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1. Introduction

Let Ω be a bounded, open, connected set in Rn with boundary ∂Ω. Consider the
following homogeneous Dirichlet problem for the parabolic equation:

∂u

∂t
=

n∑
i,j=1

∂

∂xi
(aij(x, t)

∂u

∂xj
)−

n∑
i=1

bi(x, t)
∂u

∂xi
− a(x, t)u

in Q = (0, T )× Ω, (1.1a)

u|Σ = 0 in Σ = ∂Ω× (0, T ), u|t=0 = u0 in Ω,

under the condition of uniform ellipticity, namely,

µ
n∑

i=1

ξ2
i ≤

n∑
i,j=1

aij(x, t)ξiξj ∀ξi ∈ R a.e. in Q, µ > 0, (1.1b)

where aij = aji, aij ∈ L∞(Q), i, j = 1, ..., n. To guarantee the solvability and unique
continuation, some other assumptions are needed [1-2]:

u0 ∈ L2(Ω), ‖
n∑

i=1

b2
i , a‖q,r,Q ≤ µ,

1
r

+
n

2q
= 1− k, (1.2a)
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q ∈ [

n

2(1− k)
,∞], r ∈ [

1
1− k

,∞], 0 < k < 1, for n ≥ 2,

q ∈ [1,∞], r ∈ [
1

1− k
,

2
1− 2k

], 0 < k < 1
2 , for n = 1,

(1.2b)

where ‖z‖q,r,Q = (
∫ T

0
(
∫
Ω
|z|qdx)

r
q dt)

1
r ;

∂aij

∂t
∈ L1(0, T ;L∞(Ω)), bi, a ∈ L∞(Q), (1.3)

u0 ∈ H1
0 (Ω), ∂Ω ∈ C2,

∂aij

∂xk
, bi, a ∈ L∞(Q). (1.4)

The conditions (1.2) ensure the existence and uniqueness of a solution to (1.1) from
the space C([0, T ];L2(Ω)) ∩ H1,0

0 (Q)(see Ladyzenskaja [1]), which satisfies the energy
estimate:

‖u‖C([0,T ];L2(Ω)) + ‖u‖H1,0(Q) ≤ c‖u0‖L2(Ω). (1.5)

Here c depends on T and the parameters in (1.1b), (1.2). Under the assumptions (1.4)
this solution lies in H2,1

0 (Q). The assumptions (1.3) allow one to use the backward
uniqueness result.

The reference [2] gives the following unique continuation results:
Proposition 1.1 Let n ≤ 3. Given T > ε > 0, there exists a measurable curve

(ε, T ) 3 t → x̂(t) ∈ Ω̄ such that every solution u ∈ H2,1
0 (Q) to (1.1), (1.3), (1.4) which

vanishes along x̂(·) and vanishes in Q.
Proposition 1.2 Given T > ε > 0, there exists a set-valued map (ε, T ) 3 t →

S(t) ⊂ Ω , mes{S(t)} > 0 such that every solution u ∈ C([0, T ];L2(Ω)) ∩ H1,0
0 (Q) to

(1.1), (1.2), (1.3) which satisfies the equality
∫

S(t)
udx = 0 on (ε, T ) vanishes in Q.

Furthermore, [2] studies the approximate controllability of the following control
system:

∂ϕ

∂t
=

n∑
i,j=1

∂

∂xi
(aij(x, T − t)

∂ϕ

∂xj
)

+
n∑

i=1

∂

∂xi
(bi(x, T − t)ϕ)− a(x, T − t)ϕ + B(T − t)v(t) in Q, (1.6)

ϕ =0 inΣ, ϕ|t=0 = 0,

where B(·) is a linear operator defined on a linear manifold V ⊆ L2(0, T ) by one of the
following formulas:

B(T − t)v(t) = v(t)×
{

1, if x ∈ S(T − t),
0, if x /∈ S(T − t),

S(t) ⊂ Ω a.e. in [0, T ], (1.7)

or
B(T − t)v(t) = v(t)δ(x− x̂(T − t)), x̂(t) ∈ Ω̄ a.e. in [0, T ], (1.8)
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where δ(x) is Dirac’s function, and v ∈ V = {v ∈ L2(0, T ;L2(Ω)|v(x, t) = 0, a.e. in(T−
ε, T )} is a control function. The reference [1] just gives the approximate controllability
results for linear parabolic system. We will show the finite-dimensional exact control-
lability of linear parabolic system under the same assumptions as in [2], and morover,
extend the results to nonlinear systems.

2. Global Approximately Controllability and Finite Dimensional

Exact Controllability for Linear Parabolic Equation

In this section, we intend to study the global approximately controllability and
finite dimensional exact controllability of (1.6), (1.7). First, we deal with the case that
control acts on a positive measure subset of Q, and then, the case that control acts on
a curve.

2.1 The case that control acts on a positive measure subset of Q

Given ε > 0, α > 0, ϕ1 ∈ L2(Ω), let E be any finite-dimensional subspace of L2(Ω)
and ΠE the orthogonal projection from L2(Ω) into E, and S(t) a subset constructed
as in Proposition 1.2. Define functional J : L2(Ω) → R as follows:

J(u0) =
1
2

∫ T

ε

∫
S(t)

u2dxdt + α‖(I −ΠE)u0‖ −
∫
Ω

ϕ1u0dx (2.1)

where u is the solution to (1.1) with initial datum u0. We have the following results:

Theorem 2.1 The functional J : L2(Ω) → R is continuous and convex. Further-
more, it is coercive. More precisely,

lim inf
‖u0‖L2(Ω)→∞

J(u0)
‖u0‖L2(Ω)

≥ α (2.2)

Proof The continuity can be easily deduced from the energy estimate (1.5), and
convexity, from unique continuation Proposition 1.2. To prove (2.2), we proceed as in
Zuazua[3]. Given a sequence {uj

0} in L2(Ω) with ‖uj
0‖L2(Ω) →∞, we normalize it:

ûj
0 = uj

0/‖u
j
0‖L2(Ω).

We have

J(uj
0)/‖u

j
0‖L2(Ω) =

‖uj
0‖L2(Ω)

2

∫ T

ε

∫
S(t)

|ûj |2dxdt

+α‖(I −ΠE)ûj
0‖L2(Ω) −

∫
Ω

ϕ1ûj
0dx

where ûj is the solution of (1.1) with initial data ûj
0.
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We distinguish the following two cases.
Case 1:

lim inf
j→∞

∫ T

ε

∫
S(t)

|ûj |2dxdt > 0.

When this holds, we clearly have

lim inf
j→∞

J(uj
0)

‖uj
0‖L2(Ω)

= ∞.

Case 2:

lim inf
j→∞

∫ T

ε

∫
S(t)

|ûj |2dxdt = 0.

In this case, by extracting subsequences (that we denote by the index j to simplify the
notation) we have that ∫ T

ε

∫
S(t)

|ûj |2dxdt → 0 (2.3)

and
ûj

0 ⇀ u0 weakly in L2(Ω). (2.4)

In view of (2.3) and (2.4) the solution of (1.1), (1.2) with data u0 satisfies

u = 0 in S(·).

But then, by Proposition 1.2, u ≡ 0. In particular u(0) = u0 = 0 in Ω and therefore

ûj
0 ⇀ 0 weakly in L2(Ω).

Since E is finite-dimensional (and ΠE compact),

‖(I −ΠE)ûj
0‖L2(Ω) → 1.

Therefore,

lim inf
j→∞

J(uj
0)

‖uj
0‖L2(Ω)

≥ α.

This proves the claim (2.2).
Theorem 2.2 System (1.6),(1.7) is globally approximately controllable and finite-

dimensional exact controllable in the sense that, given T > ε > 0, ϕ1 ∈ L2(Ω), finite-
dimensional subspace E and α > 0, there exists a set-valued map (ε, T ) 3 t → S(t) ⊂ Ω
and a control v ∈ V such that

‖ϕ(x, T )− ϕ1‖ ≤ α
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and
ΠEϕ(x, T ) = ΠEϕ1

Proof By Proposition 1.2 it is also easy to deduce that J is strictly convex. Then
J has a unique critical point which is its minimizer:

û0 ∈ L2(Ω) : J(û0) = min
u0∈L2(Ω)

J(u0).

Given any u0 ∈ L2(Ω) and λ ∈ R we have

J(û0) ≤ J(û0 + λu0)

or, in other words,

α‖(I −ΠE)û0‖L2(Ω) ≤
λ2

2

∫ T

ε

∫
S(t)

u2dxdt + λ

∫ T

ε

∫
S(t)

ûudxdt

+ α‖(I −ΠE)(û0 + λu0)‖L2(Ω) − λ

∫
Ω

ϕ1u0dx.

where u is the solution of (1.1), (1.2) with data u0.
Dividing this inequality by λ > 0 and letting λ → 0+, we obtain that∫

Ω
ϕ1u0 ≤

∫ T

ε

∫
S(t)

ûudxdt

+ α lim inf
λ→0+

‖(I −ΠE)(û0 + λu0)‖L2(Ω) − ‖(I −ΠE)û0‖L2(Ω)

λ

≤
∫ T

ε

∫
S(t)

ûudxdt + α‖(I −ΠE)u0‖L2(Ω).

Reproducing this argument with λ < 0, we obtain finally that

|
∫ T

ε

∫
S(t)

ûudxdt−
∫
Ω

ϕ1u0| ≤ α‖(I −ΠE)u0‖L2(Ω) (2.5)

On the other hand, the reference [2] ((6.6) pp.461) gives∫ T

ε

∫
S(t)

u(x, t)v(T − t)dxdt =
∫
Ω

u0ϕ(x, T )dx. (2.6)

Let

v(t) =

{
û(x, T − t), in(0, T − ε),
0, in(T − ε, T ).

Then, combining (2.5) with (2.6) we obtain that

|
∫
Ω

u0(ϕ(x, T )− ϕ1)dx| ≤ α‖(I −ΠE)u0‖L2(Ω)
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holds for any u0 ∈ L2(Ω). Thus

‖ϕ(x, T )− ϕ1‖ ≤ α

and
ΠE(ϕ(x, T )− ϕ1) = 0.

As a consequence of Theorem 2.2, we have more general controllability result as
follows:

Theorem 2.3 The parabolic system

∂φ

∂t
=

n∑
i,j=1

∂

∂xi
(aij(x, T − t)

∂φ

∂xj
)

+
n∑

i=1

∂

∂xi
(bi(x, T − t)φ)− a(x, T − t)φ + B(T − t)v(t) in Q, (2.7)

φ = 0 in Σ, φ|t=0 = φ0 ∈ L2(Ω)

is also globally approximate controllable and finite-dimensional exact controllable. i.e.,
that, for any φ0, φ1 ∈ L2(Ω), finite-dimensional subspace E, ε > 0, α > 0, there exist a
set-valued map (ε, T ) 3 t → S(t) ⊂ Ω and a control v ∈ V such that the solution satisfies

‖φ(x, T )− φ1‖L2(Ω) ≤ α

and
ΠEφ(x, T ) = ΠEφ1.

Proof In fact, system (2.7) can be decomposed as φ = ϕ + ϕ̃ where ϕ is the
solution of (1.6) and ϕ̃ satisfies

∂ϕ̃

∂t
=

n∑
i,j=1

∂

∂xi
(aij(x, T − t)

∂ϕ̃

∂xj
)

+
n∑

i=1

∂

∂xi
(bi(x, T − t)ϕ̃)− a(x, T − t)ϕ̃ in Q,

ϕ̃ =0 in Σ, ϕ̃|t=0 = φ0 in Ω.

Of course, ϕ̃(T ) is determined by φ0. Then, for ϕ1 = φ1 − ϕ̃(T ). From Theorem 2.2,
there exists a control v ∈ V such that

‖ϕ(T )− (φ1 − ϕ̃(T ))‖L2(Ω) ≤ α

and
ΠEϕ(T ) = ΠE(φ1 − ϕ̃(T )).

i.e.,
‖φ(T )− φ1‖L2(Ω) ≤ α
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and
ΠEφ(T ) = ΠEφ1.

This concludes the proof.
Remark Our control acts only during a subperiod (0, T−ε), not the whole interval

[0, T ]. This is the difference from classical control theory.

2.2 The case that control acts on a curve in Q

Let n ≤ 3. Given T > ε > 0, let x̂(t), t ∈ (0, T ) be an arbitrary curve satisfying
Proposition 1.1. Consider the system

∂φ

∂t
=

n∑
i,j=1

∂

∂xi
(aij(x, T − t)

∂φ

∂xj
)

+
n∑

i=1

∂

∂xi
(bi(x, T − t)φ)− a(x, T − t)φ + v(t)δ(x− x̂(T − t)) in Q, (2.8)

φ =0 in Σ, φ|t=0 = φ0 ∈ L2(Ω).

We have the following result:
Theorem 2.4 The system (2.8) is globally approximately controllable and finite-

dimensional exactly controllable in the sense that, for any φ0, φ1 ∈ H−1(Ω), let E be
finite-dimensional subspace in H1

0 (Ω). Then there exists a measurable curve (ε, T ) 3
t → x̂(t) ∈ Ω̄ and a control v ∈ V such that the solution satisfies

‖φ(T )− φ1‖H−1(Ω) ≤ α (2.9)

and
ΠEφ(T ) = ΠEφ1 (2.10)

where ΠE is the orthogonal projection from H−1(Ω) into E.
This theorem can be proved in the same way as that of Theorem 2.2 and 2.3. We

just give a sketch: Define functional J : H1
0 (Ω) → R as

J(u0) =
1
2

∫ T

ε
|u(x̂(t), t)|2dxdt + α‖(I −ΠE)u0‖H1

0 (Ω) −
∫
Ω

ϕ1u0dx,

where u is the solution to (1.1) with initial datum u0 ∈ H1
0 (Ω). It is easy to verify

that the functional J is continuous and strictly convex, and moreover, the coercive in
H1

0 (Ω). So it has a unique critical point which is its minimizer:

û0 ∈ H1
0 (Ω) : J(û0) = min

u0∈H1
0 (Ω)

J(u0).

Let û be the solution to (1.1) with initial data û0. Then

v(t) =

{
û(x, T − t), in (0, T − ε),
0, in (T − ε, T )

is the control such that (2.9) and (2.10) hold.
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3. The Nonlinear Case

In this section, we intend to deal with the semilinear control system:
∂φ

∂t
= 4φ + g(φ) + B(T − t)v(t)

φ = 0 in Σ, φ|t=0 = φ0,
(3.1)

with v and B(·) as in (1.7) or (1.8) and x̂(·), S(t) as in Propositions 1.1 and 1.2
respectively. We have the following result:

Theorem 3.1 Assume that g is of C1, globally Lipschitz and g(0) = 0, then
the system (3.1) is globally approximately controllable and finite-dimensional exactly
controllable in L2(Ω) with control v ∈ V .

Sketch of the proof We introduce the nonlinearity

h(s) =

{
g(s)/s, if s 6= 0,

g′(0), if s = 0.

Given any z ∈ L2(Ω) we consider the ”linearized ” system:
∂φ

∂t
= 4φ + h(z)φ + B(T − t)v(t)

φ = 0 in Σ, φ|t=0 = φ0,
(3.2)

We observe that the potential h(z) belongs to L∞(Ω× (0, T ). Moreover,

‖h(z)‖L∞(Ω×(0,T ) ≤ ‖g′‖L∞(R).

By Theorem 2.3 we may construct a control vz ∈ V , depending on z, such that

‖ϕ(x, T )− ϕ1‖ ≤ α

and
ΠEϕ(x, T ) = ΠEϕ1

Using the techniques in [3], one can deduce that the controls vz obtained by the method
in Theorem 2.2 and 2.3 or (2.4) are uniformly bounded. More precisely, there exists
C > 0 such that

‖vz‖L2(Ω×(0,T )) ≤ C, ∀z ∈ L2(Ω× (0, T )).

and therefore the solutions φz of (3.1) corresponding to vz are also uniformly bounded
in H1,0

0 (Q) and C([0, T ];L2(Ω)), and thus belong to a compact subset in L2(Q)(see [4]).
In fact, we have constructed a nonlinear map:

N : L2(Q) → L2(Q)

such that N(z) = φz which is continuous and compact. Then, by Schauder’s fixed point
theorem, the fixed point exists and the proof is concluded.
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