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Abstract In this paper, we establish the global existence and the asymptotic
behavior of smooth solution to the initial-boundary value problem of Euler-Poisson
system which is used as the bipolar hydrodynamic model for semiconductors with the
nonnegative constant doping profile.
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1. Introduction

We are concerned with the large time behavior of smooth solutions to the one-
dimensional Euler-Poisson system which is used as the bipolar hydrodynamic model
for semiconductors in the case of two carriers, i.e. electron and hole. Namely

nt + (nu)x = 0, (1.1)

ht + (hv)x = 0, (1.2)

(nu)t + (nu2 + p(n))x = nφx −
nu

τn
, (1.3)

(hv)t + (hv2 + q(h))x = −hφx −
hv

τh
, (1.4)

φxx = n− h− d(x), (1.5)

(t, x) ∈ (0,∞)× (0, 1), where (n, h) and (u, v) are densities and velocities for electrons
and holes, respectively, j = nu and k = hv stand for the electron and hole current
densities, φ denotes the electrostatic potential and we denote E = φx as the electric
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field, and d(x) describes fixed charged background ions. The pressure functions p(n)
and q(h) are taken as

p(n) =
nγn

γn
, γn > 1, q(h) =

hγh

γh
, γh > 1. (1.6)

τn and τh are the momentum relaxation times for electrons and holes, respectively. τn
and τh are constants in the present paper. Furthermore, τn = τh = 1 for convenience.

Recently, the hydrodynamic model of semiconductors has attracted a lot of atten-
tion, due to its function to describe hot electron effects which are not accounted for in
the classical drift-diffusion model. Rigorous results have been obtained in various pa-
pers. Most of them are concerned with the unipolar case — the case of one carrier type,
i.e. electron. Also, there are a few results on the bipolar case which is of more impor-
tance and physical meaning. Fang and Ito [1] showed the existence of weak solutions to
the system (1.1)-(1.5) using the viscosity argument. Natalini [6], Hsiao and Zhang [4],
considered the relaxation limit problem from the bipolar hydrodynamic model to the
drift-diffusion equations. Zhu and Hattori [7] showed the existence of smooth solutions
to Cauchy problem of (1.1)-(1.5) and discussed the asymptotic stability of the steady
state solution, when the doping profile is close to zero.

In present paper, we consider the initial boundary value problems for (1.1)-(1.5)
with the following initial data

(n, h, j, k)(x, 0) = (n0, h0, j0, k0)(x), x ∈ (0, 1), (1.7)

and the insulating boundary conditions

j(0, t) = 0 = j(1, t), (1.8)

k(0, t) = 0 = k(1, t), (1.9)

E(0, t) = 0. (1.10)

To provide some insights into the above evolutionary problem, we take the doping
profile d(x) as a nonnegative constant d. Our main purpose in this paper is to in-
vestigate the global existence and the asymptotic behavior of the smooth solution to
(1.1)-(1.5) and (1.7)-(1.10). More precisely, we prove that when the initial data are
small perturbations of a stationary solution to the system, the global smooth solution
to (1.1)-(1.5) and (1.7)-(1.10) exists and tends to the stationary solution, as t → ∞,
exponentially. The steady state solution concerned satisfies the following system:

p(n̄)x = n̄Ē, (1.11)

q(h̄)x = −h̄Ē, (1.12)

Ēx = n̄− h̄− d, (1.13)
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with the boundary condition
Ē(0) = 0 = Ē(1). (1.14)

We only consider the case with n̄ > 0 and h̄ > 0. For the problem (1.11)-(1.14), we
have the following Lemma which is proved in the next section.

Proposition 1.1 The problem (1.11)-(1.14) admits only the constant solution with
Ē = 0 and n̄− h̄ = d.

Now, Let (n̄, h̄, 0) with n̄− h̄ = d be a fixed solution to (1.11)-(1.14) with n̄ > 0, h̄ >
0. The initial datum (n0, h0) is chosen so that∫

(n0(x)− n̄) = 0,
∫

(h0(x)− h̄) = 0. (1.15)

It follows from (1.1), (1.2), (1.8), (1.9) and (1.15) that∫
(n(x, t)− h(x, t)− d) = 0,

which with (1.5) and (1.10) implies

E(1, t) = 0, for all t > 0. (1.16)

Set
ψ(x, t) =

∫ x

0
(n− n̄)ds, η(x, t) =

∫ x

0
(h− h̄)ds. (1.17)

It is easy to verify that

ψt = −j, ηt = −k, E(x) = ψ − η. (1.18)

The main result is given as the follows.
Theorem 1.2 Assume ψ(·, 0) ∈ H3, η(·, 0) ∈ H3, j0, k0 ∈ H2. Then there exists

a positive number ε, such that if

‖(ψ(·, 0), η(·, 0))‖H3 + ‖(j0, k0)‖H2 ≤ ε, (1.19)

then the problem (1.1)-(1.5) and (1.7)-(1.10) has a unique smooth solution (n, h, j, k, E)
satisfying

‖(n− n̄, h− h̄)‖H2 + ‖E(·, t)‖H3 + ‖(j, k)‖H2 ≤ c exp(−αt), (1.20)

for some positive constants c and α.
Remark 1.3 The frictional terms j and k, and the electric field E play essential

roles in the existence and the exponential decay of the global smooth solution.
The proof of Theorem 1.2 given in Section 2 is based on the energy method. ψ

and η satisfy two nonlinear wave equations with friction. We reformulate the two
wave equations in the appropriate form by the stationary solution. We focus on the
estimates of the damping terms and the coupled terms of electron and hole from the
Poisson equation (1.5).
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2. The Proof of Proposition 1.1 and Theorem 1.2

The proof of Proposition 1.1
(1.14) implies

n̄x(0) = 0 = n̄x(1), (2.1)

and
h̄x(0) = 0 = h̄x(1). (2.2)

In fact, from (1.11) and (1.13), we have

−(
p(n̄)x

n̄
)x = −n̄+ h̄+ d. (2.3)

Multiplying (2.3) by n and integrating it over (0,1), one has∫
p′(n̄)
n̄

n̄2
x =

∫
(−n̄2 + n̄h̄+ n̄d), (2.4)

with the help of the integration by parts and (2.1). Similarly, it holds from (1.12) and
(2.2) that ∫

q′(h̄)
h̄

h̄2
x =

∫
(−h̄2 + n̄h̄− h̄d). (2.5)

Combining (2.4) with (2.5) yields∫
(
p′(n̄)
n̄

n̄2
x +

q′(h̄)
h̄

h̄2
x) = −

∫
[(n̄− h̄)2 − 2d(n̄− h̄) + d(n̄− h̄)]

= −
∫

[(n̄− h̄)− d]2 ≤ 0,
(2.6)

with the help of
∫
(n̄ − h̄) = d due to (1.14) and (1.13). Noting d is a nonnegative

constant, (2.6) with (1.6) implies n̄x = h̄x = 0, namely, n̄ and h̄ are positive constants.
Thus, n̄− h̄ = d and Ē = 0. The proof is completed.

To prove Theorem (2.1), we first establish the following a priori estimates.
Lemma 2.1 There exist some positive constants δ > 0 and β > 0, such that for

any T > 0, if

sup
0≤t≤T

(‖(ψ(·, t), η(·, t))‖H3 + ‖(ψt(·, t), ηt(·, t))‖H2) ≤ δ, (2.7)

then
‖(ψ(·, t), η(·, t))‖2H3 + ‖(ψt(·, t), ηt(·, t))‖2H2

≤ c(‖(ψ(·, 0), η(·, 0)‖2H3 + ‖(ψt(·, 0), ηt(·, 0))‖2H2) exp(−βt),
(2.8)

for any t ∈ [0, T ].
Proof Due to (1.15), (1.3) and (1.4), we have

ψ(0, t) = 0 = ψ(1, t), η(0, t) = 0 = η(1, t), (2.9)
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ψxx(0, t) = 0 = ψxx(1, t), ηxx(0, t) = 0 = ηxx(1, t). (2.10)

With the help of (1.17) and (1.18), ψ(x, t) and η(x, t) satisfy the following wave equa-
tions

ψtt + ψt − [p(ψx + n̄)− p(n̄)]x − (
ψ2

t

ψx + n̄
)x + ψx(ψ − η) + n̄(ψ − η) = 0, (2.11)

ηtt + ηt − [q(ηx + h̄)− q(h̄)]x − (
η2

t

ηx + h̄
)x + ηx(η − ψ) + h̄(η − ψ) = 0. (2.12)

We rewrite (2.11), (2.12) in another forms by (n̄, h̄) as follows.

ψtt + ψt − p′(n̄)ψxx + n̄(ψ − η) = F1, (2.13)

ηtt + ηt − p′(h̄)ηxx + h̄(η − ψ) = F2, (2.14)

where

F1 = [p(ψx + n̄)− p(n̄)− p′(n̄)ψx]x + (
ψ2

t

ψx + n̄
)x − ψx(ψ − η), (2.15)

F2 = [q(ηx + h̄)− q(h̄)− q′(h̄)ηx]x + (
η2

t

ηx + h̄
)x − ηx(η − ψ). (2.16)

We now devote to the a priori estimates of the solution (ψ, η) to the equations (2.13)
and (2.14). Since the boundary conditions (2.9) and (2.10) for (ψ, η), the estimates over
F1, F2 are similar to those in Hsiao and Yang [3]. We omit the detail here. We focus
on the left terms of (2.13) and (2.14) which embody the differences between unipolar
and bipolar cases.

Performing ∂i
x(i = 0, 1, 2) to (2.13) and (2.14), we have, respectively,

∂i
xψtt + ∂i

xψt − p′(n̄)∂i
xψxx + n̄(∂i

xψ − ∂i
xη) = ∂i

xF1, (2.17)

∂i
xηtt + ∂i

xηt − q′(h̄)∂i
xηxx + h̄(∂i

xη − ∂i
xψ) = ∂i

xF2. (2.18)

Here and in the sequel, ∂i
x denotes differentiating i times with respect to x. Multiplying

(2.17) and (2.18) by h̄∂i
xψ and n̄∂i

xη, respectively, and integrating them over (0, 1), we
have

d

dt

∫
h̄(∂i

xψ∂
i
xψt +

(∂i
xψ)2

2
) + h̄

∫
p′(n̄)(∂i+1

x ψ)2 − h̄
∫

(∂i
xψt)2 +

∫
h̄n̄(∂i

xψ − ∂i
xη)∂

i
xψ

=h̄
∫
∂i

xF1∂
i
xψ, (2.19)

d

dt

∫
n̄(∂i

xη∂
i
xηt +

(∂i
xη)

2

2
) + n̄

∫
q′(h̄)(∂i+1

x η)2 − n̄
∫

(∂i
xηt)2 +

∫
h̄n̄(∂i

xη − ∂i
xψ)∂i

xη

=n̄
∫
∂i

xF2∂
i
xη. (2.20)
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In view of (2.7), (2.9) and (2.10), we have

2∑
i=0

∫
∂i

xF1∂
i
xψ ≤ O(δ)

∫
(

2∑
k=0

(∂k
xψt)2 +

3∑
k=0

(∂k
xψ)2), (2.21)

2∑
i=0

∫
∂i

xF2∂
i
xη ≤ O(δ)

∫
(

2∑
k=0

(∂k
xηt)2 +

3∑
k=0

(∂k
xη)

2), (2.22)

with the help of the Taylor expansion and the integration by parts. By (2.19)-(2.22),
we have

d

dt

∫ 2∑
i=0

[h̄(∂i
xψ∂

i
xψt +

(∂i
xψ)2

2
) + n̄(∂i

xη∂
i
xηt +

(∂i
xη)

2

2
)]

+ a1

∫ 3∑
k=0

((∂k
xψ)2 + (∂k

xη)
2) − h̄

2∑
i=0

∫
(∂i

xψt)2 − n̄
2∑

i=0

∫
(∂i

xηt)2

≤O(δ)
∫ [ 2∑

k=0

((∂k
xψt)2 + (∂k

xηt)2) +
3∑

k=0

((∂k
xψ)2 + (∂k

xη)
2)

]
, (2.23)

where we have used the poincáre inequality due to (2.9) and a1 is a positive constant.
Now multiplying (2.17) and (2.18) by h̄∂i

xψt and n̄∂i
xηt, respectively, and integrating

them over (0, 1) , we get

d

dt

∫
h̄
[(∂i

xψt)2

2
+
n̄

2
(∂i

xψ)2 +
1
2
p′(n̄)(∂i

xψx)2
]
+ h̄

∫
(∂i

xψt)2 − n̄h̄
∫
∂i

xψt∂
i
xη

=h̄
∫
∂i

xF1∂
i
xψt, (2.24)

and

d

dt

∫
n̄
[(∂i

xηt)2

2
+
h̄

2
(∂i

xη)
2 +

1
2
q′(h̄)(∂i

xηx)2
]
+ n̄

∫
(∂i

xηt)2 − n̄h̄
∫
∂i

xηt∂
i
xψ

=n̄
∫
∂i

xF2∂
i
xηt. (2.25)

From (2.7), (2.9) (2.10) and integration by parts, we get

2∑
i=0

∫
∂i

xF1∂
i
xψt ≤−

d

dt

∫ [ 2∑
i=0

(
p′(ψx + n̄)− p′(n̄)

2
)(∂i

xψx)2 +
iψ2

tψ
2
xx

2i(ψx + n̄)2
]

+O(δ)
∫

(
2∑

k=0

(∂k
xψt)2 +

3∑
k=0

(∂k
xψ)2), (2.26)

and
2∑

i=0

∫
∂i

xF2∂
i
xηt ≤−

d

dt

∫ [ 2∑
i=0

(
q′(ηx + h̄)− q′(h̄)

2
)(∂i

xηx)2 +
iη2

t η
2
xx

2i(ηx + h̄)2
]

+O(δ)
∫

(
2∑

k=0

(∂k
xηt)2 +

3∑
k=0

(∂k
xη)

2). (2.27)
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(2.24)-(2.27) imply

d

dt

∫ { 2∑
i=0

h̄
[(∂i

xψt)2

2
+
n̄

2
(∂i

xψ)2 +
1
2
p′(n̄)(∂i

xψx)2

+ (
p′(ψx + n̄)− p′(n̄)

2
)(∂i

xψx)2 − iψ2
tψ

2
xx

2i(ψx + n̄)2
]

+
2∑

i=0

n̄
[(∂i

xηt)2

2
+
h̄

2
(∂i

xη)
2 +

1
2
q′(h̄)(∂i

xηx)2

+ (
q′(ηx + h̄)− q′(h̄)

2
)(∂i

xηx)2 − iη2
t η

2
xx

2i(ηx + h̄)2
]

− n̄h̄
2∑

i=0

∂i
xψ∂

i
xη

}
+ h̄

2∑
i=0

∫
(∂i

xψt)2 + n̄
2∑

i=0

∫
(∂i

xηt)2

≤O(δ)
∫ [ 2∑

k=0

((∂k
xψt)2 + (∂k

xηt)2) +
3∑

k=0

((∂k
xψ)2 + (∂k

xη)
2)

]
. (2.28)

(2.23)+2×(2.28) gives

d

dt

∫
G+ a2

∫ [ 3∑
k=0

((∂k
xψ)2 + (∂k

xη)
2) +

2∑
i=0

((∂i
xψt)2 + (∂i

xηt)2)
]

≤ O(δ)
∫ [ 2∑

k=0

((∂k
xψt)2 + (∂k

xηt)2) +
3∑

k=0

((∂k
xψ)2 + (∂k

xη)
2)

]
, (2.29)

where a2 > 0 and

G =
2∑

i=0

[h̄(∂i
xψ∂

i
xψt +

(∂i
xψ)2

2
) + n̄(∂i

xη∂
i
xηt +

(∂i
xη)

2)
2

)]

+
2∑

i=0

h̄
[
(∂i

xψt)2 + n̄(∂i
xψ)2 + p′(n̄)(∂i+1

x ψ)2

+ (p′(ψx + n̄)− p′(n̄))(∂i+1
x ψx)2 − iψ2

tψ
2
xx

2i−1(ψx + n̄)2
]

+
2∑

i=0

n̄
[
(∂i

xηt)2 + h̄(∂i
xη)

2 + q′(h̄)(∂i+1
x η)2

+ (q′(ηx + h̄)− q′(h̄))(∂i+1
x η)2 − iη2

t η
2
xx

2i−1(ηx + h̄)2
]

− 2n̄h̄
2∑

i=0

∂i
xψ∂

i
xη. (2.30)
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It is clear that

a3

∫ [ 2∑
k=0

((∂k
xψt)2 + (∂k

xηt)2) +
3∑

k=0

((∂k
xψ)2 + (∂k

xη)
2)

]

≤
∫
Gdx ≤ a4

∫ [ 2∑
k=0

((∂k
xψt)2 + (∂k

xηt)2) +
3∑

k=0

((∂k
xψ)2 + (∂k

xη)
2)

]
, (2.31)

for some positive constants a3 and a4, where we have used the Poincáre inequality due
to (2.9). Thus, (2.29)-(2.31) imply (2.8). Lemma 2.1 is proved.

Proof of Theorem 1.2
Based on Lemma 2.1, the proof of Theorem 1.2 is standard. In fact, combining

the standard theory of existence and uniqueness of local (in time) solutions ( see,
for instance Majda [5], ) with the estimates (2.8), we can extend the local solution
by the usual continuation arguments and show that the estimates (2.8) hold glob-
ally( see, for instance Hsiao and Luo [2]) if the perturbation ‖(ψ(·, 0), η(·, 0))‖H3 +
‖(ψt(·, 0), η(·, 0))‖H2 is sufficiently small.
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