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1. Introduction and Main Results

Given R (zx) € C*(5% where §'= {x € R*||z|=1}. we want to find a
condition on R (x) so that there exists a metric g on 8% with scalar curvature (i. e. twice
the Gaussian curvature) R {z) , which is pointwise conformal to the standard metric g,.
50 g = &, for some function .

This problem is equivalent to the existence of a solution of Eq. (ecf. [11)

Aufz) — 24+ Rix)e*™ =0 z & gt 1. 1)

where we use the sign convention for Laplacian A so that Au = 1,, + u,, on flat 2°.

For known resuits of this interesting problem, confer (17 - [13]. In this paper we
prove

Theorem 1. 1. Assume that B (x) € C*(8% satisfics

13 acwree PEC(0, 11, 8%, I =max=db=0I(), 0<<R@G) <Ra.bg
5% is a nondegenerale {ocal maztmum point of B (x) . N

ii) minR(z) =m<R(}) and¥ € [ R (m) either VR (z) £ Dor VR(x) =

z= I

-

0., AR(z) >0.

i’ There is no critical point of R(z) on R™'(m. R(b)) except a finile number. of
nondegenerate local maximum poinds,

Then Fg. (1. 1) has a solubon.

Remark 1. 1. If minE (z) = (0, assumption ii) can be omitted and assume iii) on
=&

B0, R(») |, then Theorem 1. 1 remains true.
Remark 1. 2. Notice that Theorem 1. 1 petmits B (b) <R (a) <maxR(x) , a € §*

T EHT
need not be a critical point of B(z) , R(z) can be arbitrary on 8™a neighborheod of I7
provided iii) holds.
To solve Eqg. (1. 1), we look for a critical point of

J (u) _r:;-‘% j | Fult-2 J u — Bxlog J Be* & I(u) — 8xlog J. Re"
|'.'l.£ EI .IE\'-E .SE

defined on H & {u€ H'(8Y | JzRE"}D} . If J (uy =0, then u=u,-1 some
=5
constant € is a solution of Eg. (1. 1.
Set B, A {z & RY| |z] < r} and B, A E . Define P (x) A [re',ﬂ“ e'c B, Yu
e 8 g

& H(SH . Throughout this paper we assume R ({z) € C*(S§% . It is worth while

noticing the functionm (x) &  inf J(u) , z € B. In section 2 we prove:
HE M P ) =
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Lemma 2. 1. If Ry >0, ¥ € &, then miz) € C (5 M e %8 end miz) = —
Axlog(dmR{x)) , YWz € Lol

In section 2 we prove the following inequality:

Lemma 3. 1. Suppose that b € 5% is a nondegenerate local maximum point of K (x), Rh)
= (I, then there existe § =0 depending on B such that ¥ 0<"e=d, J 0<"pu=pu(f. 4, &) <
47 so that the following tnequalily holds:

Rk 3] - L 4 i
Liﬁmﬂ = ul (b) exp{lﬁﬂ, LJ?‘” T J’“)

Vue HUEY with =< |Plw) —b| =<4 (1. 2)
In section 4 we prove Theorem 1.1 using Lemma 2.1, 3.1 and minimax
argument on i .

2. Function m (z) on Unit Ball B
In what follows we denote various constants by the same C . Set
1— A7
' A
(1 — Acosd (z, #))° T ¥ C 5 e S
where d (z, z) is the distance on (8% g, between two points x, y , then (cf. [E]) =(z)
= g, (x) satisfies Eq. (1. 1) with R(x) =2.

Py (2} = log

J!r:xp (@, (2)) = 4m, I{p,, (x)) =0 c2: 1)

Direct computation sl-f::-ws
P(p,) =C(MyE B, C{L]E-i——ké(%—l)lﬂgi;:: (2. 2)
and there is a homeomorphism k: B—E:¥W Ay € B, (A g € C0. 1> X 8%, h(dy) &

P {g,) -
Proof of Lemma 2. 1. 1° J (u) is bounded below (cf. (10]) and J (u) = J (u + €
Y ue H'(8Y) , €& R. For fixed z, € B choose a minimizing sequence luy H,

Jf‘t" =0, P(u) =z,, J(u) ==m(zxy . By Aubin {2 Theorem 6], we have
5

" 1 2
L'EE :gﬂexp(zdﬂ -LJ?-H.,-I ) (2. 3
¢ is independent of i. From (2.3) and J (u) =< C we derive || u || ;0=C . We can
extract a subsequence, still denoted by {u,} ., such that u,—u, (H (8% . Since u £

H:uy—e"E€ L' is compact (of. [1 Theorem 2.46)) and J is weakly lower

semicontinuous on H, we get Ju) =mx) . FPluy) =x,, 1. & - inf J () =
wiE=H, H{u) =-F.

m (x, is attained by u, . ;
2°  We prove that m(z) € € (B) . Suppose that J{;) =m(z), Pu) =z,—~=z

& B, J_iw,,- =), using ¢,, (x} it is easy to see that we can assume J () = C, again
5

(2.3) holds, the same reasoning as in 1° shows lim m(z) =m(z) . On the other

N P

hand, if J (uy =m(x) ., Plu) =z, set Plu) =p= (p,. P P . by definition J; (x
Fog

— p)e* = 0, using implicit function theorem we se¢e that there exists a neighborhood U/
of u, in H' (5% such that (», p) is a coordinate system of I7 , where v is some subspace
of H'(S" with codimension 3. Noticing the continuity of J at u, € H. we obtain

limm () = (x, , hence m (x) € O (B) .

.I"-—-'l'u
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3° Y {u,} C H such that P (x) = z;,—~z, € §° and I o =dx, by (6 Lemms

g
1. 17we have Jzﬂ (x) e ™ —= 4R (z,) , Since T (x) =0 (cf. (127]), we pget
&
lim m(z;) = — Bnlog {dmR (x,))

"'r"‘-:-"-"—"'*'-==
On the other hand, by (2. 13, (2. 2) we have
J (gpy,) —= — 8rlog (47 R (xy) ) it Ay—=z,€ §°
thus lim m(z,) = — 8xlog (47 R (x,) ) , therefore defining
:.—l'-:lnlE.-S:t
miz) = — Brlog (4nR(x)), Yz € §°

we have m (z) & C (B)
4° Y fixed 0 <"r <1, we prove m(z) A & R Y

]’"{Tl::“lm Iﬂﬂf{ﬂ Wz yE B, (2. 4)

If ¢2. 4) were false, then3 2z, 1, € B,. i=1, 2. ..., |z, = g;| =0, 5;—>=2 € B, and
u{m{ﬁ:;"f” — 4 oo (2. 5
By 1° assume J(u) =mi(y), Pl =y, from 1°, 2° we can assume

u—u, (H (85 )Y, Pluy =z€ B, Jw) —=J@)=mz, thus JJ?uJ‘—a—
&8

_[F?ﬂ.:]“ and  |lu || go== || woll 4. hence u,—u,(H'(SH) strongly. In a
Sﬂ

neighborhood U of u, & H'(8% , as in 2°, using coordinate system u = (v, p) , P{u) =
p, u,= (v, y;) . noting J € €' (H'(§%) . we should have
D{:m (z;) — m () _m (x) — JF (u,)

|z — w:l |z — ¥
Jolo, 2 —J (0 3) adJ
== [z, — il i =Sp0e %+ —3) =0 0<6<1

This contradicts (2. 5) and completes the proof.

When & (2) = 0 somewhere, set V s {z € 8*|R ) =0} U {P Q) luc H}, Vis
an open set of B. The same argument as above with slight modification proves the
following

Lemma 2.1% If Bé) € 8D, then m(z) ECENTT e tBAV) and
miz) =— 8rlog (daB(z)) Y z€ SNV,

Remark 2. 1. We don’ t know whether or not m (z) € €' (B[ V) . if it were the
case. then we could reduce the minimax argument on H to that on B[]V and get more
results,

3. An Inequality
To prove Lemma 3. 1, first we prove
Lemma 3. 2. Suppose R(b) =0, BE S then ¥ e =0, J d=4A(R. &) >0, such
oty w € Hwith |Pu) —b| <dand J(w) =m (P @), I gy, Qo) € (0D b
{see seclion 2) 3o thal

|P () — 3] <e and [Va—pol<e @D
5
Proof. 1° % {w,}  H with P(u) —=b, j=9"=4ﬂ- Jiu) =mP(u)) ., by
&

proof of Lemma 2.1, 3°. we have 'LR (x) e '™ —= 47 R (b) . On the other hand. by

&
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-Lemma 2.1, J{x) =>— Bxlog fdw R (b)) . hence I {u)) —= 0.

2¢ Tse spherical coordinates == (#, ) € 5, 0<=d=m, O0=gp=<27 with
MNorth Pole y = (0, ¢) . consider the transformation (ef. 6] proof of Lemma 2. 3)
T, : HYUSHY =H'YWSH, T,uh ) =uoFy 6.9 +¢,, G.p € (0,1 w8

where F, (8, §) = (Eafﬂtg(ﬂ.' T g ;tE 5 ) "'ﬁ") .

By 5]Prop. 3. 3 and proof of Prop. 3. 1. 3 Pyyri=L 2. ... Such that

I(Ty,u) =1 =0 J exp (T, w) = _[ e =dmw and P(T, u) =0
at L] a2 (LN
The argument similar to the proof of Lemma 2.1, 1° shows || 7, || ;» =€ and we

can assume T', , t,—=u, (7 L{8% ) . Since inf I tu) is attained by unique u =0,

-
Jo¥ e e, B u) = 0

we have T, , u,—0 (H (8% ) thus J=| N (T 5 |*—=0. From conformal invariance
&

of Jal'i:?ﬂ[‘. we get
&
,[wil RC ey w’i'l'F;:;rj fe=l

Dircet computation shows @,,_,, = Fi, + @, = 0. hence
.J- 1? (ur; — "F:"a-q:' | *—0, where =z;=—y¥; (3. Z)
a8 :

37 We prove Pi{g,,) —=b. Otherwise, choose a subseguence, if necessary, we
=g & 5, ez=b. The case a)

i’.'

should have either a) ,, @, , of B Flg,

contradicts (3. 2) and the fact J | Vu,|*—=>=+cc. By (5] Prop. 4. 4 with J (u)
.S.E

replaced by K (u) A [ {u) — 8nalog J &, we gete="bie P(p,,)—b,Lemma 3.2
51 2
follows from 2° and 3°.
Proof of Lemma 3. 1.
1° Choose small e =0 in Lemma 3. 2 ( ¢ = 0 to be determined later), ¥ &€ H

with J(u) =m (P (u)) and |Pw) —b| < d(e) , J e =dn (see Lemma 3.2) 3 C
SI
= ' (u, g,,) . such that

(4 =—go,,— ) =10 (3. 32
&
Using spherical coordinates on 5% as above with North Pole a = (0, %) ., then
e 1—a°
eXPPy, = (1 — Acosd) t we have

_r Ry e'™ — 4xR (b) = L (R(y) — R (D)) &P » o o g Paa™C
2 =

o
(1A% r J’{R{y} ﬂﬂmﬁmf" 2.3 M:i».g,

I

(1 — Acosth ?

= A}e(r-r-}- rflgil—i“}e (I - I}

Since b is a nondegenerate local maximum point of K () . 3 a, r >0 such that

Ry) —RB) <—a(d(y b))*if d(y b) =dist (3, b) =r. Let ,u———i"z- be fixed. It is

sing « (d(y, ) °F
(] — Acosé)’®

easy to see that |I1| =< €. we have B (¢, 4. b) & r —r —~ - oo, as
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A==1,t—0, uniformly in b € 8%, Otherwise 3 A,—1, {—0, b=}, € S5*, =0
such that B (¢;, A, 5) ==k V¥ ithen¥ 0<Zv<Tu, we should have

sing « (d(y, b))*
_J-: _JT (1 — cose) * =k
This is impossible since the integral
sinf (d (y. b)) ?,
JT J: d — cosd ® “0%¥
is divergent, We claim that Y M >0, 3 ¢,>> 0 such that [ <<— M if e << e, (see Lemma
3. 2) . In fact choose ¢, i,s0 that

B, A, a}EETM Tl el T Sl e e T | (3. 4)

Let ¢, be fixed, when & <= % we have
. 2
- _i__I-E r J"Ell‘lﬁ' ::d {y; b)) = B._P'J"_clfilgig'
[+] -]

(1— Acosd) *
Sind @y, ), vep —0
=Bit, A b + J? -E. 11— dcosd) ? fe* " 13
a B, A Bb) 4TI (3. 5)
From (3. 1), (3. 3) noting v € H' (8% :v—=e" € L'is compact, we get
[T | =< € (2t _[-.le'_"u_”—-ll—-ﬂ as e&—=(
Fo)
Hence 9 £, > 0 such that
|| g% as Pl (3. 6)

It is easy to see that J £,> 0 such that A=A, if |P(p,) —b| <<e,. From (3. 4),
(3.5, (B.B)wegetl=— Mif 2=<"e, 4 min (e, &;) . Therefore, letting M = ¢, -+ 1 we
obtain :

J--:R () e" = dAxR (b Wuc HGSY with J(u) =m (P, J-e" = 4m
and |Plu) —b| 46,4 6(R &) (3. 7)
2" By (3.7) noting F () =0 V¥ u €& H'with Jle' = 4w (cf. [127) we have

&
J () = — Bmlog (dnR (5)) ¥ u € H'(SH with J(uw) =m(P(w)), |Pw —b| <4,
Using Lemma 2. 1' we have ¥ 0<"e<"4,, J B =g (R 4, &) =0 such that
J(u) = — Bxlog (d=mR ()Y + B Y ue H (Y
with J(u) =mP @), 0<e< |Pw) —b| <54, (3. 8
Noting the definition of m () , we see that (3. 8) holds ¥ # € H (8% with 0 < o<
| P (u) — 5| = 4,. This is equivalent to (1. 2).
Remark 3. 1. By the way, we have
Lemma 3. 3. Suppose that b € S* is a nondegenerate local minimum point of R (x), R (h)
=0, thend >0 depending on B, such that Y 0 <Ze=_4 d f= F(R. & &) =0 such
that
J(@,,) = — Brlog (dnR (b)) — B if e |Plpu.) —8| =<4
Proof. It’s similar to the proof of Lemma 3. 1, 1°and simpler, notice that @ (y) A
J () (Plg,,) =) is continuous in & neighborhood of 5 in B . We omit the detailed
proof since we don’ use it in this paper.

4, Proof of Theorem 1.1

Under the assumptions of Theorem 1. 1, using Lemma 3. 1 for » € &% we obtain
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4, g == 0 such that
J(u) = — 8wlog (4mR b)) +p s+ p TIET
Vuec H'(SY with |P@ —b| =4 )
Choose (0 <7 &,<C 1 sufficiently close to 1 so that

T Ss+E5. 0< [Pl — 5| < [Plpao —B[ >0 (4. 2)

and J (@, ) =<s+ Jg— JLet @, , .8 P Pap.oog be fixed.

Aa TRECCD, 1), ) A =p A1) =g}
Because R (z) mav be negative somewhere on 8%, we need
Lemma 4. 1. A t3 noremply.

Proof. e. g.
ho () £ logl (1 — ) exp@; , + texpp, ] € A
Define
vy =inf max J (h(f)) (4. 3)
REA PELR 1D

By (4. 1), (4.2), v =5+ p
Lemma 4. 2. If m = minR (z) =0, then v < — Bwlog (dmm)

FI=rs
Proof. Set
if Rix) =R
if Rix) <m

using the flow % =qn(z) VR(z) on §, noting that I' 1 B~"¢(m) is compact, we sce

that I" can be deformed a little with endpoints a, b fixed, which is still denoted by
I':C0, 11—=58%, so that AR (z) >0 % z € I'(| B! (m) . The same argument as in £53
proof of Lemma 4.5 shows that 3 0<CA4,<71 such that if Ay<Zi=<Z1 then J (@,r )
< — Brnlog (dwm) ¥ ¢ € (0. 1) . Connecting p with ¢@,,. ¢ with g, together with
Par We get b € A such that
J {(u) =< — Bxlog (d7wm) Y ou & k()
Hence v < — 8=log (47m) .
Lemma 4.3. If J' () %60, Y« € H,then 3 h, € A. n=2, 3, ... such that

max J (h, () < v+ 5 (4. 4)
g LA 10 b

and ¥ w€ B, (6) , t€ [0, 1] tl_f'J{w"JEw—%#wnE v & H such that

(@) € CTSY : p(x) = {?

lo—Blw<i T —rI<&H |7 @ | <Z s
Proof. Since itéf ?{ax:.}' thif)) =v, 3 k, € Asuch that

max J (k, (£)) el T 0
T n

Consider the Eq. on H :
de JI{u) o
at e 7 ) ”,_.i"" {u} ” W {DJ n) = v

where 0 <5 (&) =< 1.

=821y » i if Ju—p| =2 and flu—gl =2
7 € 0D n ) =g it fu—pll <e or [lu—ql <o
where & 7> 0 is small enough so that J () gs—{-%pif lu—p| =2ecr Ju—g| =

3¢ . then it%s not difficult to see that h, (£) gu(%, k, (L) ) n =2, 3, ..satisfy (4.4
and (4. 5) with w = u (=, k, (£,)) for some 0 = 15% . where w = &, (£,) .

18



Conclusion of the proof of Theorem 1. 1
1° Assumem >0.IfJ (v) £ 0. Y e E H, by Lemmad. 3, 3 s, & A, n =2, 3

.., Satisfying (4. 4) (5. 5).
Set

Aa {z€ 8| —Balog (xR (x)) = v, VR(x) =£0)
we claim that ¥ ¢ >0, 3 r, € Z. such that :

dist (P(w), A) e Y w=4h (), n=>n, 0<"t<"1 with J{m)&‘#—%

(4. B)
If (4. 6)were false, then 3 &,>0, w,=#, (&) .i=2, 3. ... #,=>=—+ oo, 0<Tf,<T1
T (1,) av—f‘;. dist (P (), A) e, (4. 7)
[
By Lemma 4. 3, 3 @, ¢ =2, 3, ..., satisfying (4. 5), then |P (@) | — 1, otherwise we

should have a subsequence, still denoted by {@,} with |P (@) | =<1 —d<1, using (5]
Prop. 2. 1 for {{f.} we should have
By 10— J B, =0, (A (5D)
T gt
strongly and J' (w, = & a contradiction.
Using [5] Prop. 4. 3. for {@,) we obtain
P(m) =82 {xr€ 8| — 8rlog (=R (z)) = v} as i—=o0

o | 2 A
From [ w, — @, | #t = o-and (4. 7) noting j | i, | 2=+ oo, similar argument as
& 52

in the proof of Lemma 2.1, 1° shows |[P(w)|—1. Using (5] Prop 4.4 for
{uy}, {@,) . we can derive P(w) —F as i—~oco . Y nondegenerate local maximum
point y € F, applying Lemma 3. 1, noting (4. 4) we see that no subsequence of P f20,)
can tend to y . Thus P () — A as i — oo, contradicting (4. 7). Therefore (4. §) is true.
From (4. 6) applying (5] Lemma 5. 1 (a continuous flow on H ) with slight modification
(1. ¢. keep p, g fixed) for some &, & A, n being sufficiently large, we get &, € A with

E‘l{a:{JJ (k, ()3 << » contradicting (4. 3) . Hence J must have a critical point.
3 al

2° When m=_0. instead of Lemma 4.2, using Lemma 4.1, we see that
v<_-4 oo, we don’t need assumption i) and assume iil) only on B7'¢0, R(b)) , the
rest of proof is the same as above.
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