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Abstract. In this paper, based on the basis composed of two sets of splines with distinct
local supports, cubic spline quasi-interpolating operators are reviewed on nonuniform
type-2 triangulation. The variation diminishing operator is defined by discrete linear
functionals based on a fixed number of triangular mesh-points, which can reproduce
any polynomial of nearly best degrees. And by means of the modulus of continuity,
the estimation of the operator approximating a real sufficiently smooth function is re-
viewed as well. Moreover, the derivatives of the nearly optimal variation diminishing
operator can approximate that of the real sufficiently smooth function uniformly over
quasi-uniform type-2 triangulation. And then the convergence results are worked out.
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1. Introduction

As is known, the nonuniform rational B-splines scheme has become a de facto standard
in Computer Aided Geometric Design, which is a powerful tool for constructing free-form
curves and surfaces [3,7,14, 16]. Due to its rational model, some new alternatives have
been proposed for constructing fair-shape-preserving approximations recently [8-10, 15].
However, both B-spline surfaces and the new alternatives are constructed in the form of
tensor product, which implies that the degrees of the surfaces are the addition of that of
the parameters in two directions so that there may be some inflection points on the surface.
Moreover, the bivariate function can not reproduce any polynomial of nearly best degree.
Furthermore, it is restricted to construct surfaces over the rectangular mesh. Hence, to

*Corresponding author. Email addresses: qianjianghhu@sina.com (J. Qian), wangfan@njau.edu.cn
(E Wang)

http://www.global-sci.org/nmtma 1 (©)2014 Global-Science Press



2 J. Qian and E Wang

avoid the shortcomings, it is very important to study multivariate spline functions theoret-
ically. Since multivariate spline functions are heavily dependent on the geometric prop-
erty of the domain partitions, it is so complex that the non-Cartesian product multivariate
spline functions has not been developed radically for a long time. But all is changed until
the construction of the Conformality of Smoothing Cofactor Method [17,18].

In a specific way, the smooth cofactor and conformality condition has been introduced
to which the polynomials must satisfy by analysing the relation between the polynomials
over two adjacent cells [17,18]. The conformality condition establishes the equivalent
conversion between multivariate spline functions and the corresponding algebraic prob-
lems. As a result, the Conformality of Smoothing Cofactor Method provides an algebraic
approach to studying the multivariate spline functions, including the dimension and the
locally supported basis functions in multivariate spline spaces [17,18,22,23], etc., which
are difficult but important. The dimension of the multivariate spline function space Sf (A)
i.e., the multivariate spline space with degree k and smoothness u over the domain D with
respect to the partition A have been widely developed in [4,13,14,17,18,24]. Recently,
Liu, Hong, and Cao [6] determined the dimension and construct a local support basis of
the space S“4(A(2)), for d = 0,1 of the spline functions over the type-2 nonuniform trian-
gulation. The basis functions of bivariate cubic and quartic spline spaces on uniform type-2
triangulation have been derived in [5,19], respectively, where spline quasi-interpolation
has been also investigated thoroughly. These spline quasi-interpolating operators can re-
produce any polynomial of (nearly) best degrees, respectively. Moreover, spline quasi-
interpolation defined by discrete linear functionals based on a fixed number of triangular
mesh-points has been investigated, which showed that they could approximate a real func-
tion and its partial derivatives up to an optimal order in [1,2].

However, in view of the complexity in computation of the bases, the study on spline
quasi-interpolation over nonuniform type-2 triangulations are almost restricted in bivariate
quadratic B-splines, see [20,21]. Since multivariate approximation over irregular triangu-
lations may be more important than that over uniform triangulations, we have computed
the cubic splines in [11], and have constructed the cubic spline quasi-interpolation in [12]
by using the Conformality of Smoothing Cofactor Method [17,18]. Now we shall make a
further study on the approximation of the derivatives of the cubic spline quasi-interpolation
in this paper.

A brief outline of this article is organized as follows. In Section 2, we review the di-
mension and the bases in S;’Z(A,%l). Based on five mesh points or the center of the support
of each spline Bl.lj and five mesh points of the support of each spline Bizj, the representa-
tion of spline quasi-interpolation is investigated, which can reproduce any polynomial in
P, U {x2y, xy?}. Then in section 3, we make a further study of the derivatives of the cubic
spline quasi-interpolation, which can approximate the derivatives of the real sufficiently
smooth function uniformly over quasi-uniform triangulation.

2. Review of representation of spline quasi-interpolation in S;’Z(A(nfr)l)

The domain Q = [a, b] x [c, d] is partitioned into mn rectangular cells Q;; = [x;, x;41]x
[¥,¥j+1],1=0,--,m—1and j =0,---,n — 1, where m,n are given positive integers,
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anda=xg<x; < <xp,=bandc=y, <y <--<y,=d. Thus, we obtain
a type-2 triangulation Agﬂ by adding the two diagonals in each Q;;. Let h; = x; — x;_1,
k]-. =Y~ Yj-1, respectix./ely. In the p.articular case of h; = h;_; and k; = kj_;, such a
triangulation is called uniform, otherwise, nonuniform.

A nonuniform bivariate spline s(x, y) € S;’Z(Agﬁ) is a piecewise polynomial of degree
three satisfying two continuous condition:

(a) s(x,y) is C! continuous on the horizontal and vertical grid segments x = x; and
Y =yj, wherei=0,---,mand j=0,---,n.

(b) s(x,y) is C? continuous on the diagonal grid segments

ki1 ki1

y—yj— (x—x;)=0, y—yi+ (x —xi41) =0,

hin hin

wherei=0,---,m—1land j=0,---,n— 1.

1

The dimension of the nonuniform bivariate spline space SB’Z(A%) in[11]is

dim$;*(A®) = 2mn +3m +3n +4, 2.1

which is the same with the uniform case in [5].

And also the bases of Sé’Z(A(ﬁ%) has been calculated in [11] in term of B-net, which
is composed of two sets of splines with two kind of distinct supports as shown in Fig. 1
and Fig. 2, respectively. Here, we shall provide the explicit representation of the basis over
each triangular cell in the supports as shown in Appendix for the sake of illustration.

Denote by Alll and A‘Z, the triangle cells in the supports, respectively, where the
spline functions are expressed in the form of Bl.lj(Ai) (u=1,2,---,16) and Bl.zj(Aﬁ)
(v=1,2,--+,24), respectively.
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1 1
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1 1 1 1
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1 1
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1 1
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Figure 1: 16 triangular cells in the support of Bl.lj(x,y).



where (i, j) € I, or B;
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Figure 2: 24 triangular cells in the support of Bizj(x,y).

Let the vertices

Py(xi-1,¥;),
P7(xi+1:.)/j+1),

Pl(xi—layj+1),
Po(xit1, ¥}

P3(xi—1,Yj-1)s

Ps(xi).yj—i-l))

Py(xi, ¥i-1)s
PQ(Xb .y])
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Ps(xiy1,Yj-1)s

in the spline Bl.lj(x, ¥) with the center (x;, y;) as shown in Fig. 1, and the vertices

Q1(xi, Yjt2)s Qa(xXi—1,Yj31);
Qs(xiy1,¥j-1)s Qs(Xit2,¥)),
Qo(x, ¥j41)s Quo(x3, ¥,

Qs(xi—l,y]'),
Q7 (Xit2,¥j41)s
Qui(xit1,¥5),

Q4(xj, ¥j-1)s
Qs(xit1, ¥j+2);
Qia(xit1, ¥jt1)

in the spline Bl.zj(x,y) with the center ((x; + x;41)/2,(¥; + ¥j+1)/2) as shown in Fig. 2.
In view of the translation of the bases, Bl.lj(x, y)’s and Bizj(x, y)’s do not vanish identi-

11:{(i,j):(a,[5):0§a5m,OSﬁsn},
L={{j)=(a,p):-1<a<m, -1<B<n},

cally on the domain 2 defined in Section 2 for the index set

respectively. Then it follows from the cardinality of I; and I, that the total number of the

linear independent functions Bilj(x, y)’s and Bizj(x, y)’s which do not vanish identically on

the domain € is
2mn+3m+3n+5.

By the formula (2.1), it is more than the dimension of S;’Z(A(nfr)l). As a result, we can
construct the bases of S;’Z(A(ﬁ%) by getting rid of arbitrary one function in either Bilj(x, ¥)

2
j

(x,y) where (i,j) € I,.



On the Approximation of the Derivatives of Spline Quasi-Interpolation in Cubic Spline Space 5
Theorem 2.1 (see [11]). For arbitrary chosen (iy, jo) € I, (i1, ;) € I,, let

B' = {B}; : (i, j) € 1\{(io, jo)}} 1B}, : (i,)) € L},

B2 = (B : (i,j) € L\{(in, jDB JiBY : (L) e 1},
Then, either B! or B? is a basis of the non-uniform cubic spline space S,Jl,’z(A(n%,)l).

By means of translation of the bases and the values at the ten points on each triangle,
it follows that the bases with minimal local support satisfy

Theorem 2.2 (see [11]). For all (x,y) € Q

Z BL(x,y)=1+24, (2.2a)
(i,))eh
D By =4, (2.2b)
(i,))el,
D B+ D) BRxy) =1, (2.2¢)
(@,))eh (@,))el,

where A # 0, —1.

Remark 2.1. With the choice of A = —0.25 and —0.75, the splines Bl.lj(x,y)’s and

2 ) . . . .
Bi].(x, y)'s are shown in Fig. 3 to Fig. 6, respectively.

We have constructed the spline quasi-interpolation by discrete linear functionals based
on some mesh-points either in the supports or close to them. These spline quasi-
interpolating operators can reproduce polynomials with high degrees, and error estima-
tion show that the variation diminishing operator V,,,(f) can approximate a sufficiently
smooth function uniformly.

Theorem 2.3 (see [12]). Let V,,,(f) be the variation diminishing operator that map C(£2)
into Sé’Z(A(ﬁ%) defined by

V()= D Ag(HBLGO Y+ D iy (FBEGx, ), 2.3)

(i,j)en (i,j)el,

where A # —1,0, and

Ay(f) = mf(xi)yj)) (2.4a)

4 rxit+xi YitYia 1
Uij(f):_ﬁf( l 21 — )+a[f(xi).)’j+1)+f(xi+1).)’j+l)

+ £ v+ F(xien77))- (2.4b)
Then for all (x,y) € Q,

Vin(F)=f(x,y), Vf(x,y) €Pylx,y]lUspanix?y, xy?}. (2.5)
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Figure 3: BL(x,y) with A =—0.25, Figure 4: B} (x,y) with 2 = —0.25.
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Figure 5: Bilj(x,y) with A = —0.75. Figure 6: ij(x,y) with A = —0.75.

Let the compact set K be the closure of the open set containing 2. The centers of the
two distinct supports is located in the interior of K for sufficiently large m and n. Let the
maximal radius of the two supports of 31 and 32 be

Tmn,1 = Osiﬁnrgz%);jSH{'ngﬂ’ |PyPs|, |PyPs|, |PoPyl}, (2.6a)
rmn,2 = max {lQQl |) |QQ2|) |QQ5|: |QQ6|}J (26b)

—1<i<m,-1<j<n

respectively, where Po(x;,y;) and Q((x; + x;41)/2,(¥; + ¥j4+1)/2) are the centers of the

1 2 :
two supports of B;; and B; 7 respectively, and

|P9P1| == ﬂ/h2+k12+1, |P9P7| == hl+1+k]2+]_’ (273)
|P9P5| == ﬂ/ l+1 + k2 |P9P3| == ﬂ/hlz + kJZ, (2.7b)

|QQ1|=\/(hi2+1)2+(k+z+kJ;), |QQ2|=\/(hi+hi2“)2+(%)2, 270

Q5| = \/(hi;)z (5 +22) oal = \/(hi+2 $BYE L (51 g
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Denote by
P = —12112)rr(1+2{h b Kinn = —1I<I}E<D§+2{h b (2.8)
5mn = max{hmn’ mn}5 5*mn = max{rmn,l; rmn,z}, (2-8b)
and
okf &
Wk Omn
(f)= max ’k{wﬂ(ak_lxaly, : )} (2.92)
ID*f | = {’ o ’} (2.9b)
= max su — |, .
1=0,- (xy)zﬂ ok=Ixoly
where wg, is defined as the modulus of continuity, and k = 1,2,---. Let || - || be the

supremum over 2, and we shall work out the estimation.

Theorem 2.4 (see [12]). Let f € C(K), for sufficiently large positive zeals m and n,

I = Viua (Pl < 200, 5 2.10)
When f € CY(Q), then

I ~ Vool < 5 B0 (). 2.11)
When f € C%(Q), then

1 Vil < 282,25 2.12)
When f € C3(Q), then

IF = Vi Pl < 253, ID°F 1. 2.13)

3. The approximation of the derivatives of the spline quasi-interpolating
operator

In this section, we shall make further study of the nearly optimal cubic spline quasi-
interpolating operator V,,,,(f), which indicates that its derivatives can approximate the
derivatives of a smooth function uniformly based on the modulus of continuity. In much
detail, we consider three cases as follows.

Case one: we shall consider for f € C!,

Estl(i(, 5’) = DSthn(f)(JN(, 5’); s+t=1, 3.1

where (%,7) € Q and Dt = 95t /95x 3" y.
By using the reproduction of V,,,,(f), and the Taylor representation of f at the point
(£.5)€Q , ,
fOo,y)=f07)+ f,(u,v)(x = %) + f, (ug, vy — 3), (3.2)
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where
(ul,Vl):61(3?,5’)4‘(1—61)(?(,}’), 61€(051)5

we have

1D Vi (F )| = 1D Vi (f = £ (%, 7))
< > AU~ FEINIDBL+ D lug(f — FEINDIDTBEL (3.3)

(i.j)eh (L.))el,

Thus it is sufficient to derive the boundary of |A;;(f — f(%,7)I, |u;;(f — f(%, 7)1,
|D$ fBl.ljl, |D5tBi2j|. In fact, analogous to the proof of Theorem 2.4, it follows

L 2 .
[Ai;(f = f(& I < m&nnllD fll, (3.4a)
2
i (f = F(Z, 91 < Wémnlllell- (3.4b)

Moreover, by computing directly, one can obtain the partial derivatives of the two sets
of splines Bilj and Bizj which depend on the values at three vertices and three midpoints on
three edges over each triangular cell as shown in Figs. 7 and 8, respectively. The values of
the partial derivatives DloBilj and DlOBiZj are listed in Tables 1 and 2, respectively, where

hi+hiy” 0 hithyy” ) kitkieT ) ktk

i

and YA(# 0,—1) € R throughout this paper. And the values of DOlBilj and DOlBizj can be
calculated as well, which are omitted here. It should be noted that all the values of D* tBilj

Pl PB P
7
1 2 4
S CG J
8 9 10 1
fal 9 fal
PZ T 14 PS
16 18
CZO
22 24
P P

3 5
P4

Figure 7: Middle points on the edges in the support of B}]
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36

37 39

40

Q, Q

Figure 8: Middle points on the edges in the support of B:"]

and D“Biz]. are equal to zero on the boundary of the supports for s + t = 1. After resolving
the maximal values of D* tBilj and D* tBl.Zj on each triangular cell, we have

Theorem 3.1. Let (x,y) in any triangular cell in the supports of Bilj and the supports of BIZJ
Then

142 byl

IDStBL| < M IDStB2| < all l, (3.5)
USRSkt U RSkt
[ L]

where s +t = 1, h; = min{h;, hi1,Rigal, l€j = min{k;, kj41,kj42}, and ay, by are real
constant.

Hence, by means of (3.4) and (3.5), it follows
Theorem 3.2. For f(x,y)€C!, (x,y)€Q,

2 O mn
U e (3.6)

mn
where &, = minij{fli,f(]-}.
Case two: we shall consider for f € C?,

D*(f = VN, 7), s+t=1,

DSV, (F)(%, 3, s+t=2. (3.7)

Eso(X,7) = {
When s +t = 1, by using the reproduction of V,,,(f), Theorem 3.1, and the Taylor

representation of f (3.2), that is,

FOoy) =q100,¥) + [fu(ug, vi) — £o(x, y)](x — &)
+[f, (ug,v1) = £, (6, I = 9), (3.8)
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Table 1: The values of D'°B/(x,y) (1 # —1,0) in the support.

Points  Values Points  Values
3(1+1) _ 3(1+2)
Cl 16h; C14 2hi44
3(1+1) 15(14A)
& 16h; Cis 16h;
_3(142) 15(14A)
Cs 16k, Cie 16h;
_3(142) _15(14+2)
C4 16h1+1 C17 16h1+1
3(141) _15(14+2)
Cs 4h; Cis 16k,
3(14+A
Ce O Crp A
_3(142)
G 4hist Co O
15(141) _3(142)
Cs 16h; Ca1 4hy s
15(14A) 3(14+1)
Co 16h; Caz 16h;
_15(1+2) 3(1+1)
C1o 16h;,, Cas 16h;
_15(142) _3(142)
Cn 16k, Ca4 16k,
3(141) _3(142)
Cra 2h, Cas 16k,
P, O
we have
t t
ID**(f = Vi (f NN = ID* Vi (f — qa)
1 2
< > g(F —aIIDBLI+ D 1wy (F — gD B
(i,))en (i,j)€l,
2al 5mn ~
<(5+4by ) Z2la 1l (3.9)
3 51711‘1
where
cbk(f)— max { w (L(S ) k=1,2,--- (3.10)
=0,k | P\ gk-Ixgly’ ") [ S '

When s + t = 2, by using the reproduction of V,,,,(f ), and the Taylor representation of
f at the point (¥,7) € Q

B 1 N 22
FE=atoN+3[G-D5 -+ 0 -5y [ faw, @

where / /
01(6,5) = @)+ F(E N~ D+ F (&I -9, (3.12)

and
(ug,vo) = €3(x, y) + (1 —€3)(X,7), €2,€(0,1),
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Table 2: The values of D'°B’(x,y) (1 # —1,0) in the support.

Points  Values Points  Values
Vi 0 Voo thA/l 2 —2(B;+B;.)]
V2 0 Vas 4}?:; i+1
Vs A Bt Vas _%
Voo 0 Vas h_iAi(__ + B i)
Vs 4;?1’1.):2 Ii+1B;+1 Vas %Aiﬂ - EAI'(% + %B]‘)
Ve - 4;?::11 Bip Vo — 163;11114/1- + ﬁAi—H 1_2 + %Bj)
V; 4}?;—};1Ai+13j+1 Vag ﬁ (75 — %B;)
V8 A B]+1 V29 % Ii+1
Qo %A B}+1 V3o _j_;iAiBj
Vio 4h—H(Ai+1 — A, )B]+1 Qo _%AiBj
Quz h?:jz z+1B;‘+1 V32 i(Ai+1 —A)B;
V12 4;?1’1};2 i+lB;'+1 Qu % n,. A B;
Vis 1?1 Vs 4}9:12Ai+le
Vig AA (~Z 1 3B,)) Vas jilAB
Vis 16h}:+1Ai 17 _Az 12 + B}+1) V36 ﬁAHlB]‘
Vie — 16?;3“1‘\/' + _Az+1 + 3BJ+1) Vay _%AiBj
Va7 hiz /1+1 fZ j+1) Vg O
Vis %Alﬁl V39 4,?;12 i+1Bj
Vig —i—,i Voo O
Voo A=+ 5(B) +Bji0)] Vg O
Vo1 4;?:—);1(Ai+1 —A)
we have

|D5t(an(f))| = |D5thn(f - C11)|
< > G —aIIDBLI+ D Iui(f — a)IID*BE.

(i,j)enh

Analogous to Case one, we have

Mij(f —q)l <

lui;(f = F(& 31 <

(i,))€ly

3|1+A| Ormn

_52
|A’| mn

11

(3.13)
2 ID'fI, (3.14a)
IIDL1I. (3.14b)
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Moreover, as D* tBilj and D”Bl.zj are linear polynomial in each triangular cell in Q for s+t =
2, the maximal values on the triangular cell depend on their values at the three vertices,
respectively. After simple computation, it follows:

Theorem 3.3. Let (x,y) in any triangular cell in the supports of Bl.lj and the supports of BIZJ
Then for s+t =2

1
IDS‘BL| < M IDStB2| < ’22'3”, (3.15)
YT RSkt TRkt
ij ij

where a,, b, are real constant.
Hence, by means of (3.14) and (3.15), it follows

|D5t(an(f))| = |D5thn(f - C11)|
< >0 AU —a)ID*BL+ D luy(f — gD B3|

(@,))eh (i,))€l,
2a 52
< (52 +4b,) 222 D2 (3.16)
3 5mn

As a result, it follows

Theorem 3.4. For f(x,y) € C? (%,7)€Q,

st 5mn ~1

DU V(DI = (S5 +4D,) 2l she=1, (3.17a)
2a 52

D" WpnF DI < (57 +4b2) 2 ID% s+e=2. (3.17b)

Case three: we shall consider for f € C3,

D¥*(f =V (FN(E, 7)), s+t=1,2,

D*'Voo(f (X, 7), s+t=3. (3.18)

Es2(%,5) = {

When s + t = 1, by means of the reproduction of V,,,,(f), Theorem 3.1, and the Taylor
representation of f at the point (X,7) € Q

]. 1" 1" "
£ 06, y) =200, 3) + 5 {1 (g, v2) = f (8,301 = 2% + 20, (1,v)
— oy (6] - G = )y = )+ [f,, (g, v2) = £, (5, Dy =50}, (3.19)

where
e ) = o)+ [ D2+ (- y)—} fluzv),  (3.20)

and
(ug,va) = €3(x,y) + (1 —€3)(X,7), €,€(0,1),
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it follows

|D5t(f - an(f))| = |DSthn(f - QZ)l
< Y G —aIDBLI+ D Iu(f — gD B

(i.))en (.)€l
2a 52
<(SH+4by ) 20, (3.21)
3 5mn

where &?2f is defined in (3.10). It should be noted that the formula
DSt(f - an(f)) = DSt(f —qs— an(f - qz)) = _DSthn(f - CIZ)

at (¥, ¥) € Qholds for s+t =0, 1, 2, for the formula f — g, is equal to 0 at the point (X, ¥),
by means of the Taylor representation

B 1 N IRCRE )
FEN=aleoN+ 5 [(c-Dg 0 =Ng [ fuw), 322

where
(ug,vs) =e3(x,y)+ (1 —€3)(X,¥), €3€(0,1).

When s + t = 2, analogous to the case of s + t = 1, it follows

D" (f = Vaun(F D] = D" Vi (f = q2)]
< Y G —aID B+ D 1w (f — gD B

(ineh (e,
2a 52
<(52 +4b,) 2207, (3.23)
3 O

When s + t = 3, the values of D tBl.lj and D*'B}; are constant on each triangular cell in
Q, respectively. We would like to make a list of the values of DBOBl.lj and D21Bl.1j on each
triangular cell in the support in Table 3, while D3°Bi2]. and DleiZj in Tables 4 and 5. It

is apparent that one can obtain the values of D*B};, D®B},, D'?Bj; and D'?B; on each
triangular cell in the supports, respectively, which are omitted here. Thus we have

Theorem 3.5. Let (x,y) in any triangular cell in the supports of Bilj and the supports of BIZJ
Then for s+t =3
bs|A|

Rk

a3|1+7(,|

|DStBilj| = STt
Rk

stp2

R (3.24)

where as, by are real constant.
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Table 3: The values of D*B},(x,y) and D*'B[,(x, y) on triangular cells in the support.

Triangular cells D3°Bl.1j(x, ¥) D21Bl.1j(x, ¥)
Al — 6(1+A) — 6(1+A)
1 W .
Al _6(142) 6(1+24)
2 W 7k,
1 120144
Al L0 0
1 _12(1+4)
Al 102 0
1
Al 0 0
1
Al 0 0
Al 6(142) _6(142)
7 h?+1 h12+1k1‘
Al _6(142) _6(142)
8 h? hik;
Al 6(142) 6(1+2)
9 h?+1 h?+1kj
Al 6(14A4) _6(1+2)
10 h?+1 h12+1kj+1
12(1+2)
Al = 0
11 hi
| 120142)
Ag, 13 0
i+1
1
AL 0 0
1
Al 0 0
Al _6(142) 6(142)
15 h? hikji
Al 6(142) 6(1+2)
16 h?+1 h?+1kj+l

By Theorem 3.5, the reproduction of V,,,,(f), and the Taylor representation (3.22), we
have

ID* Vo (F)] = 1D* Vyn (f = @2)]
< > A —aIDBLI+ D I (f — a)lID* B

(i,j)enh (i,))el,

4 ras 53
<—(=+2by ) 22||D3f]. 3.25
_3(3 3)531“” fll (3.25)

As a result, it follows

Theorem 3.6. For f(x,y) € C3, (%,7)€Q,

st 2a1 5r2nn ~2
D VoD < (G +401) 0%, sHe=1, (3.262)

st 2a, 53171 5
DS Vel VIS (5 +4ba) 52 0%f, s+e=2, (3.26b)
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Table 4: The values of DBOij(x,y) and D21Bi2j(x,y) on triangular cells in the support (Part I).

Triangular cells DSOB2 (x,¥) D21B2 (x,¥)
2 __ 62 61
A7 ABJJrl Pk, ABJJrl
2 _ﬂ ! 7 6A / /
Az hls+1AiBj+1 h1+1k1+2Ai j+1
2 61
A3 — A 0
13
2 6A 4 1’ 61
A h3A Bji hfijAiBJH
2 _62 _62
2 _6Aa __6 4 p
A6 h?AlBJ thJHAlBJ
2
A7 0 0
6A ' 61
A2 — 2L A B, AB;
8 ?+1 o h12+1 J
2 6 64 4
Ay 13, A1+1BJ TH Lk 1A1+1 j
2 67L 61
Alo EAHlBj hz Al-HBj
1
6A
A2 ; 0
I B, i
2 6 _6A A n
AT, K2, Al+1BJ TRk i1
2 67L 6L A n
Al K3, Al+1B]+1 2 K i+1Bj+1
2 A A R 62
A14 h?+2Ai+1B]+1 hz+2k1+1Al+1BJ+1
2
Afs 0 0
2 6 61
A16 h?+ Al+1B]+1 hz+1kj+2Ai+lBj+1
2 ’
A17 ?AI(B]-FI - Bj) hzk A ( ]+1 B])
2 6A T4’ 67L Len!
Alg w[ABj —B) + A1) i —AB; —Bji)
+1 i+1 J+1

Table 5: The values of DBOB?j(x,y) and D21Bi2j(x,y) on triangular cells in the support (Part Il).

1+1

Triangular cells D‘”"OB2 (x,¥) D21B2 (x,¥)
2 61
ATy hg—H(AiH —A )BJH h{zﬂ b (A; +Ai11)Bj
2 61
Azo E(Aﬁl A )BJ.H h12+1 ]H (A +A1+1)Bj+1
61 /
A% ha_H(AiH —A))B; i+1)B;
A ’
A3, - (A —ADB; o (A +A)B;
i+1 J+1
2 61 ‘ 6
Ass 12, A1+1(B]+1 j+1) 2ok i1 i+1(Bj+1 _Bj)
61 ‘ 67L
A§4 E[ i+1(Bj _Bj+1)_Ai] h2 A1+1(B j+1)

15
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4 8b
D V(P < (52 + 52

53
5+ )T’“”np?’fll, s+t=3. (3.26¢)

5mn

By investigating the theorems in above, one can conclude that the item &,,,/ 5 mn Plays
a role in the uniform approximation of the derivatives. Thus we shall recall the following
definition introduced in [2]. Similarly,

. . . . () . . . . .
Definition 3.1. A sequence of type-2 triangulation A}, of Q is quasi-uniform if there exists
a positive constant p such that

~
~
=
=
=
=

=

mn m m m

=
=1

3
=

p=}
=

=i

mn m m m

Moreover a sequence of cubic spline space S;’Z(A,%z) is quasi-uniform if they are based on a
sequence of quasi-uniform type-2 triangulation.

Therefore, we can conclude

Remark 3.1. D°'V, ,(f) approximates D*'f uniformly as &, approaches to O for f €
C™1(Q),1<r <s+t < 3 over quasi-uniform type-2 uniform. In fact, by Definition 3.1, it
follows that (5,,,/6,,,)°"" are bounded.
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Appendix

The representation of the splines Bl.lj(x, ¥), Bizj(x, y) on each triangular cell in the
supports is established as follows where A € (—1,0).

B.l.(Al):(1+7L)[——1 (x—x-_l)——3 (y—y; )](x—x~_ )?

ij 1 h;l; i h?kj-i-l j+1 i-1/ »

BL(AD) =1+ [ 1 (x—x;_1)+ 3 (y — y-_l)] (x —x;_1)%,
iRy h? i h?kj j i
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BL(AD)= (1+A)[

ﬂ[)")’j"‘

3
kj

BL(aD =01+

1+A k+1 3
S E A T e O]
j+1 l
BLAD = (14 )| oy (x = xi1) = 50 =31 0 = 1)
ij =5 -hikg i—1 k3 Y —=JYj—1 Y =Yj-1J)>
) )
Bl(Al)—(l-i-A)—— (x — x; )—i( -y ] —yi_1)?
ij\=6/ — 2 i+1 A4 y]—l) (v yJ—1),
- hi-i-lkj k]
BLA =+ )| - — (x—xi+1)—i(y—y_l)](y—y-_l)z
ij 7 L hi+1kJ2' k? J J
- Yy=Yji1——&x=x)|,
k3 [ T hin l]
BL(AD = (14 1) oy (= xi) — 50 = 7y-0) | 0 = vy
ij\—8 hikg i-1 k?y Yi-1)|\Y —Yj—1
J ]
1+ A k; 3
_?[J’_J’j—l"‘h—i@(—xﬂ] ,
J
1 3
BY(AY) = (14 2) [ o5 (x = xisa) + 5=y —¥j1) ] (e = xis0)?,
i+1 i+17J

Bl (Alo) =(1+2) [h—(x Xiy1) —

1
B(AL) = (14 1) | 5 (x —xisa) -

——l(X X 1)+hl (= Jyj- 1)](X xi1)°
k; 3
h—i(X—Xi_l)] >

1 ( ) 3
i P2k

2
i+1 h1+1 kJ+1

i+1 h1+1k1+1
1 + A k +1 3
}’—J’j+—J (c—xip1) |
k3 h;
j+1 i+1

BL(A! )=(1+x)[i(x—x )+
ij =12 h3 i+1

1+A
3
kj

B}j(A}S) =(1+21)

3
2
i+1 hH—l k]

[}’ —Yj— %(X - xi+1)] 3,

(x = xj41)+ 5

3
hl+1k1+1 k]+1

(- J’j+1)] (x - xi—1)2

—— - J’j+1)] (x— xi+1)2,

—(}’ - J’j+1)] (x— xi+1)2

(v = y5-0) | G = xi10?

- J’]+1)] (r- J’J+1)

17
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Bl(Al)—(1+7L)[ > (x—x; 1)+L

ij\R14) = i

! hisz'H k?+1

Bilj(Ais) =(1+2) [h k (X Xi_1)+—= k3
j+1

J. Qian and E Wang

(y - yj+1)] (v = yj+1)%

(v - y]+1)] (v = yj+1)?

L1ta kit 3
ka Y=Y+~ h_i(x - Xi)] ,
B! (A 16)=010+21) [ rk]zﬂ(x —Xjy1) + k?+1 —— - J’J+1)] (y = ¥j1)
1}(3—3:? [J’ Yit1+ :1+1 (x — x; )]3
. k.
BX(A}) = ot th)kiZEij T [J’ ~Yjr2 — ;I—J:Z(x — xi)] 3,
Bitas)= ko (ki + k1+2)(y ~ )
Ah; kit
(h + hiyp)k? +;+(;<J+1 +kjpo) [y Yjt2 t ho (x X; )] 3
B = ey )
By(AD = —m(x —x;1)°
Ah; kiy 3
(h ek (o + 1) [J’ Vi1t , RELEY 1)]
. k.
Byas) =~ (h; + hi+1)?<}1;l(kj +kji1) [y T h_Ji(x - xi_l)] 3’
Bizj(Ag) = _m(x —x;1)°
Ah; k
(h +hiy1)k ]+ll(kj + kj+1) [y ;ltl (x Xi_l)]
Bizj(A;) = _m(}’ - J’j—1)3,
Bizj(Ag) = _m(}’ - J’j—1)3
Ah; k.
(h n th)klZEc T [J’ —Yj-1— Fil(x - xi)] 3,
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Ah; k; 3
B (A3)=— o Y=Y — G —x1) |
v (hi+1+hi+2)k]2-(kj+kj+1)[ T Ry o ]
B2(A2 )= —— 2~ (y_y. )P
ij 10) kf(kj+kj+1)(y Yj 1)
Ahl—i—l k] 3
Y=Yt —x=xi1)|
(h1+1+h1+2)k (k; +k]+1)[ T . ]
A
B (A}) = (x = xi42)°,
MR (i Fhi) T
A
B} (A1) = (x = xi42)°
A l+2(h1+1+h1+2) 2
Ao k1+1 3
y=yjt—C—xi2) |,
(h1+1+h1+2)kj+1(kj+kj+1)|: 7 higa 2 ]
Ah kit 3
BX(A}) = - Y = Yoz e (x = xi41)
1 (hiy1 +h1+2)k1+2(kj+1 +kj+2)|: j+2 hiya o ]
A
BZ(A%,) = (x — x;45)°
ij 14 l+2(h1+1+h1+2) i+2
Ahiio [y y kj+1(x N )]3
—Yjt1— 7 X = Xip2)|
(h1+1 + h1+2)kj+1(kj+1 +kjy2) T R o
A
B}(A%) = (& = y42)%,
TR g ) T T
A
B}(Af) = (& = yj42)°
ure kj2-+2(kj+1+kj+2) "
Ahiiq k2 3
Y=Y~ 7 —(x—xi1)|
(h1+1+h1+2)kJ+2(kj+1+kj+2)[ j+2 iy . ]
B2(A2)=——— " (x—x;1)°
) 17) h?(hl+hl+1)( 1 1)
Ah; kit 3
l [J’ Yi+1t+ (x X 1)]
(h +h1+1)k]+1(kj+1+kj+2) h;
Ah; kit 3
Y=Y — o —x)|,
(h +h1+1)k 1 (kj +k]+1)[ Hh l ]
B (A2 )=—— " (x—x_,)°
1]( 18) h?(hi+hi+1)(x Xi 1)
Ah; kit 3
+ 2 l |:y y]+1+ (X Xi— 1)]
(hi +hi)kiy g (kja 4 ko) h;

19
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(h; + hi+1)k]2'+1(kj +kjt1) T h l
37 1 1
i (kj +kipn kit kj+2)(x X = Vi)
Alhiy1 —hy) ( kj _ ki1 )(x —x;)?
2 32k s
+ (x —x;)° + ! (x —x;)?,
h? (R +higs) l hihit1(kjiq +kjyo) l
A
B2(A2) = (& = ¥js2)’
e T
Ahitq kj+2 3
- Y=Yt (x—x
(hi + i )RG5 (Kjr + k) [ T2 Ry l ]
- 2 [y—y-ﬂ—@(x—x‘ ]3
(hip1 +hia)k?, (ki +kjpo) g it l
32 1 1
+ - (x = x)(y = yj41)?
kjiikjio (hi +hiy1r hiprthip ) l Ak
Mkjyi—kj2) ¢ hin ) =y
klz_l,_]_ k]2-+2 hiy1+hips  hi+hiy i
A ( S 3Ah; ( 2
T T3 . . YT Y=Y )
K20+ k)" T (it hgkga kg, T
A
B} (A5,) = (¥ = yjsa)’
1 20 k]2-+2(kj+1 +k]+2) Jjt+2
ARy kjva 3
- Y=Yt —x—x;
(h; + hi+1)k]2+2(kj+1 + ki) [ 2 R l ]
_ Ahi+1 |:y—y-+1—@(x—x- ]3
(hiy1+ hi+2)k12'+2(kj+1 +kji2) ! hiy1 l
Bi(A2)=—— (v —v. 1)°
l]( 21) k]g(kj'i‘kj.l,_l)(y y] 1)
A,hi-q—l k] 3
+ =Yt —x—x;
e e iy Y g O e
Ahi—i—l k] 3
+ —-Yi— X — X; ,
(h; + hip )G (kj + Kjsa) [y 7] hiy1 ( l+1)]
Bizj(Agz) = - J’j—1)3

k3 (kj + k1)
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N Ay
(h; + hi+1)k12(kj +kji1)
N Ay
(hit1 +hip)ki(kj + kjyp)
31 1
+ —
oo

[J’ —Yj-1— %(x —Xi)]g

[y—yj+ %(x—xi)r

(x = x)(y = y;)°
41 Vi hi R + hi+2) l !

A’(kj-Fl - kj) hi _ hi+l )(y _ y)3
k3k?, hi+hiyr hipr+higo !
37k,
(hi + hip1)kjkjp

(y—y)’+ -y

T U + ki)
2082y A 3
P80 = e )
N Ahiyo
(hiy + hi+2)k]2-+1(kj+1 +kji2)
3 Ao
(hiy1+ hi+2)k]2'+1(kj +kjt1)
2082y A 3
Bii(A3) = R (i hi+2)(X — Xit2)
+ Ahiiy
(hia +hia)k?, (ki + ko)
3 Ao
(hipa + hi+2)kJ2'+1(kj +kji1)
32 1 1
Maihies (kj F - Ko + kj+2)(x — X1y — Yj+1)
N Alhivs —hiyo) ( kin k&
R, \kpi+kaa Ktk

k‘+1 3
[J’ —Yj+1~ _hJ (x - Xi+2)]
i+2

j+1 3
[}’ — Yt — (x— Xi+1)] ,
i+2

kiiq 3
[J’ —Yjir1— —hJ (x— Xi+2)]
i+2

(e x)]

Kjt1

[}’—J" 1+
T Ry

+

3
)(X — Xi41)
i+1Mi+2

A 3Ak:
(x —xp41)° + he

- - (x — x;41)%.
h?, (R +hig) hiyihizo(kjpr + ko) .
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