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Abstract In this paper, we consider the existence and nonexistence of positive
solutions to semilinear elliptic equation −∆u = K(x)(1 − |x|)−λuq in the unit ball B

with 0-Dirichlet boundary condition. Our main tools are based on the interior estimates
of the Schauder type, the Schauder fixed point theorem and the pointwise estimates for
Green functions.
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1. Introduction

Let B be the unit ball {x ∈ Rn : |x| < 1} in Rn and consider the semilinear elliptic
problem 




−∆u = K(x)(1− |x|)−λuq, x ∈ B,

u(x) > 0, x ∈ B,

u(x) = 0, x ∈ ∂B,

(1.1)

where λ > 0, q > 1 and K(x) is a given nonnegative α-Hölder continuous function on
B. As a matter,of course, this kind of problems which allow λ ≤ 0 has been investigated
extensively.

When K(·) is a given nonnegative continuous radial function on B, this problem
was already studied by Seuba-Ebihare-Furusho [1] within the framework of the theory
of ODE. They obtained the existence of positive radial solutions in C2(B)∩C1(B) for
the case 0 < λ < 2 and 1 < q < (n + 2)/(n − 2). Hayashida-Nakatani [2] also studied
some similar problems and discussed some mathematical backgrounds for (1.1). In
a recent paper [3], Hashimoto-Ôtani studied this problem by the variational method.
They showed the existence of positive radial solutions in C2(B) ∩ C1(B) for the case
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0 < λ < 1 + (q + 1)/2 and 1 < q < (n + 2)/(n − 2). Meanwhile they obtained the
nonexistence theorem of positive solutions in C2(B) ∩ C1(B) for the case λ ≥ 1 + q.

As was pointed in [3], it would be interesting to investigate the existence of (not
necessarily classical) positive solutions of (1.1) for the case 1 + (1 + q)/2 ≤ λ < 1 + q.

The main purpose of this paper is devoted to the existence and nonexistence of
positive solutions in C0(B) ∩ C2,α(B) of (1.1) from the viewpoint of the theory of
nonlinear PDE. However, our method can deal with the sharper singular case (i.e.,
0 < λ < 1 + α + (q − 1)β, for some 0 < α ≤ β, 0 < β < 1) than those in Hashimoto-
Ôtanni [3]. Our argument is based on the interior estimates of the Schauder type, the
Schauder fixed point theorem and the pointwise estimates for Green function. However,
our argument does not require the symmetry of both K(·) and the solution. Moreover,
we have droped out the subcritical condition q < (n + 2)/(n− 2).

The main results are stated in the next section, and their proofs will be given in
Section 3 and Section 4.

2. Main Result

Throughout this paper, the following condition will be imposed on K(·)

(Kα)





K(x) ∈ Cα(B),
K(x) ≥ 0, x ∈ B,

K(x) > 0, x ∈ ∂B,

(2.1)

where 0 < α ≤ β for some 0 < β < 1.
The main results of this paper are the following two theorems.
Theorem 2.1 (Existence theorem)Let K(·)satisfy condition (Kα) and q > 1, 0 <

λ < 1 + α + (q − 1)β, then (1.1) has at least one positive solution u(x) belonging to
C0(B)∩C1,α(B). Furthermore, there exist positive constants c1, c2, c3 and ε(0 < ε < 1)
such that

|u|(−β)
0,α;B ≤ c1, |u|(−β)

2,α;B ≤ c2c
q
1|K|0,α;B,

u(x) ≥ c3(1− |x|), ∀ x ∈ B1−ε,

where Br is an open ball with radius r centered at origin.
Remark 2.1 As pointed out in the introduction, we do not need the subcritical

condition q < (n + 2)/(n− 2).
Remark 2.2 If we have α = β → 1, then q := 1+α+(q−1)β → 1+q. Combining

this with a nonexistence result of Hayashimoto-Ôtani [3], we know that our result, in
some sense, is essentially optimal.

Remark 2.3 For the case of α = 0, i.e., K(·) only continuous, the existence of
(not necessary classical) positive solutions of Dirichlet problem (1.1) is still open.
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As usual, a function u ∈ C0(B) is called a mild solution of Dirichlet problem (1.1)
if u satisfy the following integral equation

u(x) =
∫

B
G(x, y)

K(y)uq(y)
(1− |y|)λ

dy, (2.2)

where G(x, y) is the Green’s function of −∆ in B with zero Dirichelt boundary condi-
tion.

Theorem 2.2 (Nonexistence theorem) Let K(·) satisfy condition (Kα) and q >

1, λ ≥ 1 + q, then Dirichlet problem (1.1) has no positive mild solution u such that

u(x) ≥ c(1− |x|),∀ x ∈ ΓR0 , (2.3)

where ΓR0 = {y ∈ Rn|R0 ≤ |y| ≤ 1}.
Corollary 2.3 Let K(·) satisfy condition (K0) and q > 1, λ ≥ 1 + q, then the

Dirichlet problem (1.1) has no positive solution in C1(B).
Remark 2.4 Corollary 2.3 is an extension of both Theorem 2 and Remark 2 (ii)

in [3].

3. Proof of Theorem

For 0 < α ≤ β, 0 < β < 1. Let

W1 ={u ∈ C2,α(B) : |u|(−β)
2,α;B < ∞},

W2 ={u ∈ Cα(B) : |u|(−β)
0,α;B < ∞},

W3 ={u ∈ Cα(B) : |u|(2−β)
0,α;B < ∞},

where the norms are interior norms of the functions in Ck,α(here k = 0, 1 respectively),
we refer readers to Charpter 6.1 in [4]. It is well known that Wi (i=1,2,3) are the
Banach spaces. Since β > 0, the condition that |u|(−β)

0,α;B is finite obviously requires that
u = 0 on ∂B.

Lemma 3.1 (Pointwise estimates for Green functions [5]) Let

L = −
n∑

i,j=1

aij(·) ∂2

∂xi∂j
+

n∑

i=1

bi(·) ∂

∂xi
+ c(·) (3.1)

be a strictly elliptic operator on Rn(n > 2) with Hölder-continuous coefficients and
c ≥ 0. Let Ω be a bounded C1,1-domain and G denote the Green function of L in Ω
with zero Dirichlet boundary condition. Then there exists a constant α > 0 such that

α−1Fn(x, y) ≤ G(x, y) ≤ αFn(x, y), x, y ∈ Ω (3.2)

with
Fn(x, y) = |x− y|−n min (dx, dy, |x− y|2), dx = dist(x, ∂Ω).
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Lemma 3.2 Suppose that K(x) ∈ Cα(B), q > 1 and λ < 1 + α + (q− 1)β. Then
for any v ∈ W2,we have

f(x) ≡ K(x)|v(x)|q/(1− |x|)λ ∈ W3

and
|f |(2−β)

0,α;B ≤ C1|K|0,α;B(|v|(−β)
0,α;B)q, (3.3)

where C1 = C1(λ, q) is independent of v.
Proof For v ∈ W2, denoting |v|(−β)

0,α;B by C0, we have |v(x)| ≤ C0d
β
x, dx = 1− |x|.

Hence,

sup
x∈B

d(2−β)
x |f(x)| ≡ sup

x∈B
(1− |x|)(2−β) K(x)|v(x)|q

(1− |x|)λ

≤|K|0,0;BCq
0 sup

x∈B
(1− |x|)2+(q−1)β−λ

≤|K|0,0;BCq
0 . (3.4)

Next, let x, y be two distinct points in B, with dx < dy, then we have

d2+α−β
x,y

|f(x)− f(y)|
|x− y|α =

(1− |x|)2+α−β

|x− y|α
∣∣∣∣
K(x)|v(x)|q
(1− |x|)λ

− K(y)|v(y)|q
(1− |y|)λ

∣∣∣∣

≤(1− |x|)2+α−β

|x− y|α { K(y)
(1− |y|)λ

||v(x)|q − |v(y)|q|

+ K(y)|v(x)|q
∣∣∣(1− |x|)−λ − (1− |y|)−λ

∣∣∣

+
|v(x)|q

(1− |x|)λ
|K(x)−K(y)|}

≤C|K|0,0C
q−1
0 [v](−β)

0,α (1− |y|)2+(q−1)β−λ

+ λ|K|0,0C
q
0(1− |x|)1+α+(q−1)β−λ

+ [K]0,α;BCq
0(1− |x|)2+α+(q−1)β−λ

≤C|K|0,α;BCq
0 . (3.5)

Taking the supremum with respect to x, y, we obtain

sup
x,y∈B
x6=y

d2+α−β
x,y

|f(x)− f(y)|
|x− y|α ≤ C|K|0,α;BCq

0 .

Combining (3.4) and (3.5), we get the desired result.
Now, we give the proof of Theorem 2.1.
Proof of theorem 2.1 First, for any v ∈ W2, we consider the following linear

Dirichlet problem 


−∆u = K(x)|v(x)|q−1v(x)

(1−|x|)λ , in B,

u(x) = 0, on ∂B.
(3.6)
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By Lemma 3.2 and Theorem 6.22 of [4], there exists a unique solution u of Dirichlet
problem (3.6) which satisfies the interior estimate

|u|(−β)
2,α;B ≤ C|K|0,α;B(|v|(−β)

0,α;B)q, (3.7)

where C is independent of v and K(·).
Hence, for any v ∈ W2, the operator T : W2 −→ W2 defined by letting u = Tv be

the unique solution u ∈ C0(B) ∩ C(2,α)(B) of the linear Dirichlet problem (3.6) is well
defined.

Next, for some positive constant a and ε < 1, let

V = {u ∈ W2 : |u|(−β)
0,α;B ≤ a, u(x) ≥ c3(1− |x|),∀x ∈ B1−ε}, (3.8)

where c3 is a suitable constant. Obviously, V is a closed convex subset in W2.
On the one hand, from (3.7), if v ∈ V , we can take a sufficiently small such that

C|K|0,α;Baq−1 ≤ 1 (since q > 1), then we get

|u|(−β)
0,α;B ≤ |u|(−β)

2,α;B ≤ a. (3.9)

On the other hand, under the conditions of Theorem 2.1, the solution u ∈ C0(B) ∩
C2,α(B) of Dirichlet problem (3.6) must be a mild solution in B. Then we have the
representation

u(x) = Tv(x) =
∫

B
G(x, y)

K(y)vq(y)
(1− |y|)λ

dy. (3.10)

By virtue of condition (Kα), there exists a real number R0, 0 < R0 < 1, such that

K(y) ≥ δ > 0, y ∈ ΓR0 = {y ∈ Rn : R0 ≤ |y| ≤ 1}, R0 + ε < 1.

Let 0 < R < R0/2 and

ΓR0−R = {y ∈ Rn : R0 −R ≤ |y| < 1}.

We distinguish two cases below.
Case (i) x /∈ ΓR0−R. Now, we have R ≤ |x− y| ≤ 2 for y ∈ ΓR0 . Hence,with the

aid of Lemma 3.1, we obtain

u(x) ≥ δα−1cq
3

∫

ΓR0
\Γ1−ε

(1− |x|)(1− |y|)1+q−λ

2n
dy

= c4c
q
3(1− |x|),

(3.11)

where c4 =
δα−1

2n

∫

ΓR0
\Γ1−ε

(1− |y|)1+q−λ dy.
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Case (ii) x ∈ ΓR0−R \Γ1−ε. We take x0 such that |x0| = R0−R and x0 paralleles
x. Let BR(x0) be the open ball of radius R centered at x0. Let Γx0,R denote the cone
generated by the origin and BR(x0). By virtue of Lemma 3.1, we have

u(x) ≥ δα−1cq
3

∫
(ΓR0

\Γ1−ε)\Γx0,R

(1−|x|)(1−|y|)1+q−λ

2n dy

= c′4c
q
3(1− |x|),

(3.12)

where c′4 =
δα−1

2n

∫

(ΓR0
\Γ1−ε)\Γx0,R

(1− |y|)1+q−λ dy.

Obviously, c4 ≥ c′4. combining (3.11) with (3.12) yields

u(x) ≥ c′4c
q
3(1− |x|), x ∈ B1−ε. (3.13)

Taking c3 such that cq−1
3 c′4 = 1, we then obtain

u(x) ≥ c3(1− |x|), x ∈ B1−ε. (3.14)

Now, combining (3.14) with (3.9), we know that TV ⊂ V .
By estimate (3.9), we know that TV is a precompact set in W2.
In order to show the continuity of T , we let vk ∈ W2, vk → v ∈ W2. Then vk → v in

B uniformly, and there exists a constant C independent of k such that |vk|(−β)
0,α;B ≤ C.

From the estimate (3.7) we have uk = Tvk and

|uk|(−β)
2,α;B ≤ C1, (3.15)

where C1 is independent of k. For any Ω ⊂⊂ B, we know that uk ∈ C2,α(Ω) and there
exists a constant C independent of k such that

|uk|2,α;Ω ≤ C, and |uk(x)| ≤ C(1− |x|)β, ∀x ∈ B. (3.16)

Hence, {uk} is a precompact subset in C2(Ω) and therefore every subsequence has
a convergent subsequence. Let {ukj

} be such a convergent subsequence with limit
ũ ∈ C2(Ω) and ũ|∂B = 0 since (3.16).

Passing to the limit in the equation

−∆ukj
=

K(x)|vkj
(x)|q−1vkj

(x)
(1− |x|)λ

, in Ω (3.17)

yields

−∆ũ =
K(x)|v(x)|q−1v(x)

(1− |x|)λ
, in Ω. (3.18)

Obviously, ũ|∂B = 0. By the arbitrariness of Ω ⊂⊂ B, we get



−∆ũ = K(x)|v(x)|q−1v(x)

(1−|x|)λ , in B,

ũ|∂B = 0.
(3.19)

By the uniqueness of the solution,we must have ũ = u = Tv,and hence the sequence
{uk} = {Tvk} itself converges to u = Tv.

The Schauder fixed point theorem is now applicable and the theorem is proved.
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4. Proof of Theorem 2.2

In this section, we give the proof of Theorem 2.2 and Corollary 2.3.
Proof of Theorem 2.2 For x ∈ B, let Ω = {y ∈ B : (1−|x|)(1−|y|) > |x−y|2}.

If u(x) ∈ C0(B) is a mild solution of Dirichlet problem (1.1) such that

u(x) ≥ c(1− |x|),∀x ∈ ΓR0 , (4.1)

then, using ΓR0 as above and Lemma 3.1, we have

u(x) =
∫

B
G(x, y)

K(y)uq(y)
(1− |y|)λ

dy

≥α−1cq
∫

B∩ΓR0

min(dx dy, |x− y|2)K(y)(1− |y|)q−λ

|x− y|n dy (4.2)

≥α−1cq
∫

Ω∩ΓR0

K(y)(1− |y|)q−λ

|x− y|n−2
dy. (4.3)

The convergence of the last integral above requires λ < 1 + q.
Proof of Corollary 2.1 By Corollary 1 of [3], we know that there exist numbers

ρ ∈ (0, 1) and cρ such that

u(x) ≥ cρ(1− |x|), ∀x ∈ Γρ.

We can now assert the corollary result by Theorem 2.2.
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