
Numer. Math. Theor. Meth. Appl. Vol. 7, No. 1, pp. 23-40
doi: 10.4208/nmtma.2014.1316nm February 2014

A Fitted Numerov Method for Singularly Perturbed

Parabolic Partial Differential Equation with a Small

Negative Shift Arising in Control Theory

R. Nageshwar Rao and P. Pramod Chakravarthy∗

Department of Mathematics, Visvesvaraya National Institute of Technology,

Nagpur, 440010, India.

Received 23 April 2013; Accepted (in revised version) 15 July 2013

Available online 24 January 2014

Abstract. In this paper, a fitted Numerov method is constructed for a class of singularly
perturbed one-dimensional parabolic partial differential equations with a small nega-
tive shift in the temporal variable. Similar boundary value problems are associated with
a furnace used to process a metal sheet in control theory. Here, the study focuses on
the effect of shift on the boundary layer behavior of the solution via finite difference
approach. When the shift parameter is smaller than the perturbation parameter, the
shifted term is expanded in Taylor series and an exponentially fitted tridiagonal finite
difference scheme is developed. The proposed finite difference scheme is uncondition-
ally stable. When the shift parameter is larger than the perturbation parameter, a special
type of mesh is used for the temporal variable so that the shift lies on the nodal points
and an exponentially fitted scheme is developed. This scheme is also unconditionally
stable. The applicability of the proposed methods is demonstrated by means of two
examples.

AMS subject classifications: 65L11

Key words: Singular perturbations, parabolic partial differential equation, exponentially fitted
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1. Introduction

Singularly perturbed partial differential equations are the equations in which the un-
known function and its derivatives are evaluated at the same instance while in a singularly
perturbed delay partial differential equation the past history is also taken into consider-
ation while evaluating the unknown function and its derivatives. Such model problems
occur from the modeling of biological, chemical, and physical systems which are charac-
terized by both spatial and temporal variables and exhibit various spatio-temporal pat-
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terns [1–5]. The mathematical model relating an automatically controlled furnace to pro-
cess metal sheets [1] is given by the equation:

∂ u(x , t)

∂ t
= D

∂ 2u(x , t)

∂ x2 + ν(g(u(x , t −τ)))∂ u(x , t)

∂ x
+ c[ f (u(x , t −τ))− u(x , t)].

This equation is defined on a one-dimensional spatial domain 0 < x < 1, where ν is the
instantaneous material strip velocity depending on a prescribed spatial average of the time-
delayed temperature distribution u(x , t − τ), and f represents a distributed temperature
source function depending on u(x , t − τ). The material strip to be heated is fed into the
furnace by rollers whose speed is regulated by a speed controller. The furnace temperature
is varied by means of a heater actuated by a heater controller. The control objective is
to maintain a desired spatial temperature distribution in the incoming material within the
furnace. This may be accomplished by placing temperature transducers along the material
strip. A computer uses the information from the transducers to generate the appropriate
control signals for the heater and feed-roller speed controllers. Owing to the possible
presence of time delays in actuation, and in information transmission and processing, the
controlled signals may be delayed in time.

Extensive literature has been developed over the last two decades on the singularly
perturbed partial differential equations [6–17], but the theory and numerical solutions
of singularly perturbed delay partial differential equations are still at the initial stage.
Ansari et al. [18] in their work considered a Dirichlet boundary value problem of singularly
perturbed delay parabolic partial differential equation. A numerical method comprising
a standard finite difference operator on a rectangular piecewise uniform fitted mesh of
Nx×Nt elements condensing in the boundary layers is developed. The method is proved to
be robust with respect to the small parameter. Yulan Wang [19] considered a similar type
of singularly perturbed delay parabolic partial differential equation wherein the domain
is divided into three sub-domains namely the two inner regions and an outer region and
a reliable analytical technique is developed. Bashier and Patidar [20] developed a robust
fitted operator finite difference method for the numerical solution of a singularly perturbed
delay parabolic partial differential equation. Sufficient analysis is carried out to verify the
validity of the solutions obtained.

In this paper, we presented exponentially fitted finite difference methods for a class of
singularly perturbed one-dimensional parabolic partial differential equations with a small
negative shift in the temporal variable. Briefly, the outline is as follows: In Section 2, we
state the problem. In Section 2.2, the finite difference method is developed considering
the shift parameter to be smaller than the perturbation parameter, the truncation error in
the finite difference scheme is calculated and stability analysis is carried out. In Section
2.4, the shift parameter is considered to be larger than the perturbation parameter and
the finite difference method is developed. The truncation error is calculated and stability
analysis is carried out. To demonstrate the efficiency of the proposed methods, numerical
experiments are carried out for two test problems and the results are given in Section 3.
Finally the conclusions are given in the last section.
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2. Statement of the problem

In this paper, we consider a class of singularly perturbed parabolic partial differential
equations with a small negative shift, of the form:

∂ u(x , t)

∂ t
− ε∂

2u(x , t)

∂ x2 + a(x , t)u(x , t) + b(x , t)u(x , t − δ) = f (x , t), (2.1)

(x , t) ∈ D : {0< x < 1,0< t ≤ T} with the initial data

u(x , t) = α(x , t), (x , t) ∈ D1 : {0≤ x ≤ 1,−δ ≤ t ≤ 0} (2.2a)

and the boundary conditions

u(0, t) = φ(t), 0< t ≤ T, (2.2b)

u(1, t) =ψ(t), 0< t ≤ T, (2.2c)

where 0 < ε ≪ 1 is the singular perturbation parameter, δ > 0 represents the small
shift parameter, a(x , t), b(x , t), f (x , t), α(x , t), φ(t), ψ(t) are sufficiently smooth and
bounded functions.

We impose the compatibility condition on the initial function α(x , t):

α(0,0) = φ(0), α(1,0) =ψ(0),

∂ φ(0)

∂ t
− ε∂

2α(0,0)

∂ x2 + a(0,0)α(0,0)+ b(0,0)α(0,−δ) = f (0,0),

and

∂ ψ(0)

∂ t
− ε∂

2α(1,0)

∂ x2
+ a(1,0)α(1,0)+ b(1,0)α(1,1− δ) = f (1,0).

Under the above assumptions and conditions, problem (2.1) with the initial data (2.2a)
and the boundary conditions (2.2b)-(2.2c) has a unique solution [18].

2.1. When the shift parameter is smaller than the singular perturbation

parameter

When the shift parameter δ is smaller than the perturbation parameter ε, the use
of Taylor’s series expansion for the shifted term is valid [21]. Hence the Taylor series
approximation for the shifted term is taken as follows:

u(x , t − δ)≈ u(x , t)− δ∂ u(x , t)

∂ t
+O (δ2). (2.3)

Substituting Eq. (2.3) in Eq. (2.1)we get

[1− b(x , t)δ]
∂ u(x , t)

∂ t
+ [a(x , t) + b(x , t)]u(x , t) = f (x , t) + ε

∂ 2u(x , t)

∂ x2 (2.4)
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subject to the conditions

u(x , 0) = α(x , 0), 0≤ x ≤ 1, (2.5a)

u(0, t) = φ(t), 0< t ≤ T, (2.5b)

u(1, t) =ψ(t), 0< t ≤ T. (2.5c)

Since the shift parameter δ is assumed to be smaller than ε, (2.4)-(2.5) will be a good
approximation to the problem (2.1)-(2.2).

2.2. Fitted Numerov method

To describe the method, we consider the linear singularly perturbed delay parabolic
partial differential equation (2.4) subject to the conditions (2.5). Now we divide the time
interval [0, T] into N equal parts with constant step size ∆t. Let 0= t0, t1, · · · , tN = T be
the mesh points. Then we have tn = n∆t, n= 0,1,2, · · · , N .

Applying Backward Euler formula for time derivative in Eq. (2.4) we obtain a linear
ordinary differential equation at each time step as

[1− b(x , tn)δ]
(Un− Un−1)

∆t
+ [a(x , tn) + b(x , tn)]U

n

= f (x , tn) + ε
d2Un

d x2
, 0< x < 1, (2.6)

where Un = U(x , tn)≈ u(x , tn), n= 1,2, · · · , N . The above Eq. (2.6) can be rewritten as

−εd2U

d x2 + P(x)U(x) = Q(x), (2.7)

where

U = Un, P(x) =
1

∆t
+
�

1− δ

∆t

�

b(x , tn) + a(x , tn),

Q(x) = f (x , tn) +
�1− b(x , tn)δ

∆t

�

Un−1(x),

P(x) = P(x , tn), Q(x) = Q(x , tn), x ∈ [0,1].

The boundary conditions (2.5) can be written as

U(x , 0) = α(x , 0), x ∈ [0,1], (2.8a)

U(0) = U(0, tn) = φ
n = φ(tn), n= 1,2, · · · , N , (2.8b)

U(1) = U(1, tn) =ψ
n =ψ(tn), n= 1,2, · · · , N . (2.8c)

The solution to the reduced problem of (2.7) is

U0(x) =
Q(x)

P(x)
(2.9)
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and it does not satisfy both the boundary conditions of (2.8b)-(2.8c).
The solution of Eq. (2.7) is of the form

U(x) = U0 + V0 +W0, (2.10)

where V0 is the left boundary layer function (or solution) and W0 is the right boundary
layer function (or solution) and they satisfy the equations

− d2V0

dτ2 + P(0)V0 = 0, (2.11a)

− d2W0

dξ2
+ P(1)W0 = 0, (2.11b)

with

V0(τ = 0)+W0(ξ= 1/
p
ε) = φn − U0(0), (2.12a)

V0(τ = 1/
p
ε) +W0(ξ= 0) =ψn − U0(1), (2.12b)

V0(τ =∞) +W0(ξ=∞) = 0, (2.12c)

where τ = x/
p
ε and ξ = (1− x)/

p
ε, the stretching transformations for the boundary

layers.
Solving Eqs. (2.11a) and (2.11b) we get

V0(τ) = Ae−
p

P(0)τ, (2.13a)

W0(τ) = Be−
p

P(1)ξ, (2.13b)

where A and B are given by

A=
(φn − Un

0 (0))− (ψn − Un
0 (1))exp
�

−
Æ

P(1)
ε

�

1− exp
�

−
p

P(0)+
p

P(1)p
ε

�
,

B =
(ψn− Un

0 (1))− (φn− Un
0 (0))exp
�

−
Æ

P(0)
ε

�

1− exp
�

−
p

P(0)+
p

P(1)p
ε

�
.

We rewrite Eq. (2.7) as

ε
d2U

d x2 = P(x)U(x)−Q(x) = g(x , U). (2.14)

Now the spatial domain [0,1] is divided into M equal parts with constant mesh length
h. Let 0 = x0, x1, · · · , xr−1, xr , xr+1, · · · , xM = 1 be the mesh points such that xm = mh,
m = 0,1,2, · · · , M and r = M/2, xr = 1/2. In the interval [0,1/2] the boundary layer will
be in the left hand side, i.e., at x = 0 and in the interval [1/2,1], the boundary layer will
be in the right hand side, i.e., at x = 1.
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At x = xm, the above differential equation (2.14) can be written as

εU ′′m = g(xm, Um),

where g(xm, Um) = P(xm)Um − Q(xm) or gm = PmUm − Qm, Pm = P(xm), Qm = Q(xm),
gm = g(xm, Um).

By Numerov method we have,

ε
�Um−1 − 2Um+ Um+1

h2

�

=
1

12
(gm−1+ 10gm+ gm+1),

i.e.,

ε

h2 (Um−1− 2Um+ Um+1)−
1

12
(Pm−1Um−1 + 10PmUm+ Pm+1Um+1)

=− 1

12
(Qm−1+ 10Qm+Qm+1), m = 1,2, · · · , r − 1. (2.15)

In the interval [0,1/2], we introduce a fitting factor σ in the above scheme and is obtained
from the theory of singular perturbations as follows:

ε

h2σ(Um−1− 2Um+ Um+1)−
1

12
(Pm−1Um−1+ 10PmUm+ Pm+1Um+1)

=− 1

12
(Qm−1 + 10Qm+Qm+1), m = 1,2, · · · , r − 1.

The difference scheme can be rewritten as
�εσ

h2 −
1

12
Pm−1

�

Um−1 −
�2εσ

h2 +
5

6
Pm

�

Um+
�εσ

h2 −
1

12
Pm+1

�

Um+1

=− 1

12
(Qm−1+ 10Qm+Qm+1), m= 1,2, · · · , r − 1. (2.16)

We find the fitting factor σ in such a way that the solution of (2.16) converges to the
solution of (2.7). As h→ 0, Eq. (2.16) reduces to

σ

ρ2 (Um−1− 2Um+ Um+1) =
1

12
P(0)(Um−1+ 10Um+ Um+1), (2.17)

where ρ = h/
p
ε. Substituting (2.13a) in (2.17) and simplifying, we get the fitting factor

as

σ(ρ) =
ρ2P(0)
�

e
p

P(0)ρ + 10+ e−
p

P(0)ρ
�

48 sinh2
�
p

P(0)ρ
2

�
. (2.18)

This will be the fitting factor in the interval [0,1/2].
We solve the tridiagonal system (2.16) subject to the fitting factor (2.18) by using

Thomas algorithm for each time step. The value of Ur = U(x = 1/2) is obtained by the
solution of the reduced problem. i.e., U0(x).
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In the interval [1/2,1] the boundary layer will be in the right hand side, i.e., at x = 1.
We introduce the fitting factor σ1 in the difference scheme (2.15) as

ε

h2σ1(Um−1 − 2Um+ Um+1)−
1

12
(Pm−1Um−1 + 10PmUm+ Pm+1Um+1)

=− 1

12
(Qm−1 + 10Qm+Qm+1), m = r + 1, r + 2, · · · , M − 1.

The above scheme can be rewritten as
�εσ1

h2 −
1

12
Pm−1

�

Um−1 −
�2εσ1

h2 +
5

6
Pm

�

Um+
�εσ1

h2 −
1

12
Pm+1

�

Um+1

=− 1

12
(Qm−1+ 10Qm+Qm+1), m= r + 1, r + 2, · · · , M − 1. (2.19)

We find the fitting factor σ1 in such a way that the solution of (2.19) converges to the
solution of (2.7). As h→ 0, Eq. (2.19) reduces to

σ1

ρ2
(Um−1 − 2Um+ Um+1) =

1

12
P(1)(Um−1+ 10Um+ Um+1), (2.20)

where ρ = h/
p
ε. Substituting (2.13b) in (2.20) and simplifying, we get the fitting factor

as

σ1(ρ) =
ρ2P(1)
�

e
p

P(1)ρ + 10+ e−
p

P(1)ρ
�

48 sinh2
�
p

P(1)ρ
2

�
. (2.21)

This will be the fitting factor in the interval [1/2,1]. We solve the tridiagonal system (2.19)
subject to the fitting factor (2.21) by using Thomas algorithm for each time step.

Remark 2.1. When

P(0) = P(1),

both the fitting factors become equal and the constant fitting factor is

σ(ρ) =
ρ2P(0)
�

e
p

P(0)ρ + 10+ e−
p

P(0)ρ
�

48 sinh2
�
p

P(0)ρ
2

�
.

2.3. Truncation error and stability analysis

Eq. (2.16) can be written as

�εσ

h2 −
1

12∆t
− 1

12
b(xm−1, tn) +

δ

12∆t
b(xm−1, tn)−

1

12
a(xm−1, tn)
�

Un
m−1

−
�2εσ

h2 +
5

6∆t
+

5

6
b(xm, tn)−

5δ

6∆t
b(xm, tn) +

5

6
a(xm, tn)
�

Un
m

+
�εσ

h2 −
1

12∆t
− 1

12
b(xm+1, tn) +

δ

12∆t
b(xm+1, tn)−

1

12
a(xm+1, tn)
�

Un
m+1
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=− 1

12
( f (xm−1, tn) + 10 f (xm, tn) + f (xm+1, tn))−

1

12∆t
(1− b(xm−1, tn)δ)U

n−1
m−1

− 5

6∆t
(1− b(xm, tn)δ)U

n−1
m − 1

12∆t
(1− b(xm+1, tn)δ)U

n−1
m+1. (2.22)

Multiplying Eq. (2.16) by h2∆t we obtain

�

εσ∆t − h2

12
− h2∆t

12
b(xm−1, tn) +

h2δ

12
b(xm−1, tn)−

h2∆t

12
a(xm−1, tn)
�

Un
m−1

−
�

2εσ∆t +
5

6
h2 +

5

6
h2∆t b(xm, tn)−

5

6
h2δb(xm, tn) +

5

6
h2∆ta(xm, tn)
�

Un
m

+
�

εσ∆t − h2

12
− h2∆t

12
b(xm+1, tn) +

h2δ

12
b(xm+1, tn)−

h2∆t

12
a(xm+1, tn)
�

Un
m+1

=− h2∆t

12
( f (xm−1, tn) + 10 f (xm, tn) + f (xm+1, tn))−

h2

12
(1− b(xm−1, tn)δ)U

n−1
m−1

− 5h2

6
(1− b(xm, tn)δ)U

n−1
m − h2

12
(1− b(xm+1, tn)δ)U

n−1
m+1. (2.23)

Let F n
m(U) = 0 represent the difference equation (2.23) approximating the partial dif-

ferential equation (2.4) at the mesh point (xm, tn) and the exact solution of the partial
differential equation (2.4) be denoted by u(x , t). Replacing U with u at the mesh points of
the differential equation, we get

T n
m = F(u)

=
�

εσ∆t − h2

12
− h2∆t

12
b(xm−1, tn) +

h2δ

12
b(xm−1, tn)−

h2∆t

12
a(xm−1, tn)
�

un
m−1

−
�

2εσ∆t +
5

6
h2 +

5

6
h2∆t b(xm, tn)−

5

6
h2δb(xm, tn) +

5

6
h2∆ta(xm, tn)
�

un
m

+
�

εσ∆t − h2

12
− h2∆t

12
b(xm+1, tn)+

h2δ

12
b(xm+1, tn)−

h2∆t

12
a(xm+1, tn)
�

un
m+1

+
h2∆t

12
( f (xm−1, tn) + 10 f (xm, tn) + f (xm+1, tn)) +

h2

12
(1− b(xm−1, tn)δ)u

n−1
m−1

+
5

6
(1− b(xm, tn)δ)u

n−1
m +

h2

12
(1− b(xm+1, tn)δ)u

n−1
m+1, (2.24)

where T n
m denotes the local truncation error at the mesh point (xm, tn).

By using the Taylor’s series expansions in (2.24) and using the Eq. (2.4), we get the
principal part of T n

m as

T n
m =
�h3∆t

12
[b(xm−1, tn)− b(xm+1, tn) + a(xm−1, tn)− a(xm+1, tn)]

� ∂ u

∂ x

�

�

�

n

m
.

Hence
T n

m = O (h3∆t). (2.25)
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Multiplying Eq. (2.22) by ∆t and taking λ=∆t/h2, we obtain

�

εδλ− 1

12
− 1

12
(∆t − δ)b(xm−1, tn)−

∆t

12
a(xm−1, tn)
�

Un
m−1

−
�

2εδλ+
5

6
+

5

6
(∆t − δ)b(xm, tn) +

5

6
a(xm−1, tn)
�

Un
m

+
�

εδλ− 1

12
− 1

12
(∆t − δ)b(xm+1, tn)−

∆t

12
a(xm+1, tn)
�

Un
m+1

=− ∆t

12
( f (xm−1, tn) + 10 f (xm, tn) + f (xm+1, tn))−

1

12
(1− b(xm−1, tn)δ)U

n−1
m−1

− 5

6
(1− b(xm, tn)δ)U

n−1
m − 1

12
(1− b(xm+1, tn)δ)U

n−1
m+1. (2.26)

As ∆t → 0 we get

�

εδλ− 1

12
+
δ

12
b(xm−1, tn)
�

Un
m−1 −
�

2εδλ+
5

6
− 5δ

6
b(xm, tn)
�

Um
n

+
�

εδλ− 1

12
+
δ

12
b(xm+1, tn)
�

Un
m+1

=− 1

12
(Un−1

m−1+ 10Un−1
m + Un−1

m+1) +
δ

12
(b(xm−1, tn)U

n−1
m−1

+ 10b(xm, tn)U
n−1
m + b(xm+1, tn)U

n−1
m+1). (2.27)

To study the Von Neumann linear stability [4, 23], we assume that there exists an error
en

m = ξ
neiβmh at each grid point (xm, tn) where the phase angle β is real, i =

p−1 and ξ is
the amplitude and may be complex.

Substituting en
m = ξ

neiβmh in Eq. (2.27) and simplifying we get

ξ =

�

(e−iβh+ 10+ eiβh)− 12δθ
	

�

(e−iβh+ 10+ eiβh)− δθ	+ 48εσλ sin2 �βh

2

�
,

where θ = b(xm−1, tn)e
−iβh+ 10b(xm, tn) + b(xm+1, tn)e

iβh.
As the parameters ε and δ are very small quantities, it can be observed that |ξ| ≤ 1. For

stability, the amplification factor ξ has to satisfy the condition |ξ| ≤ 1 for all −π ≤ β ≤ π.
Hence the scheme (2.16) or (2.19) is unconditionally stable.

2.4. When the delay parameter is larger than singular perturbation parameter

When the delay parameter δ is larger than the perturbation parameter ε, use of Taylor’s
series expansion for the terms containing delay in (2.1) is not valid and hence the numer-
ical method presented in the previous section fails. In this section we present a numerical
scheme which works nicely when the delay parameter is larger than perturbation param-
eter also. To describe the method, we consider the linear singularly perturbed parabolic
partial differential equation (2.1) subject to the initial and boundary conditions (2.2).
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Let the time interval [0, T] be partitioned into N equal parts with constant step size
∆t. We choose the step size ∆t in such a way that the shift parameter δ = s∆t, where s is
some positive integer.

Let 0 = t0, t1, · · · , tN = T be the mesh points. Then we have tn = nT/N = n∆t,
n= 0,1, · · · , N .

Applying Backward Euler formula for time derivative in Eq. (2.1) we obtain

un − un−1

∆t
+ a(x , tn)u

n(x)+ b(x , tn)u
n−s(x)

=ε
d2un

d x2 + f n(x), n= 0,1,2, · · · , N , (2.28)

where un = u(x , tn), f n(x) = f (x , tn).
For each time step, the above equation is an ordinary differential equation which can

be rewritten as

−ε d2u

d x2
+ P(x)u(x) = Q(x), (2.29)

where

P(x) = α(x , tn) +
1

∆t
, Q(x) = f n(x)+

1

∆t
un−1 − b(x , tn)u

n−s,

subject to the conditions

u(0) = un(0) = φ(tn), n= 1,2, · · · , r, (2.30a)

u(1) = un(1) =ψ(tn), n= 1,2, · · · , r, (2.30b)

u(x , tn) = α(x , tn), x ∈ [0,1], n= −s,−s+ 1, · · · , 0. (2.30c)

By using the initial data, we can rewrite

Q(x) =







f n(x)+
1

∆t
un−1 − b(x , tn)α(x , tn−s), for n= 0,1,2, · · · , s,

f n(x)+
1

∆t
un−1 − b(x , tn)u

n−s, for n= s+ 1, s+ 2, · · · , N .

Using this in (2.29) and the fitted Numerov method described in Section 2.2 and the
boundary conditions given in (2.30), we get the solution at each time step.

2.5. Truncation error and stability analysis

Using the procedure described in Section 2.3, it has been observed that the principal
part of truncation error is given by

T n
m =
�h3∆t

12
[a(xm−1, tn)− a(xm+1, tn)]

� ∂ u

∂ x

�

�

�

n

m
.

Hence T n
m = O (h3∆t).
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Using Von Neumann linear stability described in Section 2.3, it has been observed that
the amplification factor ξ is given by

ξ=

�

e−iβh+ 10+ eiβh
�

�

e−iβh+ 10+ eiβh
�

+ 48εσλ sin2
�

βh

2

� .

We find that the amplification factor ξ satisfies the condition |ξ| ≤ 1 for all −π ≤ β ≤ π.
Hence the proposed scheme is unconditionally stable.

3. Numerical results

To demonstrate the applicability of the methods presented above, we consider two
problems of singularly perturbed parabolic partial differential equations with shift param-
eter δ less than the perturbation parameter ε. Since the exact solutions of the problems
for various values of δ are not known, the maximum point wise error for the examples are
calculated using the following double mesh principle [22]

EM ,N
ε = max

0≤i≤N

�

�U
M ,N
i
− U

2M ,2N
i

�

�,

where U M , Nε is the numerical solution obtained on a mesh containing M points in the
spatial direction and N points in the temporal direction whereas U

2M ,2N
i

is the numerical
solution obtained on a mesh containing 2M points in the spatial direction and 2N points
in the temporal direction.

The numerical rate of convergence for all the examples has been calculated by the
formula

RM ,N =
log
�

�EM ,N
ε /E2M ,2N

ε

�

�

log 2
.

Example 3.1. For

∂ u(x , t)

∂ t
− ε∂

2u(x , t)

∂ x2 +
(1+ x2)

2
u(x , t) + u(x , t − δ) = t3,

(x , t) ∈ D : {0< x < 1,0< t ≤ 2},

with the initial data

u(x , t) = 0, (x , t) ∈ D1 : {0≤ x ≤ 1,−δ ≤ t ≤ 0}

and the boundary conditions u(0, t) = 0 and u(1, t) = 0.
The maximum absolute errors are tabulated in the form of Table 1 for δ = 0.5ε with

various values of ε. The graph of the solution for ε = 2−20 and δ = 0.5ε is plotted in Fig. 1
to examine the effect of small shift on the boundary layer behavior of the solution. The
maximum absolute errors with ε= 0.01 and for various values of δ are tabulated in Table
2. The graph of the solution for ε = 2−10 and δ = 0.06 is plotted in Fig. 2 to examine



34 R. N. Rao and P. P. ChakravarthyTable 1: The maximum point wise errors and numerial rates of onvergene for Example 3.1 with
δ = 0.5ε.

M → 64 128 256 512 1024
ε ↓ N → 20 40 80 160 320

4.5965e-002 2.3365e-002 1.1780e-002 5.9146e-003 2.9635e-003
2−1 0.9762 0.9880 0.9940 0.9970 0.9985

4.8072e-002 2.4416e-002 1.2304e-002 6.1765e-003 3.0944e-003
2−2 0.9774 0.9886 0.9943 0.9971 0.9986

4.9092e-002 2.4914e-002 1.2550e-002 6.2989e-003 3.1553e-003
2−4 0.9785 0.9892 0.9946 0.9973 0.9986

4.9913e-002 2.5333e-002 1.2763e-002 6.4055e-003 3.2088e-003
2−6 0.9784 0.9891 0.9945 0.9973 0.9986

5.2462e-002 2.6615e-002 1.3405e-002 6.7272e-003 3.3697e-003
2−8 0.9790 0.9895 0.9947 0.9974 0.9987

5.3429e-002 2.7108e-002 1.3653e-002 6.8512e-003 3.4318e-003
2−10 0.9789 0.9895 0.9948 0.9974 0.9987

5.3723e-002 2.7268e-002 1.3735e-002 6.8929e-002 3.4529e-003
2−12 0.9784 0.9893 0.9947 0.9973 0.9987

1.5475e-001 1.6134e-001 7.8680e-002 2.5410e-002 6.6458e-002
2−14 -0.0602 1.0360 1.6306 1.9348 1.9406

1.7530e-001 2.6093e-001 2.6474e-001 1.6807e-001 7.8391e-002
2−16 -0.5739 -0.0209 0.6555 1.1003 1.5661

1.7554e-001 2.6692e-001 3.0979e-001 3.0140e-001 2.6136 e-001
2−18 -0.6046 -0.2149 0.0396 0.2056 0.5956

1.7554e-001 2.6693e-001 3.1039e-001 3.1017e-001 3.0689e-001
2−20 -0.6047 -0.2176 0.0010 0.0154 0.0344Table 2: The maximum point wise errors and numerial rates of onvergene for Example 3.1 with

ε= 0.01 and various values of δ.
M → 64 128 256 512 1024

δ ↓ N → 100 200 300 400 500

1.0568e-002 5.3136e-003 3.5540e-003 2.6683e-003 2.1355e-003
0.02 0.9919 0.9958 0.9981 0.9988 0.9991

1.0750e-002 5.4056e-003 3.6156e-003 2.7146e-003 2.1725e-003
0.04 0.9918 0.9958 0.9981 0.9988 0.9991

1.0934e-002 5.4985e-003 3.6779e-003 2.7614e-003 2.2100e-003
0.06 0.9916 0.9957 0.9981 0.9988 0.9991

1.1120e-002 5.5925e-003 3.7409e-003 2.8087e-003 2.2479e-003
0.08 0.9916 0.9957 0.9980 0.9988 0.9991

1.1309e-002 5.6876e-003 3.8047e-003 2.8567e-003 2.2862e-003
0.10 0.9916 0.9957 0.9980 0.9988 0.9991



A Fitted Numerov Method for Singularly Perturbed Parabolic PDE with a Small Negative Shift 35Table 3: The maximum point wise errors alulated using the numerial sheme presented in Setion2.2 for Example 3.1 for δ = 0.5ε.
ε= 2−10 N = 64 N = 128 N = 256 N = 512 N = 1024
M = 64 5.5836e-002 1.3814e-001 3.1104e-001 3.1104e-001 3.1104e-001

(λ= 128) (λ= 64) (λ= 32) (λ = 16) (λ = 8)
M = 128 1.7022e-002 1.3885e-001 2.3876e-001 2.3876e-001 2.3876e-001

(λ= 512) (λ= 256) (λ = 128) (λ = 64) (λ= 32)

M = 256 1.7037e-002 5.7204e-002 5.7204e-002 5.7204e-002 5.7204e-002
(λ= 2048) (λ = 1024) (λ = 512) (λ= 256) (λ= 128)

M = 512 1.7038e-002 4.7301e-003 4.7301e-003 4.7301e-003 4.7301e-003
(λ= 8192) (λ = 4096) (λ= 2048) (λ= 1024) (λ= 512)

M = 1024 1.7039e-002 8.5570e-003 1.0729e-003 1.0729e-003 1.0729e-003
(λ = 32768) (λ= 16384) (λ= 8192) (λ= 4096) (λ= 2048)Table 4: The maximum point wise errors alulated using the numerial sheme presented in Setion2.4 for Example 3.1 for δ = 2−5.

ε= 2−10 N = 64 N = 128 N = 256 N = 512 N = 1024
M = 64 5.3284e-002 1.3717e-001 2.3593e-001 2.9992e-001 3.1609e-001

(λ= 128) (λ= 64) (λ= 32) (λ = 16) (λ = 8)
M = 128 1.7513e-002 1.5652e-002 5.6836e-002 2.4239e-001 2.4239e-001

(λ= 512) (λ= 256) (λ = 128) (λ = 64) (λ= 32)
M = 256 1.7528e-002 8.7994e-003 1.7818e-002 5.8077e-002 5.8077e-002

(λ= 2048) (λ = 1024) (λ = 512) (λ= 256) (λ= 128)
M = 512 1.7530e-002 4.4106e-003 4.7897e-003 4.7897e-003 4.7897e-003

(λ= 8192) (λ = 4096) (λ= 2048) (λ= 1024) (λ= 512)
M = 1024 1.7530e-002 1.1038e-003 1.1038e-003 1.1038e-003 1.1038e-003

(λ = 32768) (λ= 16384) (λ= 8192) (λ= 4096) (λ= 2048)

the effect of small shift on the boundary layer behavior of the solution. The maximum
absolute errors are tabulated in the form of Table 3 for ε = 2−10, δ = 0.5ε for various
values of λ = ∆t/h2. It can be observed from this table that irrespective for the value of
λ, the maximum absolute error remains the same, which demonstrates the unconditional
stability of the finite difference scheme described in Section 2.1. The maximum absolute
errors are tabulated in the form of Table 4 for ε = 2−10, δ = 2−5 for various values
of λ = ∆t/h2. It can be observed from this table that irrespective of the value of λ, the
maximum absolute error remains the same, which demonstrates the unconditional stability
of the finite difference scheme in Section 2.4.

Example 3.2. For

∂ u(x , t)

∂ t
− ε∂

2u(x , t)

∂ x2
+ 2e−1u(x , t − δ) = 0,

(x , t) ∈ D : {0< x < 1,0< t ≤ 2},
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Figure 1: Numerial Solution U(x , t) of Example 3.1 with ε= 2−20, δ = 0.5ε.
Figure 2: Numerial Solution u(x , t) of Example 3.1 with ε= 2−10, δ = 0.06.
Figure 3: Numerial Solution U(x , t) of Example 3.2 with ε = 0.01, δ = 0.5ε.
Figure 4: Numerial Solution u(x , t) of Example 3.2 with ε= 0.01, δ = 0.06.
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δ = 0.5ε.

M → 64 128 256 512 1024
ε ↓ N → 20 40 80 160 320

3.8685e-003 2.8641e-003 1.8608e-003 1.0827e-003 5.9943e-004
2−1 0.4337 0.6221 0.7814 0.8529 0.9252

4.7975e-003 3.1217e-003 1.8170e-003 1.0038e-003 5.2781e-004
2−2 0.6199 0.7807 0.8561 0.9274 0.9635

4.6765e-003 2.6929e-003 1.4873e-003 8.0139e-004 4.2284e-004
2−4 0.7963 0.8565 0.8921 0.9224 0.9454

4.4829e-003 2.6268e-003 1.4767e-003 7.9891e-004 4.2154e-004
2−6 0.7711 0.8309 0.8863 0.9224 0.9457

4.3306e-003 2.6158e-003 1.4737e-003 7.9798e-004 4.2087e-004
2−8 0.7273 0.8278 0.8850 0.9230 0.9449

3.6039e-003 2.4568e-003 1.4433e-003 7.8909e-004 4.1966e-004
2−10 0.5528 0.7674 0.8711 0.9110 0.9427

1.0282e-002 2.7064e-003 1.1090e-003 7.1493e-003 4.0251e-004
2−12 1.9257 1.2871 0.6334 0.8288 0.9054

5.4376e-002 2.8248e-002 1.1411e-002 3.5324e-003 9.2016e-004
2−14 0.9448 1.3077 1.6918 1.9407 2.1682

9.2557e-002 7.5817e-002 5.3803e-002 2.9540e-002 1.2014e-002
2−16 0.2878 0.4949 0.8650 1.2980 1.6463

1.0979e-001 1.1174e-001 9.1303e-002 7.7166e-002 5.4832e-002
2−18 -0.0254 0.2915 0.2427 0.4930 0.8691

1.1262e-001 1.3012e-001 1.2648e-001 1.0610e-001 9.4454e-002
2−20 -0.2084 0.0410 0.2536 0.1677 0.2700

with the initial data u(x , t) = e−(t+x/
p
ε), (x , t) ∈ D1 : {0 ≤ x ≤ 1,−δ ≤ t ≤ 0} and the

boundary conditions u(0, t) = e−t and u(1, t) = e−(t+1/
p
ε), t ∈ (0,2].

The maximum absolute errors are tabulated in the form of Table 5 for δ = 0.5ε and
various values of ε. The graph of the solution for ε = 0.01 and δ = 0.5ε is plotted in Fig. 3
to examine the effect of small shift on the boundary layer behavior of the solution. The
maximum absolute errors for δ = 0.06 and for various values of ε are tabulated in Table
6. The graph of the solution for ε = 0.01 and δ = 0.06 is plotted in Fig. 4 to examine
the effect of small shift on the boundary layer behavior of the solution. The maximum
absolute errors are tabulated in the form of Table 7 for ε = 2−10, δ = 0.5ε, for various
values of λ = ∆t/h2. It can be observed from this table that irrespective of the value of
λ, the maximum absolute error remains the same, which demonstrates the unconditional
stability of the finite difference scheme described in Section 2.2. The maximum absolute
errors are tabulated in the form of Table 8 for ε = 2−10, δ = 2−5, for various values
of λ = ∆t/h2. It can be observed from this table that irrespective of the value of λ, the
maximum absolute error remains the same, which demonstrates the unconditional stability
of the finite difference scheme described in Section 2.4.



38 R. N. Rao and P. P. ChakravarthyTable 6: The maximum point wise errors and numerial rates of onvergene for Example 3.2 with
δ = 0.06.

M → 64 128 256 512 1024
ε ↓ N → 100 200 300 400 500

1.4598e-003 8.2153e-004 5.7013e-004 4.3759e-004 3.5454e-004
2−1 0.8294 0.9088 0.9358 0.9532 0.9617

1.4624e-003 7.8360e-004 5.3591e-004 4.0668e-004 3.2786e-004
2−2 0.9001 0.9463 0.9651 0.9730 0.9788

1.1617e-003 6.1243e-004 4.1749e-004 3.1973e-004 2.5951e-004
2−4 0.9236 0.9381 0.9338 0.9419 0.9477

1.1079e-003 6.0056e-004 4.1583e-004 3.1963e-004 2.5950e-004
2−6 0.8834 0.9168 0.9292 0.9416 0.9477

1.1178e-003 5.0039e-004 4.0275e-004 3.1811e-004 2.5915e-004
2−8 1.1595 0.7440 0.9015 0.9371 0.9460

1.6053e-002 5.4889e-003 7.9227e-004 2.9877e-004 2.5708e-004
2−10 1.5483 1.8240 2.0742 0.8823 0.9393

6.1932e-002 3.7513e-002 1.1003e-002 1.5502e-002 2.3276e-004
2−12 0.7233 1.1484 1.6655 2.0117 0.8518

9.4838e-002 8.3589e-002 5.2928e-002 1.6924e-002 2.4488e-003
2−14 0.1821 0.3879 0.8989 1.5437 1.9208

1.2958e-001 1.1228e-001 9.3348e-002 6.3881e-002 2.2801e-002
2−16 0.2067 0.1500 0.2705 0.7308 1.4343

1.4836e-001 1.3945e-001 1.2174e-001 1.0119e-001 7.1655e-002
2−18 0.0893 0.1313 0.1376 0.2467 0.6098

1.5157e-001 1.5816e-001 1.4307e-001 1.2732e-001 1.0663e-001
2−20 -0.0614 0.1282 0.0968 0.1301 0.2194Table 7: The maximum point wise errors alulated using the numerial sheme presented in Setion2.2 for Example 3.2 for δ = 0.5ε.
ε= 2−10 N = 64 N = 128 N = 256 N = 512 N = 1024
M = 64 7.6839e-003 2.2629e-002 9.1164e-002 9.1164e-002 9.1164e-002

(λ = 128) (λ = 64) (λ= 32) (λ= 16) (λ= 8)
M = 128 1.4518e-003 2.3104e-002 4.7080e-002 4.7080e-002 4.7080e-002

(λ = 512) (λ= 256) (λ= 128) (λ= 64) (λ= 32)
M = 256 1.7569e-003 8.5972e-003 8.5972e-003 8.5972e-003 8.5972e-003

(λ= 2048) (λ= 1024) (λ= 512) (λ= 256) (λ= 128)
M = 512 1.7823e-003 6.6720e-004 6.6720e-004 6.6720e-004 6.6720e-004

(λ= 8192) (λ= 4096) (λ= 2048) (λ= 1024) (λ= 512)
M = 1024 1.7896e-003 9.7468e-004 5.1675e-004 2.6755e-004 1.3263e-004

(λ= 32768) (λ= 16384) (λ= 8192) (λ= 4096) (λ= 2048)



A Fitted Numerov Method for Singularly Perturbed Parabolic PDE with a Small Negative Shift 39Table 8: The maximum point wise errors alulated using the numerial sheme presented in Setion2.4 for Example 3.2 for δ = 2−5.
ε= 2−10 N = 64 N = 128 N = 256 N = 512 N = 1024
M = 64 2.7128e-003 6.4549e-003 3.8367e-002 3.8367e-002 3.8367e-002

(λ= 128) (λ= 64) (λ= 32) (λ = 16) (λ = 8)
M = 128 8.8630e-004 1.4203e-002 1.4203e-002 1.4203e-002 1.4203e-002

(λ= 512) (λ= 256) (λ = 128) (λ = 64) (λ= 32)
M = 256 9.1492e-004 2.2697e-003 2.2697e-003 2.2697e-003 2.2697e-003

(λ= 2048) (λ = 1024) (λ = 512) (λ= 256) (λ= 128)
M = 512 9.1915e-004 2.2848e-004 2.2848e-004 2.2848e-004 2.2848e-004

(λ= 8192) (λ = 4096) (λ= 2048) (λ= 1024) (λ= 512)
M = 1024 9.1942e-004 2.3180e-004 2.3180e-004 2.3180e-004 2.3180e-004

(λ = 32768) (λ= 16384) (λ= 8192) (λ= 4096) (λ= 2048)

4. Conclusions

In this paper, we presented exponentially fitted finite difference methods for a class of
singularly perturbed one-dimensional parabolic partial differential equations with a small
negative shift in the temporal variable. The numerical results presented in Tables 1-2, 5-6
show the high accuracy and convergence of the proposed finite difference methods. Tables
3-4, 7-8 demonstrate the unconditional stability of the proposed finite difference methods.
Figs. 1-4 demonstrate the effect of the shift parameter on the boundary layer behavior of
the solution of the problem. From the numerical results it is concluded that the presented
methods offer significant advantage for the linear singularly perturbed parabolic partial
differential equations with a small negative shift.
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