J Partial Diff. Egs. 13{2000), 89-96G
@International Academic Publishers Vol.13, No.1

HOLDER ZYGMUND SPACE TECHNIQUES TO THE
NAVIER-STOKES EQUATIONS IN THE WHOLE SPACES

Chen Zhimin and Zhao Yongzhi
(Department of Mathematics, Tianjin University, Tianjin 300072, China)
Yang Yujun _
{Department of Mathematics, Zhengzhou University, Zhengzhou 450052, Henan, China)

Dedicated to Professor Chen Wenyuan on his TOth birthday
(Received Apr.19, 15999

Abstract With the use of Hélder Zygmund space techniques, lacal regular solu-
tions to the Navier-Stokes equations in B® are shown to exist when the initial data are
in the space
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1. Introduction

Consider the incompressible viscous fluid motion governed by the Navier-Stokes
equations in B, n = 2.
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with unknown velocity u = (uy(z,t), - -+, un(z,t)) and unknown pressure T = w(x, t).
Here ¥ = the gradient (&, -+, 8,) and A = the Laplacian LT T

Mathematical theory of the Navier-Stokes equations stems from the poineering work
of Leray [1] in 1934, where the existence of a global weak solution was established
when the initial velocity a € Lo(R™)™. The regularity of this weak solution, however,
still remains foundamentally unknown. To understand the regularity problem, Fabes,
Jones and Riviere [2] obtained the local existence of regular solutions with initial data
in Ly(fi")" withn < p < o0 and the global existence of regular solutions with small
initial data in Le(RP)" N L (RM)" with 1 S 7 < n. < p < oo. This result has been
extensively studied by many authors. For example, [3-7] and [8-9] are concerned with
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regular solutions when the initial velocity is in the Lebesgue space L,(R™}" with p < oo
and the Lorentz space L, o (R")", respectively. It has become clear than L,{F™)" is a
critical space in obtaining regularity selutions in the following sense: regular solution
exists locally when the initial velocity a € L,(R™)® with n < p < oo, small regular
solution exists globally when a € L, (RE®)*, and no regular solution is found to exist
when a € L,(R™)"® with p < n no matter how small the ||a|| s is. One can also refer
to [10-14] for stability study on fluid motions and [15-18] for bifurcation analysis of
Navier-5Stokes fows, |

The purpose of this paper is to present a new approach showing the local existence of
regular solutions when the initial data are in a new function space containing L,(R™)"®
with n < p < oo.

To state our result, we denote by F the Fourier transform in ™ and set the Riesz
potential (—A)Y? = FTYEPF, Moreover, we introduce the Hilder Zyegmund space
GRS

[“u!f,],::n- = sup !?-“:' + ?Jr} i ul:'}”f.mc
50 ]

[”]C” = [{_&:'_1;‘1'51-].51.-'2, ['U-]Eﬁ = [I:".'i]lﬂ"'rg_l":drl]ﬁl_.-'j for e =1
R = { {u € Loo(B™)|lullex = |lulley, + [wles < 00} for e = 00
{w g 5 (RA™)|||u
where §'{R™) denotes the dual space of S(R"), the Schwartz space of repidly decreasing
smooth scalar functions.

The main result of this paper reads as follows:

Theorem 1.1 Letn>2,0< B <1, (-A) P2 e C*E™" and V- a = 0 in the
sense of distribution. Then there ezists a constant T > 0 such that Eq (1) admits a
reqular selufion u safisfying

(—A) 0y € €\ ([0, T]; CY(R™™)

for0 < a<1

o0 e [ﬂ],:_‘_'li.l < ':'-"‘3} fora=20

(Ll
(=) "5 2u(8)[leo + 72 u(@)| ., + tllw(t)]lcr-2 € Loo(D, T)

where O -, denotes the continuity in the weak—= topology.

Theorem 1.1 i1s to be proved in Section 2 based on elementary properties of the
Holder Zygmund spaces described in Section 2.

Let us mention that Giga, Inui and Matsui [19] recently obtained the local existence
of regular solutions with initial data in Loo(RE™)® together with its subspaces. However,
our study ion is rather different from those of [19] due to the fact that Theorem 1.1
shows the sharp regularity estimate in Holder Zygmund spaces and the initial data

a € {a € S'(RY|(-A)"*2a ¢ C°(R™)"}

which contains L,(RE")" with p = n/3, by the homogeneily and the Sobolev imbedding
theorem (See [20]). '
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9. Preliminary Results in Holder Zygmund Spaces

This section is devoted to some base properties of the Halder Zygmund space.
Lemma 2.1 There hold

(- &) 2a]ea & [a]gass, a+Arzloz 0

crreel
(A2 < Clul 7 I(-8) ulg”, A >0

where and in what follows C denotes a generic consiant independent of the quentifics
st T, a and . :

Proof Let us denote by ng{R“} (See [20, Definition 2.3.1/2]) the Besov space, .
and by B-E!{J,IZR“] (See [20, Definition 5.1.3/2]) the homogeneous Besov space. Note '
that, for ¢ > 0, '

EXR™) = Bl dnd [w]ea = |lull ga (See [20, Theorems 2.5.7, 5.2.3,/2])

By the lifting property of the operator (—A)® in the class of homogeneous Besov spaces
(See [20, Theorem 5.2.3/1]), we have

[I{ —ﬂ:l-:""'h";u]c-:a = [u],a_m_:.x_. -+ A=

a1l hence

HRY) = B, o[ RP): (=AM 2uleo = [u)gr, A 20

Moreover, by the homogeneity, it is readily seen that By, (R"} = B&II{R"‘] and
50, by [20, Proposition il g

BY | (R") C Leo(R")

On the other hand, it follows from [20, Subsection 5.2.5] that

BE, (") = (B% 00 R™), BE oo (B2,

where (-, -)pp represents the real interpolation functor defined by [20, Definition 2.4.1].
Consequently.

(=82l <CI-A)ullze < Cllullfy (=AY ullgy

<CllullS520 (~A) ullgh’

The proof is complete.
Lemma 2.2 There hold true the following estimates:

IV e~ ), < C 2 ullpe, k20 (2)
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ie_mu]{:au = Gf""’:"f"?[fr.:];;a1 A =0 _ (3}
I(=a)*2e~* Ay, < Gt ulwo, A>0 (4)

where the semigroup

r— 2
e Pu(e) = (4xt) ™2 | 7T u(y)dy
R'l?

Proof Egq.(2} is simple and follows immediately frnm the integral representation
of e™*. Eq.(3) is due to the following observation

e ] pasn = tTMF PO 2 Pulee < O 2[u)cn

where the use is made of Mikhlin theorem on Fourier multiplers (See [20, Theorem
5.2.2)]. Finally, Lemma 2.1 and Eq. (3) yield

[(=A)2e= |z, < Clle™ Mullgs (-AY e ullif? < Ct 2o

This shows Eq. (4) and completes the proof.
Lemma 2.3 For 0 < o < 4, there holds true the eguivalence

[ules = [[u]lce, u € C(R")
where the seminorm (See [21])

[1]lge = suptE=a/2||Ake _MuH for integer &k > af2
b0

Proof From [20, Theorem 2.12.2] it follows that
[l o + [ul)es = lul) 2o, + [[u()]les

and so :
(A Mlne + [l des =2 lulh Moy + 1uld Hlea, A>0

and hence :
AT u( M e + [0 ))ea = A7 [u( ), + |[ul)]lee

Passing to the limit as A — oo gives the desired equivalence. The proof is complete.,

3. Proof of Theorem 1.1

Let us begin with the definition of the notations, T > 0:

F = the projection operator such that (Pu); = z F=Y 6y — 5117 2]1‘?
F==1

Ur = {u|(-A) Py e L™(0, T; COR™M™),V -u =0, ||ullr, < oo} with
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Nl = s (1(=A) 2 2u(B)lco + t27 2 [u(t)l] . + £ 2 [w(B)]er-n + tu(t)e2-s
<t<T

t
Mu(t) = eTta = f e~l=sApy . (u(s) @ uls))ds. ue lip
0

By Lemma 2.2, we have

[(=A) P2~ tq]|, g + 2 e Ma)pios + e alpe-s
<C|l(-2) " al|es

Additionally, using Lemmas 2.1, 2.2 and 2.3 and the potential estimates in Hdlder
Zygmund spaces

(=A)ulea = [FEJE] ™ Fues < Cluleo

(See Mikhlin theorem [20, Theorem 5.2.2]), we have, for f(s) = u{s)®uls) and o = 1, 2,
s s o ;
[(~A) 92 (Mu(t) — e 4 Pa)en < C|[(-A)77 f e~ U=A Py . f(5)ds]|ea
0

<CsupTo" 2/ [[A2 e tmehT Tl pr ﬂ.}_fffjf{c;]||.r_mrﬁ.-;

7=}

. t : . S i _ ik
f_iﬂ'mlp?g"“”‘g/ {f+;——.~;]_’ii.-"_‘~.£c'“”' APy L (—A) £ '5'”2I{-'*J||L¢a“;q
il

Tl

b o
N e f (£ +7— s) 2PV (=) f(5)]|pads
T (] ]

; s _
< sup TE_{”E[ (t4+T — .S:I_'E[FT? - I{—ﬂ]"fhﬂilﬂ:ﬁjiﬁ“—’dﬁ
70 0

o ;
<Csupr2®/? j (£ + 7 — 8) "2 (A0 f(5)]padls

7=l
<CsupTs” ”f‘f (t+71—8) 27 2gs sup SR £(8))pran
750 0<s<T

éﬂ’wnwg‘““{f +f; (e = 8) 25 0+D2gs sup V2
0 2

i 0<s<T

uls)er-slluls)lin.,

< sup ,;,_2—{::,-"?“ a TJ__t“_m"lr?”u”ErT

7oA
+ Csup 722~ 82 (=1 (g 4 )71l
=0
<Cy e ARy,

and, furthermore, for 3 > é = 0,

I J
IMu(t) — e*allp, < j |Ae~ =94 P - A=LE (s} ds
{l
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gt Soriae
<C f (t = ) 2|~ =542 P . AL F(5)]] o sdds
0
L
<C [ (t = 5) " |[PV - (—A)~PHP=0)2 £ ()] cosds
1
t ! =4
<C f (t— s)22[PV - (—A)~2H8=842 f(5)], sds
0
L
<C [t = 9)7 0= 2)" 0002 (o)}, sas
[}
i
<C [ (8= )21 (s))1-pds
i
¢ -
EC[ (t — 5) P2~ (1482 gy 1';[1_'“}’2d3[f(5)]¢|_3
0 = 5= T
<Ct I )},
and. finally,
-3 : ¥ i
(=AY (Mu(t) - e*a)||go < f le™ ¥ =P~ A)"#2 . f(s)||cods
0
: !
<C f [V - (=A) 2 (5] onds
0
L S,
<C [ 25 sup s f(s)]er.
1 I o
<G82 Y1y)|12
Collecting terms, we arrive at the sharp estimate
[Mully, < Cll(~A) P a)lpo + CTU22 |42,
Likewise, we have
1M = Mol < CTWD2(|lullgy + lollop )l = vy, wove Uy

Noting PMu(t) = Mu(t), we have V- Mu = 0. We thus can choose a small constant
T = 0 and a large constant ¢ > 0 such that M is a contraction operator mapping the
complete metric space {u € Up||ully, < r} into itselfl. By the contraction mapping
principle, we obtain the local solution, which can be represented in the integral form

]
u(t + 1) = e"Mulr) - f e"U=HAPY  (u(s + 1) @u(s +7))ds, t+7 < T
0

To verify the weak—=+ continuity of w(7) at T' > 7 = 0, we note, for ¢ € S{F"Y)",

fﬁﬁ (=AY P2yt + 1) — w(r)) - ¢do
<| [ (=8P e ) — () - gua]
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+ [: | [; H{J,&}—Wg—ﬁ—ﬂ-‘*fﬂv Auf(s +7) @ uls+ 7)) - pdz|ds
<Il(=8) " ?u(r)llolle™ ¢ — ¢l
v [ =21 PPV - (uls +7) @u(s + o6l 0,05
<llullo et = dll gy + O 2l 16l
where the use is made of the duality (See [20])
(B (RM))* = BY, o (R™) = C'(R")

Chvicusly, e~ g strongly continuous in B?.L ([2*). Hence the proof of Theorem 1.1 is
complete.

References

[1] Leray J., Sur le mouvement diun liquide visquex emplissant espace, Acta, Math., 63
(1034), 193-248.
[2] Fabes E.B., Jones B.T. and Riviere N.M., The initial value problem for the Navier-Stokes
aruations with data in L¥, Arch. Rational Mech. Anal., 43 (1972), 222-240,
[3] Beirao de Veiga ., Existence and asvmptotic behavior for strong solutions of the Navier-
Stokes equations in the whole space, Indiana Univ. Meth. J., 36 (1987), 149-166.
[4] Chen Z.M., A sharp decay result on strong solutions of the Navier-Stokes equations in the
whale space, Commun, Parlial Dif. Eqgs., 16 (1991), 801-820.
(5] Giga Y., Solutions for semilinear parabolic equations in LP and regularity of weak solutions
of the Navier-Stokes system, J. Diff. Egs., 62 (1986), 182-212.
[6] Kato T., Strong [P_solutions of the Navier-Stokes equations in &%, with applications to
wealk solutions, Math, 2., 187 (1984), 471-480.
[7T] Mivakawa T., Application of Hardy space techniques to the time-decay problem for incom-
pressible Navier-Stokes fAows in B", Funkeialaj Ekvaciof. 41 (1988), 383434
(8] Barraza (LA, Self-similar solutions in weak LP-spaces of the Navier-Stokes equations. fe-
vista Matemdtica Iberoamericana, 12 (1996), 411-439,
[9] Barraza O.A., Regulanty and stability for the solutions of the Navier-Stokes equations in
Lorentz spaces, Nonl. Anol, 35 (1999}, 747-T6d.
[10] Borchers W. and Miyakawa T., On stability of exterior stationary Navier-Stokes flows, Acta
Math. 174 (1995), 311-382.
11] Chen Z.M., L, solutions of the stationary and nonstationary Navier-Stokes equations in
RE", Pacific J. Math., 158 (1993), 203-303.
[12] Chen Z.M. and Miyakawa T., Decay properties of weak solutions to a perturbed Navier-
Stokes system in B", Adv. Math. Sci Appl., T (1997), 741770,
[13] He C., Weighted estimates for nonstationary Navier-Stokes equations, J. Diff. Egs., 148
(1998), 422-444.
[14] Hishida T., On a class of stable steady fows to the exterior convection problem, J. DNff.
Egs., 141 (1997), 34-85.




Chen Zhimin, Zhao Yongzhi and Yang Yujun Vol.13

Chen Z.M., Bifurcations of a steady-state solution to the two-dimensional Navier-Stokes
cquations, Commun, Math. Phys., 201 (1999), 117-138.

Chen Z.M. and Price W.G., Remarks on time dependent periadic Navier-Stokes fows on 2
two-dimensional torus, Commun. Math. Phys., (to appear).

Chen Z.M., Price W.G., Time dependent periodic Navier-Stokes flows on a two-dimensional
torus, Commun. Math, Phys., 179 (1998), 577-507.

Chen Z.M. and Price W.G., Long time behavior of Navier-Stokes flows on a two-dimensional
torus excited by a sinusoidal force, J. Statist. Phys., 86 (1997), 301-335.

Giga Y., Inui K. and Matsui S., On the Cauchy problem for the Navier-Stokes equations
with nondecaying initial data, Preprint.

Triebel H., Theory of Function Spaces. Birkhiiuser Verlag, Basel-Boston, 1983,

Butzer P.L. and Berens H., Semi-groups of Operators and Approximation. Grundlehren
Math., Wissensch. Vol.145, Springer-Verlag, Berlin 1967,



