (2.96)

which together with (2.77) and (2.78) implies that

‖EN‖2T ≤ c(ε)d−1
T,ε,λ,γ1,γ2,γ3,γ4,γN

d−1
T,ε,λ,γ2,γ4

(N7 + T 2N3 + TN7 + T 4)T 2r−1N−2r|U |2r,T

≤ cβT
2r−1N7−2r|U |2r,T . (2.97)

Therefore, a combination of (2.97) and (2.25) yields

‖U − uN‖T ≤ ‖U − IT,NU‖T + ‖EN‖T ≤ cT rN−r|U |r,T + cβT
r− 1

2N
7

2
−r|U |r,T

≤ cβT
r− 1

2N
7

2
−r|U |r,T , (2.98)

which completes the proof of (2.79).

Next, we have by (2.92) and (2.97) that

‖∂tE
N‖2T ≤ cβT

2r−3N7−2r|U |2r,T . (2.99)

This along with (2.26) yields

‖∂t(U − uN )‖T ≤ ‖∂t(U − IT,NU)‖T + ‖∂tE
N‖T ≤ cβT

r− 3

2N
7

2
−r|U |r,T , (2.100)

which implies (2.80).

Furthermore, using (2.55), (2.97) and (2.99), we thus obtain

|EN (T )| ≤ T−
1

2 ‖EN‖T + T
1

2 ‖∂tE
N‖T ≤ cβT

r−1N
7

2
−r|U |r,T . (2.101)

A combination of (2.58) and (2.101) implies

|U(T )− uN (T )| ≤ |IT,NU(T )− U(T )|+ |EN (T )| ≤ cβT
r−1N

7

2
−r|U |r,T . (2.102)

Therefore, inserting (2.97) and (2.99) into (2.86) leads to

|∂tE
N (T )| ≤ cβT

r−2N
7

2
−r|U |r,T , (2.103)



Legendre-Gauss Spectral Collocation Method for 2nd Order DDEs 167

which together with (2.56) implies

|∂tU(T )− ∂tu
N (T )| ≤ cβT

r−2N
7

2
−r|U |r,T . (2.104)

Moreover, using (2.55), (2.79) and (2.80) we deduce that

max
t∈[0,T ]

|U(t)− uN (t)| ≤ T− 1

2 ‖U − uN‖T + T
1

2‖∂t(U − uN )‖T

≤ cβT
r−1N

7

2
−r|U |r,T . (2.105)

Inserting (2.97) and (2.99) into (2.88) yields

‖∂2tE
N‖T ≤ cT r−2N

7

2
−r|U |r,T . (2.106)

This along with (2.27) implies

‖∂2t (U − uN )‖T ≤ cβT
r−2N

7

2
−r|U |r,T . (2.107)

Finally, using (2.55), (2.80) and (2.107) we deduce that

max
t∈[0,T ]

|∂tU(t)− ∂tu
N (t)| ≤ T− 1

2 ‖∂t(U − uN )‖T + T
1

2‖∂2t (U − uN )‖T

≤ cβT
r−2N

7

2
−r|U |r,T . (2.108)

This completes the proof. �

Remark 2.1. The conditions (2.77) and (2.78) are necessary for the proof, but they

should not be essential. Actually, some numerical experiments show that the scheme is

still convergent, even if the conditions (2.77) and (2.78) do not hold.

Case II. Assume that the delay function satisfies:

t− θ(t) ≤ 0, t ∈ [0, T ]. (2.109)

Moveover, f(z1, z2, z3, z4, t) satisfies the Lipschitz conditions (2.63) and (2.64).

Theorem 2.2. Let U ∈ Hr(0, T ) with integer 3 ≤ r ≤ N + 1. If the conditions (2.109),

(2.63) and (2.64) hold, and for certain ε > 0, there hold

(
2γ2 + 4ε+

3γ22
ε

)
T ≤ β < 1, (2.110)

and
16γ21γ

2
N

ε
(
1−

(
2γ2 + 4ε +

3γ22
ε

)
T
)T 3 ≤ β < 1. (2.111)
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Then

‖U − uN‖T ≤ cβT
r− 1

2N
7

2
−r|U |r,T , (2.112)

‖∂t(U − uN )‖T ≤ cβT
r− 3

2N
7

2
−r|U |r,T , (2.113)

and

|U(T )− uN (T )| ≤ cβT
r−1N

7

2
−r|U |r,T , (2.114)

|∂tU(T )− ∂tu
N (T )| ≤ cβT

r−2N
7

2
−r|U |r,T . (2.115)

In particular,

max
t∈[0,T ]

|U(t)− uN (t)| ≤ cβT
r−1N

7

2
−r|U |r,T , (2.116)

max
t∈[0,T ]

|∂tU(t)− ∂tu
N (t)| ≤ cβT

r−2N
7

2
−r|U |r,T , (2.117)

where cβ is a positive constant depending only on β.

Proof. Obviously, in this case, Λ1
N = ∅. Then GN

T,5(t) = GN
T,6(t) = 0 and AN

T,5 =

AN
T,6 = 0. Moreover, the estimates (2.67)-(2.69) still hold. Consequently, the estimates

(2.72)-(2.74) are also valid.

We first inserting (2.60) and (2.57) into (2.54) to obtain that

|∂tE
N (T )|2

≤
4∑

j=2

AN
T,j + ε‖∂tE

N‖2T + c(ε)T 2r−4N7−2r|U |2r,T + cT 2r−3N7−2r|U |2r,T . (2.118)

Next, we putting (2.72)-(2.74) into (2.118) yields

|∂tE
N (T )|2 ≤ (3ε+ 2γ2)‖∂tE

N‖2T +
γ21γ

2
N

ε
‖EN‖2T

+ c(ε)(N7 + T 2N3 + TN7)T 2r−4N−2r|U |2r,T . (2.119)

Since ∂2tE
N , GN

T,1 ∈ PN (0, T ), we can use (2.10), (2.50), (2.60) and (2.67)-(2.69) to

deduce that

‖∂2tE
N‖T = ‖∂2t E

N‖T,N ≤
4∑

j=1

‖GN
T,j‖T,N

≤ γ2‖∂tE
N‖T + γ1γN‖EN‖T + c(N

7

2 + TN
3

2 )T r−2N−r|U |r,T . (2.120)

Inserting (2.120) into (2.87), a direct calculation shows that

‖∂tE
N‖2T ≤ T |∂tE

N (T )|2 + T
(
ε+

3γ22
ε

)
‖∂tE

N‖2T +
3γ21γ

2
NT

ε
‖EN‖2T

+ c(ε)(N
7

2 + TN
3

2 )2T 2r−3N−2r|U |2r,T , (2.121)
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which implies that

|∂tE
N (T )|2 ≥

( 1

T
− ε−

3γ22
ε

)
‖∂tE

N‖2T −
3γ21γ

2
N

ε
‖EN‖2T

− c(ε)(N
7

2 + TN
3

2 )2T 2r−4N−2r|U |2r,T . (2.122)

Therefore, in view of (2.119) and (2.122), there holds

( 1

T
− 2γ2 − 4ε−

3γ22
ε

)
‖∂tE

N‖2T

≤
4γ21γ

2
N

ε
‖EN‖2T + c(ε)(N7 + T 2N3 + TN7)T 2r−4N−2r|U |2r,T , (2.123)

or equivalently,

(
1−

(
2γ2 + 4ε+

3γ22
ε

)
T
)
‖∂tE

N‖2T

≤
4γ21γ

2
NT

ε
‖EN‖2T + c(ε)(N7 + T 2N3 + TN7)T 2r−3N−2r|U |2r,T . (2.124)

For convenience, we set

dT,ε,λ,γ2 = 1−
(
2γ2 + 4ε+

3γ22
ε

)
T and dT,ε,λ,γ1,γ2,γN = 1−

16γ21γ
2
NT

3

εdT,ε,λ,γ2
.

Plugging (2.124) and (2.59) into (2.95), we find

dT,ε,λ,γ1,γ2,γN ‖E
N‖2T

≤cT 2rN3−2r|U |2r,T + c(ε)d−1
T,ε,λ,γ2

(N7 + T 2N3 + TN7)T 2r−1N−2r|U |2r,T , (2.125)

which together with (2.110) and (2.111) implies that

‖EN‖2T ≤ c(ε)d−1
T,ε,λ,γ1,γ2,γN

d−1
T,ε,λ,γ2

(N7 + T 2N3 + TN7)T 2r−1N−2r|U |2r,T

≤ cβT
2r−1N7−2r|U |2r,T . (2.126)

Therefore, a combination of (2.126) and (2.25) yields

‖U − uN‖T ≤ ‖U − IT,NU‖T + ‖EN‖T ≤ cT rN−r|U |r,T + cβT
r− 1

2N
7

2
−r|U |r,T

≤ cβT
r− 1

2N
7

2
−r|U |r,T . (2.127)

This ends the proof of (2.112).

Next, we have by (2.124) and (2.126) that

‖∂tE
N‖2T ≤ cβT

2r−3N7−2r|U |2r,T . (2.128)

This along with (2.26) yields

‖∂t(U − uN )‖T ≤ ‖∂t(U − IT,NU)‖T + ‖∂tE
N‖T ≤ cβT

r− 3

2N
7

2
−r|U |r,T , (2.129)
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which implies (2.113).

Furthermore, by virtue of (2.55), (2.126) and (2.128), there holds

|EN (T )| ≤ T− 1

2 ‖EN‖T + T
1

2 ‖∂tE
N‖T ≤ cβT

r−1N
7

2
−r|U |r,T . (2.130)

A combination of (2.58) and (2.130) implies

|U(T )− uN (T )| ≤ |IT,NU(T )− U(T )|+ |EN (T )| ≤ cβT
r−1N

7

2
−r|U |r,T . (2.131)

Moreover, inserting (2.126) and (2.128) into (2.119) leads to

|∂tE
N (T )| ≤ cβT

r−2N
7

2
−r|U |r,T , (2.132)

which together with (2.56) implies

|∂tU(T )− ∂tu
N (T )| ≤ cβT

r−2N
7

2
−r|U |r,T . (2.133)

Moreover, using (2.55), (2.112) and (2.113) we deduce that

max
t∈[0,T ]

|U(t)− uN (t)|

≤T−
1

2‖U − uN‖T + T
1

2 ‖∂t(U − uN )‖T ≤ cβT
r−1N

7

2
−r|U |r,T . (2.134)

Putting (2.126) and (2.128) into (2.120) gives

‖∂2tE
N‖T ≤ cT r−2N

7

2
−r|U |r,T . (2.135)

This along with (2.27) implies

‖∂2t (U − uN )‖T ≤ cβT
r−2N

7

2
−r|U |r,T . (2.136)

Finally, using (2.55), (2.113) and (2.136) we get (2.117). �

Remark 2.2. From Theorems 2.1 and 2.2, it can be seen that the errors ‖U − uN‖T ,

|U(T ) − uN (T )|, ‖∂t(U − uN )‖T and |∂tU(T ) − ∂tu
N (T )| decay rapidly as N and r

increase. The convergence rate is O(N
7

2
−r), which implies that the scheme (2.28)

possesses the spectral accuracy.

Remark 2.3. If drU
dtr

∈ L∞(0, T ), 3 ≤ r ≤ N +1, we deduce from Theorems 2.1 and 2.2

that

‖U − uN‖T ≤ cβT
rN

7

2
−r

∥∥∥d
rU

dtr

∥∥∥
L∞(0,T )

, (2.137)

‖∂t(U − uN )‖T ≤ cβT
r−1N

7

2
−r

∥∥∥d
rU

dtr

∥∥∥
L∞(0,T )

, (2.138)
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|U(T )− uN (T )| ≤ cβT
r− 1

2N
7

2
−r

∥∥∥d
rU

dtr

∥∥∥
L∞(0,T )

, (2.139)

|∂tU(T )− ∂tu
N (T )| ≤ cβT

r− 3

2N
7

2
−r

∥∥∥d
rU

dtr

∥∥∥
L∞(0,T )

. (2.140)

Particularly, if 1
N

≤ T < 1, we take r = N + 1 in (2.137)-(2.140) to get that

‖U − uN‖T = O(T 2N−
3

2 ), |U(T )− uN (T )| = O(T 2N−2), (2.141)

‖∂t(U − uN )‖T = O(T 2N− 5

2 ), |∂tU(T )− ∂tu
N (T )| = O(T 2N−3). (2.142)

3. Multiple interval Legendre-Gauss collocation method

In the previous section, we introduced the single interval Legendre-Gauss collo-

cation method for the DDE (1.1). However, in actual computation, it is not efficient

to resolve the scheme (2.31) for large T with very large mode N . It is naturally to

divide the interval (0, T ] into a finite number of subintervals and solve the equations

subsequently on each subinterval economically.

Let M and Nm, 1 ≤ m ≤ M be any positive integers. We first divide the interval

(0, T ] into M subintervals (Tm−1, Tm], 1 ≤ m ≤ M, such that the set of Tm includes

all breaking points, where T0 = 0 and TM = T. Let τm = Tm − Tm−1, 1 ≤ m ≤ M.

We shall use uNm
m (t) ∈ PNm+2(0, τm) to approximate the solution U in the subinterval

(Tm−1, Tm].
By replacing T and N by τ1 and N1 in (2.31) and all other formulas in Subsec-

tion 2.2, we can derive an alternative algorithm, with which we get the numerical

solution uN1

1 (t) ∈ PN1+2(0, τ1). Then we evaluate the numerical solutions uNm
m (t) ∈

PNm+2(0, τm), 2 ≤ m ≤M, step by step. Finally, the global numerical solution of (1.1)

is given by

uN (Tm−1 + t) = uNm
m (t), 0 ≤ t ≤ τm, 1 ≤ m ≤M. (3.1)

Let tNm

τm,k and ωNm

τm,k, 0 ≤ k ≤ Nm be the nodes and the corresponding Christoffel

numbers of the shifted Legendre-Gauss interpolation on the interval (0, τm). We set

Λ0
N,m = {tNm

τm,k | Tm−1 + tNm

τm,k − θ(Tm−1 + tNm

τm,k) ≤ 0, 0 ≤ k ≤ Nm},

and

Λj
N,m = {tNm

τm,k | Tm−1+t
Nm

τm,k−θ(Tm−1+t
Nm

τm,k) ∈ (Tj−1, Tj ], 0 ≤ k ≤ Nm}, 1 ≤ j ≤ m.

The multiple interval Legendre-Gauss collocation scheme for (1.1) is to find uNm
m (t) ∈

PNm+2(0, τm), such that




∂2t u
Nm
m (t) = f(uNm

m (t), ∂tu
Nm
m (t), ṽjm(t), w̃j

m(t), Tm−1 + t), t ∈ Λj
N,m, j > 0,

∂2t u
Nm
m (t) = f(uNm

m (t), ∂tu
Nm
m (t), ϕ(Tm−1 + t− θ(Tm−1 + t)),

∂tϕ(Tm−1 + t− θ(Tm−1 + t)), Tm−1 + t), t ∈ Λ0
N,m,

uNm
m (0) = u

Nm−1

m−1 (τm−1), ∂tu
Nm
m (0) = ∂tu

Nm−1

m−1 (τm−1), 2 ≤ m ≤M,

(3.2)
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where

ṽjm(t) = uN (Tm−1 + t− θ(Tm−1 + t)) = u
Nj

j (Tm−1 − Tj−1 + t− θ(Tm−1 + t))

and

w̃j
m(t) = ∂tu

N (Tm−1 + t− θ(Tm−1 + t)) = ∂tu
Nj

j (Tm−1 − Tj−1 + t− θ(Tm−1 + t)).

Let Um(t) = U(Tm−1 + t) for 0 ≤ t ≤ τm. Due to (1.1) we find that





∂2t Um(t) = f(Um(t), ∂tUm(t), V j
m(t),W j

m(t), Tm−1 + t), t ∈ Λj
N,m, j > 0,

∂2t Um(t) = f(Um(t), ∂tUm(t), ϕ(Tm−1 + t− θ(Tm−1 + t)),
∂tϕ(Tm−1 + t− θ(Tm−1 + t)), Tm−1 + t), t ∈ Λ0

N,m,

Um(0) = Um−1(τm−1), ∂tUm(0) = ∂tUm−1(τm−1), 2 ≤ m ≤M,

U1(0) = U(0) = ϕ(0), ∂tU1(0) = ∂tU(0) = ∂tϕ(0),
(3.3)

where

V j
m(t) = U(Tm−1 + t− θ(Tm−1 + t)) = Uj(Tm−1 − Tj−1 + t− θ(Tm−1 + t))

and

W j
m(t) = ∂tU(Tm−1 + t− θ(Tm−1 + t)) = ∂tUj(Tm−1 − Tj−1 + t− θ(Tm−1 + t)).

In view of (3.2) and (3.3), we can infer that the local numerical solution uNm
m (t)

is actually an approximation to the local exact solution Um(t), with the approximate

initial data uNm
m (0) = u

Nm−1

m−1 (τm−1) and ∂tu
Nm
m (0) = ∂tu

Nm−1

m−1 (τm−1).

4. Numerical results

In this section, we present some numerical examples to illustrate the performance

of our methods. Let uN (t) be the global numerical solution and denote the pointwise

error

Err(t) = |U(t)− uN (t)|. (4.1)

For convenience, we shall use uniform time step-size τm = τ and uniform mode Nm =
N in the test of multiple interval collocation scheme. Throughout this paper, we take

the initial guess ûk = 0, 0 ≤ k ≤ N + 2.

4.1. Linear variable delay (Case I)

Consider a linear DDE with constant coefficients:
{
U ′′(t) = 1

2U(t) + 1
3U

′(t)− 1
2U( t2) +

1
4U

′( t2 ) +
5
6e

−t + 3
4e

− t
2 , 0 < t ≤ T,

U(0) = 1, U ′(0) = −1,
(4.2)
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where the exact solution U(t) = e−t.

We first test the single interval scheme for problem (4.2) at different T , the point-

wise errors are shown in Fig. 1, It can be seen that the numerical errors decay expo-

nentially as N increases. Moreover, we observe that our algorithm is still valid even if

the conditions of Theorem 2.1 may not satisfied for large T . We next test the multiple

interval scheme at T = 5 with different step-size τ . Fig. 2 shows that the numerical

errors decay exponentially.
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Figure 1: Single interval scheme for problem (4.2) at different T .
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Figure 2: Multiple interval scheme for problem (4.2) at T = 5.

4.2. Nonlinear variable delay (Case I)

Consider a nonlinear DDE with variable coefficients:





U ′′(t) = sin(t)U(t) + cos(t)U ′(t)
+ sin( t2 )(U( t2 ))

2 − (U ′( t2 ))
3 + g(t), 0 < t ≤ T,

U(0) = 0, U ′(0) = 1,

(4.3)
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where g(t) = −1− sin(t)− sin3( t2 ) + cos3( t2), and the exact solution u(t) = sin(t).

The numerical errors obtained by using the single interval scheme at different T are

shown in Fig. 3. It can be seen that the numerical errors decay exponentially. Moreover,

we observe that our algorithm is still valid even if the conditions of Theorem 2.1 may

not satisfied. The numerical errors at T = 5 by using the multiple interval scheme

with different τ are shown in Fig. 4. It is again shows that the numerical errors decay

exponentially.
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Figure 3: Single interval scheme for problem (4.3) at different T .
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Figure 4: Multiple interval scheme for problem (4.3) at T = 5.

4.3. Linear constant delay (Case II)

Consider a linear DDE with constant coefficients (cf. [9]):

{
U ′′(t) = −U ′(t)− U(t− 1) + 1, 0 < t ≤ 2,

U(t) = 1, U ′(0) = −1, −1 ≤ t ≤ 0,
(4.4)
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where the solution is given by

U(t) =

{
e−t, 0 ≤ t ≤ 1,

−3 + t+ e−t + (1 + t)e−(t−1), 1 < t ≤ 2,
(4.5)

and there is a discontinuous change of U ′′′(t) at t = 1.

In Fig. 5, we plot the numerical errors at T = 2 by using the multiple interval

method with different τ . It also shows the exponentially converge of the numerical

scheme.
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Figure 5: Multiple interval scheme for problem (4.4) at T = 2.

4.4. Nonlinear constant delay (Case II)

Consider a nonlinear DDE which describes the propagation of a delayed impulse in

an electric circuit (cf. [21,23]):
{
U ′′(t) = −a1U(t)− a2U

′(t)− a3U
′(t− α) + b(U ′(t− α))3, 0 < t ≤ T,

U(0) = 0.5, U ′(t) = 2π cos(20πt), −α ≤ t ≤ 0,
(4.6)

where a1 = 100, a2 = 10, a3 = 25, b = 0.05 and α = 0.1.

In Fig. 6, we plot the numerical solutions of (4.6) for t ∈ [0, 5] by using the multiple

interval method with τ = 0.01, N = 10. It can be observed that after a short tran-

sient period the solution describes an almost periodic oscillation with nearly constant

amplitude.

We next consider a reference solution at t = 10 with U(10) = −0.5735841564 (cf.

[22]). In Fig. 7, we plot the numerical errors at T = 10 with uniform τ and N . It can

be seen that the numerical errors decay exponentially.

5. Concluding remarks

In this paper, we have presented and analyzed a single interval Legendre-Gauss

spectral collocation method for the second order nonlinear DDEs. We have also de-
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Figure 6: Numerical solution of problem (4.6) with τ = 0.01, N = 10.
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Figure 7: Multiple interval scheme for problem (4.6) at T = 10.

signed an efficient algorithm for the single interval scheme. For more efficient imple-

mentation, we have further proposed a multiple interval Legendre-Gauss collocation

method, which can provide us much flexibility in regard to variable time steps and

local approximation orders. The numerical results demonstrated the efficiency of the

suggested algorithm and confirmed the well-known exponential convergence property

of spectral methods.
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tion of delay differential equations, NA Report 269, Dept. of Mathematics, University of

Manchester, 1995.

[3] A. BELLEN AND M. ZENNARO, Numerical Methods for Delay Differential Equations, Ox-
ford University Press, Oxford, 2003.

[4] C. BERNARDI AND Y. MADAY, Spectral methods, in Handbook of Numerical Analysis,

edited by P. G. Ciarlet and J. L. Lions, North-Holland, Amsterdam, 1997.
[5] J. P. BOYD, Chebyshev and Fourier Spectral Methods, Second edition, Dover Publications,

Inc., Mineola, NY, 2001.
[6] H. BRUNNER, Collocation Methods for Volterra Integral and Related Functional Equa-

tions, Cambridge University Press, Cambridge, 2004.

[7] J. C. BUTCHER, The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta
and General Linear Methods, John Wiley & Sons, Chichester, 1987.

[8] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI AND T. A. ZANG, Spectral Methods: Fun-

damentals in Single Domains, Springer-Verlag, Berlin, 2006.
[9] F. ERDOGAN AND G. M. AMIRALIYEV, Fitted finite difference method for singularly perturbed

delay differential equations, Numer. Algor., 59 (2012), pp. 131–145.
[10] D. FUNARO, Polynomial Approximations of Differential Equations, Springer-Verlag,

Berlin, 1992.

[11] D. GOTTLIEB AND S. A. ORSZAG, Numerical Analysis of Spectral Methods: Theory and
Applications, SIAM-CBMS, Philadelphia, 1977.

[12] B. Y. GUO, Spectral Methods and Their Applications, World Scientific, Singapore, 1998.

[13] B. Y. GUO AND Z. Q. WANG, Legendre-Gauss collocation methods for ordinary differential

equations, Adv. Compt. Math., 30 (2009), pp. 249–280.

[14] B. Y. GUO AND Z. Q. WANG, A spectral collocation method for solving initial value problems

of first order ordinary differential equations, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010),

pp. 1029–1054.

[15] B. Y. GUO AND J. P. YAN, Legendre-Gauss collocation methods for initial value problems of

second ordinary differential equations, Appl. Numer. Math., 59 (2009), pp. 1386–1408.

[16] E. HAIRER, S. P. NØRSETT AND G. WANNER, Solving Ordinary Differential Equation I:

Nonstiff Problems, Second edition, Springer-Verlag, Berlin, 1993.
[17] E. HAIRER AND G. WANNER, Solving Ordinary Differential Equation II: Stiff and

Differential-Algebraic Problems, Second edition, Springer-Verlag, Berlin, 1996.
[18] K. ITO, H. T. TRAN AND A. MANITIUS, A fully-discrete spectral method for delay-differential

equations, SIAM J. Numer. Anal., 28 (1991), pp. 1121–1140.

[19] N. KANYAMEE AND Z. ZHANG, Comparison of a spectral collocation method and symplectic

methods for Hamiltonian systems, Int. J. Numer. Anal. Model., 8 (2011), pp. 86–104.

[20] J. D. LAMBERT, Numerical Methods for Ordinary Differential Systems: The Initial Value

Problem, John Wiley & Sons, Chichester, 1991.
[21] N. MINORSKY, Nonlinear Oscillations, D. Van Nostrand Company, Princeton, 1962.

[22] H. J. OBERLE AND H. J. PESCH, Numerical treatment of delay differential equations by

Hermite interpolation, Numer. Math., 37 (1981), pp. 235–255.

[23] E. PINNEY, Ordinary Difference-Differential Equations, University of California Press,

Berkeley, 1958.



178 L. Yi and Z. Wang

[24] J. SHEN AND T. TANG, Spectral and High-order Methods with Applications, Science Press,
Beijing, 2006.

[25] J. SHEN, T. TANG AND L. L. WANG, Spectral Methods: Algorithms, Analysis and Appli-

cations, Springer Series in Computational Mathematics, Vol. 41, Springer, Heidelberg,
2011.

[26] Z. Q. WANG AND B. Y. GUO, Legendre-Gauss-Radau collocation method for solving initial

value problems of first order ordinary differential equations, J. Sci. Comput., 52 (2012),

pp. 226–255.

[27] Z. Q. WANG AND L. L. WANG, A Legendre-Gauss collocation method for nonlinear delay

differential equations, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), pp. 685–708.

[28] Y. X. WEI AND Y. P. CHEN, Convergence analysis of the Legendre spectral collocation meth-

ods for second order Volterra integro-differential equations, Numer. Math. Theory Methods
Appl., 4 (2011), pp. 419–438.

[29] Y. X. WEI AND Y. P. CHEN, Legendre spectral collocation methods for pantograph Volterra

delay-integro-differential equations, J. Sci. Comput., 53 (2012), pp. 672–688.

[30] L. J. YI, Z. Q. LIANG AND Z. Q. WANG, Legendre-Gauss-Lobatto collocation method for

nonlinear delay differential equations, Math. Methods Appl. Sci., 36 (2013), pp. 2476–
2491.

[31] L. J. YI AND Z. Q. WANG, Legendre-Gauss-type collocation algorithms for nonlinear or-

dinary/partial differential equations, Int. J. Comput. Math., DOI:10.1080/00207160.
2013.841901.

[32] L. J. YI AND Z. Q. WANG, Legendre spectral collocation method for second order nonlinear

ordinary/partial differential equations, Discrete Contin. Dyn. Syst. Ser. B., 19 (2014), pp.

299–322.

[33] M. ZENNARO, Delay Differential Equations: Theory and Numerics, in Theory and Numer-
ics of Ordinary and Partial Differential Equations, edited by M. Ainsworth, J. Levesley,

W.A. Light and M. Marietta, Clarendon Press, Oxford, 1995.


