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Abstract We introduce a metric, conformal to the affine metric, on a convex
graph, and consider the Euler equation of the volume functional. We establish a priori
estimates for solutions and prove a Bernstein-Jörgens type result in the two dimensional
case.
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1. Introduction

In this paper we study locally uniformly convex solutions of fourth order elliptic
equations of the form

L[u] = U ijwij = f, (1.1)

in the n-dimensional Euclidean space, Rn, where (U ij) is the cofactor matrix of the
Hessian matrix (uij) = D2u ≥ 0, w = [detD2u]α, α 6= 0 is a constant, and f is a
given function in Rn. The operator L is the Euler operator (up to a constant) of the
functional

J(u) =
∫

[detD2u]1+α. (1.2)

Let M = {(x, u(x)) | x ∈ Rn} be a locally uniformly convex hypersurface, given by
the graph of u. We introduce a metric g on M, defined by

gij = ρuij , (1.3)
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where ρ = [detD2u](1+2α)/n > 0. Then (1.2) is the volume functional of the metric g.
Note that (1.1) can also be written in the form (suppose f = 0)

∆gρ = 0, (1.4)

where ∆g is the Laplace-Beltrami operator with respect to the metric g.
There has been a growing interest in recent years in functionals involving curvatures

of a hypersurface (or manifold). Well-known examples are the Willmore functional [1,2]
∫

M
H2dσ, (1.5)

the functional proposed by Calabi [3-5]
∫

M
S2dσ (1.6)

and the affine surface area functional [6,7]
∫

M
K1/(n+2)dσ, (1.7)

where H, S, K are respectively the mean curvature, the scalar curvature, and the Gauss
curvature, and dσ is the volume element onM. The Euler equations of these functionals
are strongly nonlinear fourth order partial differential equations.

Our knowledge on higher order nonlinear partial differential equations is limited up
to date, although there are some isolated results. The study of the functional (1.2)
may help to understand other functionals such as (1.5)-(1.7). Note that the metrics g

in (1.3) are conformal to each other for different α. If α = −1
2 , the metric g in (1.3) is

called the Schwarz-Pick metric [8]. When α = −n+1
n+2 , the metric

gij = ga
ij = [detD2u]−1/(n+2)uij (1.8)

is the affine metric (Berwald-Blaschke metric). In this case the equation (1.1) is the
affine maximal surface equation for f = 0, and the affine mean curvature equation
for general f . In [7] we proved interior estimates and solved the Bernstein problem in
dimension two for the affine maximal surface equation.

In this paper we study the equation (1.1) with positive exponent α > 0. We will
first derive a priori estimates (Section 2) and then prove the Bernstein-Jörgens theorem
for the equation (1.1), with f ≡ 0, in two dimensions (Section 3). In [9] Jörgens proved
that an entire convex solution to the Monge-Ampère equation

detD2u = 1 (1.9)

must be a quadratic function if n = 2. Jörgens’ result was extended to high dimensions
by Calabi for 3 ≤ n ≤ 5 and Pogorelov for all n ≥ 2, see [10]. Jörgens’ result can also
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be used to obtain an alternative proof of the well known Bernstein theorem for minimal
graphs [11]. Our result, Theorem 3.2, extends Jörgens’ Theorem, since if u is a solution
of (1.9), u trivially satisfies (1.1) with f = 0.

Finally, we give some remarks in Section 4. An interesting phenomenon pointed
out there is that interior regularity for the equation (1.1) for non-positive functions f

does not carry over to positive f . We also indicate, among others, an application of
Bernstein’s original theorem [12] to our equation (1.1).

2. Interior Estimates

Lemma 2.1 Let u ∈ C4(Ω) ∩ C0(Ω) be a convex solution of (1.1), with positive
α, in a domain Ω ⊂ Rn. Suppose f ≤ 0 and

u = 0 on ∂Ω, inf
Ω

u = −1. (2.1)

Then
detD2u ≥ C(−u)β , (2.2)

where C, β > 0 depend only on n, α.
Proof Let

z = log
w

(−u)β
− A

2
|x|2,

where β > 1 and A < 1 are constants to be determined. We have z = ∞ on ∂Ω. Hence
z attains the minimum at some interior point x0 ∈ Ω. At x0 we have

zi =
wi

w
− β

ui

u
−Axi = 0,

namely
ui

u
=

1
β

(
wi

w
−Axi),

where zi =
∂z

∂xi
. The Hessian matrix (zij) at x0 is nonnegative. Choosing the coordi-

nates properly we may suppose (zij) is diagonal at x0. We have

0 ≤ uijzij = uii[
wii

w
− w2

i

w2
− β

uii

u
+ β

uiuj

u2
−A]

=
f

wd
− uii w

2
i

w2
− βn

u
+

1
β

uii(
wi

w
−Axi)2 −Auii

≤ f

wd
− (1− 2

β
)uii w

2
i

w2
− βn

u
−A(1− 2A|x|2)uii

≤ f

wd
− βn

u
− 1

2
Auii
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if β ≥ 2 and A ≤ 1
4 [diam(Ω)]−1, where d = detD2u. By the assumption f ≤ 0, we

obtain
|u|uii ≤ C.

Choosing β = max(2, nα), we obtain z(x) ≥ z(x0) ≥ C.
A well known result for the Monge-Ampère equation (1.9) is that if n = 2 and u is

a subsolution of (1.9), then u is strictly convex [13]. Hence by Lemma 2.1 we have
Corollary 2.2 Let u be as in Lemma 2.1. If n = 2, then u is strictly convex in

Ωδ for any δ > 0, where Ωδ = {x ∈ Ω |dist(x, ∂Ω) > δ}.
More precisely, Corollary 2.2 means that there is a monotone increasing function

ϕ, ϕ(r) > 0 if r > 0, depending on Ω, δ, the gradient of u, and the lower bound C in
(2.2), such that

u(x) ≥ ϕ(|x− x0|) + u(x0) + Du(x0)(x− x0) (2.3)

for any x0 ∈ Ωδ and x ∈ Ω. If Ω has a good shape, say, Ω is a normalized domain (see
Section 3 for definition), then ϕ is independent of Ω.

Lemma 2.3 Let n = 2 and u be as in Lemma 2.1. Then

u2detD2u ≤ C, (2.4)

where C depends on α, supΩ |Du|, and infΩ f .
Proof Let

z = log w(−u)β +
A

2
|Du|2.

Then z = 0 on ∂Ω. Suppose z attains maximum at x0. Then we have, at x0,

0 = zi =
wi

w
+ β

ui

u
+ Aukuki

and

0 ≥ zii =
wii

w
− w2

i

w2
+ β

uii

u
− β

u2
i

u2
+ Au2

ii + Aukukii.

We may suppose (zij) is diagonal at x0. Observe that

uiiukii =
1
α

wk

w
.

We have

0 ≥ uiizii =
f

wd
− uii(β

ui

u
+ Auiuii)2 +

βn

u
− βuii u

2
i

u2
+ A∆u + Auk

wk

αw

≥ f

wd
− C

uii

u2
+ A(1− 2A|Du|2)∆u− C

|u| .

Choosing A = 1
4 [supΩ |Du|2]−1, we obtain

∆u ≤ C

u2
uii +

C

|u| −
infΩ f

wd
.
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Multiplying the above inequality by u11u22, we obtain

u2detD2u ≤ C.

Choosing β = 2α, we obtain Lemma 2.3.
The boundedness of the gradient Du in Lemma 2.3 is not a restriction. Indeed, by

(2.1) and the convexity of u, Du is bounded in Ωδ for any δ > 0. Hence by Corollary
2.2, u is strictly convex in Ω2δ. Therefore for any point x ∈ Ω, we can apply Lemma
2.3 to a level set of u at x, namely the set

Su(x, h) = {y ∈ Ω | u(y) < u(x) + Du(x)(y − x) + h}, (2.5)

where h > 0 is such that Su(x, h) is precompact in Ω.
The following Hölder estimate for the linearized Monge-Ampère equation follows

from [14].
Lemma 2.4 Let u be a strictly convex function vanishing on the boundary ∂Ω and

satisfying
C1 ≤ detD2u ≤ C2 in Ω (2.6)

for some positive constants C1, C2. Suppose w ∈ C2(Ω) is a solution of the equation

U ijwij = 0 in Ω,

where (U ij) is the cofactor matrix of the Hessian (D2u). Then there exists α′ ∈ (0, 1)
such that for any Ω′ ⊂⊂ Ω,

‖w‖Cα′ (Ω′) ≤ C. (2.7)

where α′ depends only on n, C1, C2, and C depends additionally on Ω′,Ω.
Note that for a convex function u, the Hessian matrix D2u is well-defined almost

everywhere. The condition on the Monge-Ampère measure µu = detD2u in [14] is
weaker. Rather than the pinching condition (2.6), it is assumed in [14] that µu satisfies
a uniform continuity condition. It is not hard to check that the Hölder continuity is
still true for non-homogeneous equations, namely the equation (1.1) if the condition
(2.6) holds.

With the a priori estimates (2.2) and (2.4), and the Hölder continuity (2.7), we
therefore have the following Schauder estimate and W 4,p estimate for the solutions of
(1.1).

Theorem 2.5 (W 4,p estimate) Let n = 2 and u ∈ C4(Ω) ∩ C0(Ω) be a solution
of (1.1) with α > 0 and f ≤ 0. If u satisfies (2.1), then for any p > 1, δ > 0, we have
the estimate

‖u‖W 4,p(Ωδ) ≤ C, (2.8)

where C > 0 depends only on α, p, δ, Ω, and max |f |.
Proof By the strict convexity, Corollary 2.2, and the Hölder continuity of solu-

tions of the linearized Monge-Ampère equation, Lemma 2.4, we have an a priori Hölder
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estimate for detD2u. By the Schauder estimate [15], we then have an a priori C2,α es-
timate for u. Hence (1.1) becomes a uniformly elliptic equation and the W 4,p estimates
follows.

Further estimates and corresponding regularity for the solutions of (1.1) follow from
standard elliptic regularity theory. In particular we have

Theorem 2.6 (Schauder estimate) Let n = 2 and u ∈ C4(Ω)∩C0(Ω) be a solution
of (1.1) with positive α. Suppose u satisfies (2.1), f ≤ 0, f ∈ Ck,α′(Ω), where k ≥
0, α′ ∈ (0, 1). Then u ∈ Ck+4,α′(Ω), and for any δ > 0, we have the estimate

‖u‖C4,α′ (Ωδ) ≤ C, (2.9)

where C > 0 depends only on α, k, α′, δ, and Ω.
We remark that Theorems 2.5 and 2.6 hold for all dimensions if one has the estimates

(2.2) and (2.4).

3. The Bernstein Problem

In this section we consider the equation

L[u] = 0 in R2, (3.1)

where L is the operator in (1.1). We want to prove that a solution to (3.1) must be a
quadratic polynomial. For this purpose we need two known results. The first one is that
for any given bounded convex domain Ω ⊂ Rn (n ≥ 2), there exists a unique ellipsoid
E containing Ω, called the minimum ellipsoid of Ω, which attains the minimum volume
among all ellipsoids containing Ω. Moreover,

1
n

E ⊂ Ω ⊂ E, (3.2)

where
1
n

E is the
1
n

dilation of E with concentric centre.

Let T be a linear transformation leaving the centre of E invariant such that T (E) =
B, the unit ball. Then we have

1
n

B ⊂ T (Ω) ⊂ B.

We call T (Ω) the normalized domain of Ω. A domain Ω is normalized if T is the identity
mapping, that is its minimal ellipsoid is the unit ball.

We also need a lemma from [16].
Lemma 3.1 Let u be a locally uniformly convex function in Rn. Then for any

y ∈ Rn and any h > 0, there is a point x ∈ Rn such that y is the centre of mass of the
level set Su(x, h).
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Let u be an entire solution of (3.1). By subtracting a linear function we suppose u

is nonnegative and u(0) = 0. For any h > 0, let xh ∈ Rn (n = 2) such that the origin
is the centre of mass of the level set Su(xh, h). For h > 1 sufficiently large, let Th be
a linear transformation which normalizes the level set Su(xh, h) such that the origin is
the centre of mass of Ωh = Th(Su(xh, h)). Let

uh(y) = δh{u(x)− u(xh)−Du(xh)(x− xh)}, (3.3)

where y = Th(x) ∈ Ωh. Then uh ≥ uh(xh) = 0. We choose δh > 0 such that uh = 1
on ∂Ωh. Obviously, uh satisfies the equation (3.1) since (3.1) is invariant under linear
transformation.

By our interior estimate, Theorem 2.6, we have

C1 ≤ detD2uh ≤ C2 (3.4)

and
C1|x|2 ≤ uh(x)−Duh(0)x ≤ C2|x|2 (3.5)

for x near the origin. Let Λh and λh denote respectively the largest and the least
eigenvalues of Th. It is easy to check by rescaling that

λh ≥ C3δ
1/2
h , (3.6)

Λh ≤ C4δ
1/2
h , (3.7)

where C3 depends only on C1, C2 in (3.5) and inf∂B1 u, and C4 depends only on C1, C2

in (3.5) and sup∂B1
u. It follows, from (3.4)-(3.7), that

C1 ≤ detD2u ≤ C2 in R2 (3.8)

for different C1, C2, and
u(x)
|x| → ∞ as x →∞. (3.9)

By (3.6) and (3.7) we have furthermore

sup
∂BR(0)

u ≤ C inf
∂BR(0)

u (3.10)

for any R ≥ 1, where C > 0 depends on Ci, i = 1, 2, 3, 4, but is independent of R.
Remark If u is a solution of (3.1) defined on a convex domain Ω such that u →∞

as x → ∂Ω, by (3.6) and (3.7) we must have Ω = Rn. Note that Lemma 3.1 is still
applicable in this case.

Now we can reduce the Bernstein problem for (3.1) to the interior estimate, Theorem
2.6.

Theorem 3.2 Let n = 2 and u be an entire solution of (3.1). Then u is a
quadratic polynomial.
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Proof Let Th be a linear transformation normalizing the level set Sh = {u < h}.
Let uh(x) =

1
h

u(T−1(x)), x ∈ Ωh = T (Sh). Then uh = 1 on ∂Ωh, uh ≥ uh(0) = 0. By

(3.10), the origin
O ∈ Ωh,δ = {x ∈ Ωh | dist(x, ∂Ωh) > δ}. (3.11)

By Theorem 2.6 we have |D3uh| ≤ C near the origin. It follows, for any fixed x ∈ Rn,

|D3u(x)| ≤ CΛ3
hh|D3uh(Th(x))|.

By (3.6) and (3.7), we have Λ2
hh ≤ C. Hence

|D3u(x)| ≤ Ch−1/2.

Letting h →∞, we conclude that D3u = 0. Hence u is quadratic.

4. Remarks

4.1 Strict convexity
It is well known that the strict convexity of solutions is crucial for the regularity

of the Monge-Ampère equation (1.9). This is the same for the affine mean curvature
equation

U ij [(detD2u)−(n+1)/(n+2)] = 0.

In [7] we proved only for dimension two the strict convexity of solutions which vanish
on the boundary. For high dimensions we found a non-strictly convex, affine maximal
function

u(x) = (|x′|9 + x2
10)

1/2, (4.1)

where x′ = (x1, · · · , x9). The graph of this function can be regarded as an affine
maximal cone. It has the affine invariant property that for any t > 0, there is an affine
transformation Tt such that

1
t
u(Tt(x)) = u(x).

For the equation (1.1), in the case α > 0, the strict convexity of solutions in two
dimensions follows from (2.2) immediately.

The following example shows that sufficiently smooth boundary data may be nec-
essary for C∞ regularity. Consider in the upper half-space {y > 0} of R2 the function

u(x, y) = xλ/y λ ≥ 2.

Direct computation shows that u satisfies the Laplace-Beltrami equation (1.4) with
respect to the Schwarz-Pick metric gij = uij . The function (4.1), in a domain in
{x10 > 0}, also shows that sufficiently smooth boundary data are necessary for the C∞

regularity for the affine maximal surface equation in high dimensions.
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For the Monge-Ampère equation (1.9), there also exist non-strictly convex solutions
in dimensions n ≥ 3 [10]. However for two dimensions a solution to (1.9) must be strictly
convex [13], as we indicated in Section 2.

4.2 A priori estimates
In Theorem 2.5 and 2.6 we have the condition f ≤ 0. When f > 0, the estimate

(2.2) is not true and Theorems 2.5 and 2.6 do not hold. Indeed when n = 2 and α = 1,
the operator L in (1.1) can also be written (for radial functions) as

L[u] =
1
r

[
(
u′2

r
u′′)′′ − (

u′

r
u′′2)′

]
. (4.2)

Direct computation shows that when u(r) = r8/3,

L[u] =
5
3
(
8
3
)4. (4.3)

However u is not C3 smooth. This is a very interesting phenomenon for the regularity
of higher order nonlinear partial differential equations.

For the affine mean curvature equation, we have shown that Theorem 2.5 or 2.6
holds in dimension two for any bounded function f or Hölder continuous f [17]. From
the function (4.1), it is readily seen that Theorem 2.6 does not hold in high dimensions
(n ≥ 10); additional conditions on the boundary are needed for the interior regularity.

4.3 Reduction of smoothness
If u ∈ C2(Ω) is locally uniformly convex, then the equation (1.1) is still meaningful

in the distribution sense, ∫

Ω
U ijηijw =

∫

Ω
fη, (4.5)

for all η ∈ C2
0 (Ω). However, our regularity proof in [7] continues to apply and we can

infer u ∈ W 4,p
loc (Ω) if f ∈ Lp(Ω) for p > 1. Accordingly, in Theorems 2.5 and 2.6,

we need only assume u ∈ C2(Ω) ∩ C0(Ω), with u ∈ C2(R2) for the validity of the
Bernstein-Jörgens result, Theorem 3.2. Note that the example (4.3) also shows that
the local uniform convexity cannot be relaxed to strict convexity for the regularity.

4.4 Bernstein’s result
A well-known result for minimal surfaces by Bernstein is that a complete minimal

graph in R3 must be a linear function. Indeed Bernstein proved the following deep
result for two dimensional elliptic equations.

Theorem 4.1 Suppose u is a solution to the elliptic equation

2∑

i,j=1

aij(x)uij = 0 in R2, (4.6)

such that
|u(x)| = o(|x|) as |x| → ∞. (4.7)
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Then u is a constant.
Bernstein’s proof [12] contains a gap, which was fixed in [18] and [19]. In Theorem

4.1 the operator is not required to be uniformly elliptic. Theorem 4.1 gives an alterna-
tive proof of Theorem 3.2. That is w = [detD2u]α is bounded in Rn by (3.8) and so it
is a constant. Therefore u is quadratic by Jörgens’ result [9].

Theorem 4.1 also provides an alternative proof for the affine Bernstein problem
in [7], which avoids the Caffarelli-Gutierrez theory. However this doesn’t simplify the
proof in [7] as all estimates proven there are still necessary.

As a final remark we indicate that in [7], the affine Bernstein problem is reduced to
interior estimates by the rescaling ut(x) = 1

t u(T−1(x)), where t > 1 is a constant and
T is an affine transformation which normalizes the level set {u < t}. Since the affine
mean curvature equation is invariant under different choices of coordinate systems, one
can assume that dist(0, ∂Ωt) ≥ δ0 for a fixed δ0 > 0, where Ωt = T ({u < t}). For
the equation (3.1) such invariance is no longer true and we need the growth estimates
(3.10) to ensure dist(0, ∂Ωt) > 0, see (3.11).
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