TWO DIMENSIONAL INTERFACE PROBLEMS FOR ELLIPTIC EQUATIONS*

Ying Lung-an
(Key Laboratory of Pure and Applied Mathematics
School of Mathematical Sciences
Peking University
Beijing, 100871, China)
Dedicated to the 80th birthday of Professor Zhou Yulin
(Received Feb. 28, 2002)

Abstract

We study the structure of solutions to the interface problems for second order quasi-linear elliptic partial differential equations in two dimensional space. We prove that each weak solution can be decomposed into two parts near singular points, a finite sum of functions in the form of $c r^{\alpha} \log ^{m} r \varphi(\theta)$ and a regular one w. The coefficients c and the $C^{1, \alpha}$ norm of w depend on the H^{1}-norm and the $C^{0, \alpha}$-norm of the solution, and the equation only.

Key Words Quasilinear elliptic equations; interface problems; weak solutions; singular points.

2000 MR Subject Classification 35J60, 35D05.
Chinese Library Classification O.175.25, O.175.29.

1. Introduction

We study the structure of the solutions to the equation

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}}\left(a_{i j}(x, u) \frac{\partial u}{\partial x_{i}}\right)=\frac{\partial f_{i}}{\partial x_{i}}, \quad x \in \Omega_{0} \tag{1}
\end{equation*}
$$

where $\Omega_{0} \subset \mathbb{R}^{2}$ and $a_{i j}, f_{i}$ are discontinuous functions, $i, j=1,2$. The summation convention is assumed here. It is known that if u is a weak solution in $H^{1}(\Omega)$ then $u \in C^{0, \alpha}(\Omega)$ with a certain $\alpha \in(0,1)$. Moreover, if $a_{i j}, f_{i}$ are piecewise smooth, then the solutions possess some structure near the discontinuous points of the coefficients. This kind of interface problems has been studied by a number of authors [1-8]. In [8] we proved that each weak solution to (1) can be decomposed into two parts near a singular point, a singular part and a regular part. The singular part is a finite sum of particular solutions with the form of $r^{\alpha} \varphi(\theta)$, or $r^{\alpha} \log ^{m} r \varphi(\theta)$, where r is the distance to the singular point, and θ is the polar angle, and the regular part is bounded with respect to a norm which is slightly weaker than the H^{2} norm, multiplied by a factor $\frac{1}{(|\log r|+1)^{M}}$.

[^0]The result in [8] does not imply the boundedness of the derivatives of the regular part. The aim of this paper is to study the $C^{1, \alpha}$ norm estimate of the regular part. Our result is optimal here, that is, the regularity of the regular part of a weak solution is the same as the regularity of those solutions for the equations with smooth coefficients $a_{i j}$.

Let us present a statement of the problem and the main result. Let Ω_{0} be a polygonal domain. We assume that Ω_{0} is decomposed into a finite number of polygonal subdomains $\Omega^{(k)}$, such that $\cup \overline{\Omega^{(k)}}=\overline{\Omega_{0}}$, and $a_{i j}$ are sufficiently smooth on $\overline{\Omega^{(k)}} \times \mathbb{R}$. Moreover, we assume that $a_{i j}$ satisfy the following elliptic condition:

$$
a_{i j}(x, u) \xi_{i} \xi_{j} \geq \kappa|\xi|^{2}, \forall \xi \in \mathbb{R}^{2}
$$

for all $(x, u) \in\left(\Omega_{0} \times \mathbb{R}\right)$, where κ is a positive number. We also assume that $f_{i} \in$ $C^{0, \alpha}\left(\Omega^{(k)}\right)$ with $\alpha \in(0,1)$. For simplicity we impose the Dirichlet boundary condition,

$$
\begin{equation*}
\left.u\right|_{x \in \partial \Omega_{0}}=0 \tag{2}
\end{equation*}
$$

on (1), where $\partial \Omega_{0}$ is the boundary.
The following points will be generally known as singular points: the cross points of interfaces, the turning points of interfaces, the cross points of interfaces with the boundary $\partial \Omega_{0}$, and the points on $\partial \Omega_{0}$ with interior angles greater than π. Let Σ be the set of singular points. We assume that Σ is a finite set. The problem (1) (2) admits a solution $u \in H_{0}^{1}\left(\Omega_{0}\right)$ (see [9-11]), and it is easy to prove that for each sub-domain $\Omega^{(k)}$, $u \in C_{\mathrm{loc}}^{1, \alpha}\left(\Omega^{(k)} \backslash \Sigma\right)$. Thus the problem is the behavior of u near the singular points.

Let x_{0} be a singular point. We construct local polar coordinates (r, θ) with the origin x_{0}. Let $s\left(x_{0}, \rho\right) \subset \Omega_{0}$ be a disc with center x_{0} and radius ρ, such that x_{0} is the only singular point on the disc. The subsets $s\left(x_{0}, \rho\right) \cap \Omega^{(k)}$ are thus some sectors, denoted by S_{m}. The main result of this paper is the following:

Theorem 1.1 Let u be a weak solution to (1) (2) and $u \in H^{1}\left(\Omega_{0}\right) \bigcap C^{0, \bar{\delta}}\left(\Omega_{0}\right)$, $\bar{\delta} \in(0,1)$. Then there is an integer N and a constant $\alpha_{0} \in(0, \bar{\delta}]$, such that if $0<\alpha<\alpha_{0}$ then $u=\sum_{n=1}^{N} u_{n}+w$ on $s\left(x_{0}, \rho\right)$, where

$$
\begin{gather*}
u_{n}=c_{n} r^{\alpha_{n}} \log ^{m_{n}} r \varphi_{n}(\theta), \tag{3}\\
\sum_{m}\|D w\|_{C^{0, \alpha}\left(S_{m}\right)}+\sum_{n}\left|c_{n}\right| \leq C, \tag{4}
\end{gather*}
$$

where m_{n} are non-negative integers, and φ_{n} are continuous, periodic, and piecewise infinitely differentiable functions, which depend only on $a_{i j}\left(x_{0}, u\left(x_{0}\right)\right)$ and n; and C depends only on $a_{i j},\|u\|_{H^{1}\left(\Omega_{0}\right)},\|u\|_{C^{0, \bar{\delta}}\left(\Omega_{0}\right)}$, and $\left\|f_{i}\right\|_{C^{0, \alpha}\left(\Omega^{(k)}\right)}$.

We will study homogeneous equations with constant coefficients in the next section, and nonhomogeneous equations with constant coefficients in Section 3, then prove the main theorem in Section 4. In what follows we assume that the singular point is an interior point. For those singular points on the boundary the argument is analogous. Without loss of generality we assume throughout this paper that the radius $\rho=1$, the singular point $x_{0}=0$, and C is a generic constant possessing the above property.

2. Homogeneous Equations with Constant Coefficients

Without loss of generality we assume that the domain is $\Omega=s(o, 1)$, a disk with center o and radius 1 . Let the point o be the singular point. Then the domain Ω is divided into some sectors $S_{m}, m=1, \cdots, m_{0}$, by some rays starting from the point o. We consider the equation

$$
\begin{equation*}
L u=\frac{\partial}{\partial x_{j}}\left(a_{i j} \frac{\partial u}{\partial x_{i}}\right)=0, \tag{5}
\end{equation*}
$$

where $a_{i j}$ are constants on each sector S_{m}. Denote by Γ_{0} the boundary of Ω. We take a constant $\xi \in(0,1)$. Then we define sub-domains $\Omega_{0}, \Omega_{1}, \cdots, \Omega_{k}, \cdots$, where $\Omega_{k}=\left\{\xi^{k}>r>\xi^{k+1}\right\}$. In addition, we denote $\xi^{k} \Omega=\left\{0<r<\xi^{k}\right\}$ and $\Gamma_{k}=\left\{r=\xi^{k}\right\}$. Let H be the space $H^{\frac{1}{2}}\left(\Gamma_{0}\right)$. Define a mapping $T_{k}: x \rightarrow \xi^{k} x$. We take an arbitrary $g \in H$, and consider the boundary condition $\left.u\right|_{\Gamma_{0}}=g$. The equation (5) admits a unique solution $u \in H^{1}(\Omega)$ satisfying the boundary condition. Let $\tilde{g}=\left.u\right|_{\Gamma_{1}}$, then $X: g \rightarrow \tilde{g} \circ T_{1}$ is a bounded operator from H to H. It is proved in [4] that X is a compact operator. By the Riesz-Schauder Theorem, the spectrum of X consists of isolated eigenvalues and the point o. The null spaces $N\left((X-\lambda I)^{p}\right)$ for all eigenvalues are finite dimensional. We arrange the eigenvalues so that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots$. It is proved that if $\{\lambda, g\}$ is a pair of eigenvalue and eigenfunction, then either $\lambda=1, g=$ constant, or $|\lambda|<1$. There is a particular solution to the equation (5) in the form of $r^{\gamma} g$, where

$$
\begin{equation*}
\gamma=\frac{\log \lambda}{\log \xi} \tag{6}
\end{equation*}
$$

If the degree of the elementary divisor of an eigenvalue is higher than 1 , then there are particular solutions in the form of

$$
\begin{equation*}
u=\sum_{n=0}^{N} c_{n} r^{\gamma} \log ^{n} r \varphi_{n}(\theta), \tag{7}
\end{equation*}
$$

where $\varphi_{N}=g$.
We define a weighted Hölder norm as follows. For $b \in[0,1]$ and $\alpha \in(0,1)$ let

$$
[u]_{\alpha, b, S_{m}}=\sup _{x, y \in S_{m}} \frac{r^{b}|u(x)-u(y)|}{|x-y|^{\alpha}}
$$

where $r=\min (|x|,|y|)$, and

$$
\|u\|_{\alpha, b, S_{m}}=[u]_{\alpha, b, S_{m}}+\sup _{x \in S_{m}}|x|^{b-\alpha}|u(x)| .
$$

If $b=0$, then the norm is abbreviated to $\|\cdot\|_{\alpha, S_{m}}$.
Lemma 2.1 If $u \in C\left(S_{m}\right)$, then the norm $\|u\|_{\alpha, b, S_{m}}$ is equivalent to $\sup _{k} \xi^{b k}\|u\|_{\alpha, S_{m}} \cap \Omega_{k}$.

Proof We have for each k that

$$
\begin{aligned}
\|u\|_{\alpha, b, S_{m}} & \geq \sup _{x, y \in S_{m} \cap \Omega_{k}} \frac{r^{b}|u(x)-u(y)|}{|x-y|^{\alpha}}+\sup _{x \in S_{m} \cap \Omega_{k}}|x|^{b-\alpha}|u(x)| \\
& \geq \sup _{x, y \in S_{m} \cap \Omega_{k}} \frac{\xi^{b(k+1)}|u(x)-u(y)|}{|x-y|^{\alpha}}+\sup _{x \in S_{m} \cap \Omega_{k}} \xi^{b(k+1)}|x|^{-\alpha}|u(x)| \\
& =\xi^{b(k+1)}\|u\|_{\alpha, S_{m} \cap \Omega_{k}} .
\end{aligned}
$$

On the other hand, for any $x, y \in S_{m}$, let $x^{(1)}, \cdots, x^{(n)}$ be the cross points of the line segment $x y$ with $\left\{\Gamma_{k}\right\}$. Then we have

$$
\begin{aligned}
|u(x)-u(y)| & \leq\left|u(x)-u\left(x^{(1)}\right)\right|+\cdots+\left|u\left(x^{(n)}\right)-u(y)\right| \\
& \leq(\xi r)^{-b} \sup _{k} \xi^{b k}\|u\|_{\alpha, S_{m} \cap \Omega_{k}}\left(\left|x-x^{(1)}\right|^{\alpha}+\cdots+\left|x^{(n)}-y\right|^{\alpha}\right)
\end{aligned}
$$

We may assume that $x \in \Omega_{k}, y \in \Omega_{l}$, and $k \leq l$. If $\left|x-x^{(1)}\right|=\max \left(\left|x-x^{(1)}\right|, \cdots, \mid x^{(n)}-\right.$ $y \mid$), then

$$
\begin{aligned}
\left|x-x^{(1)}\right|^{\alpha}+\cdots+\left|x^{(n)}-y\right|^{\alpha} & \leq\left|x-x^{(1)}\right|^{\alpha}+\left|x-x^{(1)}\right|^{\alpha}+\xi\left|x-x^{(1)}\right|^{\alpha}+\cdots \\
& \leq \frac{2-\xi}{1-\xi}\left|x-x^{(1)}\right|^{\alpha} \leq \frac{2-\xi}{1-\xi}|x-y|^{\alpha}
\end{aligned}
$$

Therefore

$$
r^{b} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq C \sup _{k} \xi^{b k}\|u\|_{\alpha, S_{m} \cap \Omega_{k}}
$$

The other cases can be considered in the same way, and the estimate for the maximum norm is obvious. The lemma is proved.

For simplicity, in what follows we will always omit the domain S_{m} in the Hölder norm, that is, $\|\cdot\|_{\alpha, b, \Omega_{l}}$ for $\|\cdot\|_{\alpha, b, S_{m} \cap \Omega_{l}}$.

We have the following decomposition result:
Lemma 2.2 The solution u to (5) can be decomposed into $u=v+w$, where v is a finite sum of the above particular solutions (7), and $\|D w\|_{\alpha, \xi \Omega}<C\|u\|_{H^{1}(\Omega)}$ with $0<\alpha<1$.

Proof We define two spectrum sets: $\left\{\lambda_{1}, \cdots, \lambda_{N}\right\},\left\{\lambda_{N+1}, \cdots, 0\right\}$, where $\left|\lambda_{N}\right|>$ $\left|\lambda_{N+1}\right|$ and $\left|\lambda_{N+1}\right|<\xi^{1+\alpha}$. The space H is decomposed to two subspaces such that $H=H_{1} \oplus H_{2}$ and the spectrum of $X_{H_{1}}$ in H_{1} is just $\left\{\lambda_{1}, \cdots, \lambda_{N}\right\}$, the spectrum of $X_{H_{2}}$ in H_{2} is $\left\{\lambda_{N+1}, \cdots, 0\right\}$. Since $\lim _{k \rightarrow \infty}\left\|X_{H_{2}}^{k}\right\|^{\frac{1}{k}}=\left|\lambda_{N+1}\right|$, where $\|\cdot\|$ stands for the spectrum norm, we have $\left\|X_{H_{2}}^{k}\right\| \leq\left(\left|\lambda_{N+1}\right|+\varepsilon\right)^{k}$ for any $\varepsilon>0$ and sufficiently large k. We require that $\left|\lambda_{N+1}\right|+\varepsilon<\xi^{1+\alpha}$.

For any $g \in H$, we have a unique decomposition $g=g_{1}+g_{2}, g_{1} \in H_{1}$, and $g_{2} \in H_{2}$. Let v, w be the solutions corresponding to g_{1}, g_{2} respectively. If k is large enough, then $\left\|X^{k} g_{2}\right\|_{H} \leq C \xi^{k(1+\alpha)}\|g\|_{H}$.

Let $\tilde{w}=w \circ T_{k-2}$, then \tilde{w} satisfies the same equation. The standard interior $C^{1, \alpha}$ estimate is valid for this case. See [9] [10] [7] for details.

$$
\|D \tilde{w}\|_{\alpha, \Omega_{2}} \leq C|\tilde{w}|_{H^{1}\left(\Omega \backslash \overline{\xi^{3} \Omega}\right)} \leq C\left\|X^{k} g_{2}\right\|_{H} \leq C \xi^{k(1+\alpha)}\|g\|_{H}
$$

Therefore

$$
\|D w\|_{\alpha, \Omega_{k}} \leq C\|g\|_{H} \leq C\|u\|_{H^{1}(\Omega)}
$$

for sufficiently large k, say $k>K_{0}$. The estimate of $\|D w\|_{\alpha, \Omega_{k}}$ for $k=1, \cdots, K_{0}$ is standard since K_{0} is a fixed number and there is no singular point. The lemma is proved.

3. Nonhomogeneous Equations with Constant Coefficients

For the nonhomogeneous equation

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}}\left(a_{i j} \frac{\partial u}{\partial x_{i}}\right)=\frac{\partial f_{i}}{\partial x_{i}} \tag{8}
\end{equation*}
$$

we recall a result in [8] first.
Lemma 3.1 There is a particular solution to the equation

$$
\begin{equation*}
L u \equiv \frac{\partial}{\partial x_{j}}\left(a_{i j} \frac{\partial u}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{j_{0}}}\left(r^{\alpha_{1}} \log ^{m_{1}} r q_{1}(\theta) \frac{\partial}{\partial x_{i_{0}}}\left(r^{\alpha_{2}} \log ^{m_{2}} r q_{2}(\theta)\right)\right), \tag{9}
\end{equation*}
$$

in the form of

$$
\begin{equation*}
u=\sum_{n} c_{n} r^{\gamma} \log ^{m_{n}} r \varphi_{n}(\theta) \tag{10}
\end{equation*}
$$

where i_{0} and j_{0} are equal to 1 or 2 , Re $\alpha_{1}>0, \operatorname{Re} \alpha_{2}>0, q_{1}, q_{2}$ are continuous, periodic, and piecewise infinitely differentiable functions, and $\gamma=\alpha_{1}+\alpha_{2}$.

To study the nonhomogeneous equation (8) we consider the equation on the space \mathbb{R}^{2} first. The sectors S_{m} are extended to $|x|=\infty$, and then \mathbb{R}^{2} is divided into m_{0} sectors. We define a space

$$
Z^{1}\left(\mathbb{R}^{2}\right)=\left\{u \in H_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right) ; \nabla u \in L^{2}\left(\mathbb{R}^{2}\right), \int_{|x|<1} u d x=0\right\}
$$

Then equipped with the norm $\|\nabla u\|_{L^{2}\left(\mathbb{R}^{2}\right)}$ it is a Hilbert space. We assume that $\operatorname{supp} f_{i} \subset s(o, 1)$, and $f_{i} \in C^{0, \alpha}\left(S_{m}\right)$. Consider the equation (8) and define the corresponding sesquilinear form

$$
a(u, v)=\int_{\mathbb{R}^{2}} a_{i j} \frac{\partial u}{\partial x_{i}} \overline{\frac{\partial v}{\partial x_{j}}} d x
$$

The weak formulation of (8) is: find $u \in Z^{1}\left(\mathbb{R}^{2}\right)$ such that

$$
\begin{equation*}
a(u, v)=\int_{|x|<1} f_{i} \frac{\partial v}{\partial x_{i}} d x, \quad \forall v \in Z^{1}\left(\mathbb{R}^{2}\right) \tag{11}
\end{equation*}
$$

By the Lax-Milgram theorem there exists a unique solution u,

$$
\|u\|_{Z^{1}\left(\mathbb{R}^{2}\right)} \leq C \sum_{i}\left\|f_{i}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}
$$

Moreover, on any bounded domain $\Omega^{\prime} \subset \subset \overline{S_{m}}, u \in C^{1, \alpha}\left(\Omega^{\prime}\right)$, and

$$
\|D u\|_{\alpha, \Omega^{\prime}} \leq \sum_{i} \sum_{m}\left\|f_{i}\right\|_{\alpha, S_{m}} .
$$

We return to the domain $s(o, 1)$ and construct a particular solution u to the equation (8), so that u possesses the desired regularity. Let

$$
\zeta(r, \theta)= \begin{cases}1, & 1>r>\xi \\ 0, & r>\xi^{-1}, \text { or } r<\xi^{2}\end{cases}
$$

and $\zeta \in C^{\infty}, 0 \leq \zeta \leq 1$. Then we define $\zeta_{k}=\zeta \circ T_{k} / \sum_{l=1}^{\infty} \zeta \circ T_{l}$, and $F=\left(f_{1}, f_{2}\right)$, $F_{k}=\zeta_{k} F$. Let u_{k} be the solution to (11) with F replaced by F_{k}. u_{k} satisfies the homogeneous equation (5) on $\xi^{k+2} \Omega$. Analogous to the previous section we have the decomposition $u_{k}=u_{k}^{(1)}+u_{k}^{(2)}$, with $u_{k}^{(1)} \mid \Gamma_{k+2} \in H_{1}$ and $u_{k}^{(2)} \mid \Gamma_{k+2} \in H_{2}$, where H_{1} and H_{2} will be specified later on. We extend $u_{k}^{(1)}$ analytically to Ω, which is still denoted by $u_{k}^{(1)}$. Let $u=\sum_{k=1}^{\infty}\left(u_{k}-u_{k}^{(1)}\right)$.

Lemma 3.2 We assume that $\|F\|_{\alpha, b}<\infty, \alpha \in(0,1), b \in[0,1]$. The subspaces H_{1} and H_{2} are defined according to the spectrum sets $\left\{\lambda_{1}, \cdots, \lambda_{N}\right\},\left\{\lambda_{N+1}, \cdots, 0\right\}$, where $\left|\lambda_{N+1}\right|+\varepsilon<\xi^{1+\alpha-b}<\left|\lambda_{N}\right|-\varepsilon, \varepsilon>0$. Then

$$
\begin{align*}
& \left\|D\left(u_{k}-u_{k}^{(1)}\right)\right\|_{\alpha, b, \Omega_{l}} \\
& \quad \leq \begin{cases}C \xi^{l b}\left\{\xi^{(k-l)(1+\alpha)}+\left(\frac{\xi^{1+\alpha}}{\left|\lambda_{N}\right|-\varepsilon}\right)^{k-l-1}\right\}\left\|F_{k}\right\|_{\alpha}, & \forall l \leq k-2, \\
C \xi^{l b}\left\|F_{k}\right\|_{\alpha}, & \forall k+4>l>k-2, \\
C \xi^{(k-l)(1+\alpha)+l b}\left\|F_{k}\right\|_{\alpha}, & \forall k+4 \leq l<k+K_{0}, \\
C \xi^{l b}\left(\frac{\left|\lambda_{N+1}\right|+\varepsilon}{\xi^{1+\alpha}}\right)^{l-k}\left\|F_{k}\right\|_{\alpha}, & \forall l \geq k+K_{0},\end{cases} \tag{12}
\end{align*}
$$

where K_{0} is a fixed positive number.
Proof If $l \leq k-3$, let $\tilde{u}=u_{k} \circ T_{k-1}$, then \tilde{u} satisfies

$$
L \tilde{u}=\xi^{k-1} \nabla \cdot\left(F_{k} \circ T_{k-1}\right) .
$$

Hence

$$
\begin{equation*}
\|\tilde{u}\|_{H, \Gamma_{0}} \leq C \xi^{k-1}\left\|F_{k} \circ T_{k-1}\right\|_{\alpha} \leq C \xi^{(k-1)(1+\alpha)}\left\|F_{k}\right\|_{\alpha} \tag{13}
\end{equation*}
$$

We consider the exterior problem and let $\left.\tilde{u}\right|_{\Gamma_{l-k+2}}=X_{1}^{k-l-2} \tilde{u}_{\Gamma_{0}}$, then being the same as X, X_{1} is a bounded operator.

$$
\|\tilde{u}\|_{H, \Gamma_{l-k+2}} \leq C \xi^{(k-1)(1+\alpha)}\left\|F_{k}\right\|_{\alpha} .
$$

Let $u^{*}=u_{k} \circ T_{l-1}$, then

$$
\left\|u^{*}\right\|_{H, \Gamma_{2}} \leq C \xi^{(k-1)(1+\alpha)}\left\|F_{k}\right\|_{\alpha} .
$$

Applying the $C^{1, \alpha}$ estimate result we get

$$
\left\|D u^{*}\right\|_{\alpha, \Omega_{1}} \leq C \xi^{(k-1)(1+\alpha)}\left\|F_{k}\right\|_{\alpha}
$$

Returning to the domain Ω_{l}, we get

$$
\left\|D u_{k}\right\|_{\alpha, \Omega_{l}} \leq C \xi^{(k-l)(1+\alpha)}\left\|F_{k}\right\|_{\alpha}
$$

There are only a finite number of terms in $u_{k}^{(1)}$. We consider one of them, $w_{j, k}$, corresponding to an eigenvalue λ_{j}. By (13) we have

$$
\left\|w_{j, k} \circ T_{k-1}\right\|_{H, \Gamma_{0}} \leq C \xi^{(k-1)(1+\alpha)}\left\|F_{k}\right\|_{\alpha}
$$

We note that

$$
w_{j, k}=c r^{\frac{\log \lambda_{j}}{\log \xi}} \log ^{m} r \varphi(\theta)
$$

Consequently, we have

$$
\left\|D\left(w_{j, k} \circ T_{k-1}\right)\right\|_{\alpha, \Omega_{l-k+1}} \leq C\left(\left|\lambda_{j}\right|-\varepsilon\right)^{l-k+1} \xi^{-(l-k+1)(1+\alpha)} \xi^{(k-1)(1+\alpha)}\left\|F_{k}\right\|_{\alpha}
$$

which yields

$$
\left\|D w_{j, k}\right\|_{\alpha, \Omega_{l}} \leq C\left(\frac{\xi^{1+\alpha}}{\left|\lambda_{N}\right|-\varepsilon}\right)^{k-l-1}\left\|F_{k}\right\|_{\alpha}
$$

If $k+4>l>k-2$, then

$$
\|D \tilde{u}\|_{\alpha, \Omega \backslash \overline{\xi^{4} \Omega}} \leq C \xi^{(k-1)(1+\alpha)}\left\|F_{k}\right\|_{\alpha}
$$

which yields

$$
\left\|D u_{k}\right\|_{\alpha, \xi^{k-1} \Omega} \overline{\xi^{k+3} \Omega} \leq C\left\|F_{k}\right\|_{\alpha} .
$$

Analogously, we have

$$
\left\|D u_{k}^{(1)}\right\|_{\alpha, \xi^{k-1} \Omega \backslash \overline{\xi^{k+3} \Omega}} \leq C\left\|F_{k}\right\|_{\alpha} .
$$

If $l \geq k+4$, then $u_{k}-u_{k}^{(1)}=u_{k}^{(2)}$ on Ω_{l}, and by (13) we get

$$
\left\|u_{k}^{(2)} \circ T_{k-1}\right\|_{H, \Gamma_{3}} \leq C \xi^{(k-1)(1+\alpha)}\left\|F_{k}\right\|_{\alpha}
$$

If $l-k \geq K_{0}$ and K_{0} is sufficiently large, then $X_{H_{2}}^{l-k-4} \leq\left(\left|\lambda_{N+1}\right|+\varepsilon\right)^{l-k-4}$. Consequently, we have

$$
\left\|u_{k}^{(2)} \circ T_{k-1}\right\|_{H, \Gamma_{l-k-1}} \leq C \xi^{(k-1)(1+\alpha)}\left(\left|\lambda_{N+1}\right|+\varepsilon\right)^{l-k-4}\left\|F_{k}\right\|_{\alpha}
$$

Let $u^{*}=u_{k}^{(2)} \circ T_{l-1}$, then

$$
\left\|u^{*}\right\|_{H, \Gamma_{-1}} \leq C \xi^{(k-1)(1+\alpha)}\left(\left|\lambda_{N+1}\right|+\varepsilon\right)^{l-k-4}\left\|F_{k}\right\|_{\alpha}
$$

Then we get the $C^{1, \alpha}$ norm estimate

$$
\left\|D u^{*}\right\|_{\alpha, \Omega_{1}} \leq C \xi^{(k-1)(1+\alpha)}\left(\left|\lambda_{N+1}\right|+\varepsilon\right)^{l-k-4}\left\|F_{k}\right\|_{\alpha} .
$$

Consequently, we have

$$
\left\|D u_{k}^{(2)}\right\|_{\alpha, \Omega_{l}} \leq C\left(\frac{\left|\lambda_{N+1}\right|+\varepsilon}{\xi^{1+\alpha}}\right)^{l-k}\left\|F_{k}\right\|_{\alpha}
$$

If $l \geq k+3$ but $l<k+K_{0}$, then it is easy to see that

$$
\left\|D u_{k}^{(2)}\right\|_{\alpha, \Omega_{l}} \leq C \xi^{(k-l)(1+\alpha)}\left\|F_{k}\right\|_{\alpha}
$$

We multiply each inequality by a factor $\xi^{l b}$ then the conclusion follows. The lemma is proved.

Lemma 3.3 Under the assumptions of Lemma 3.2 it holds that

$$
\begin{equation*}
\|D u\|_{\alpha, b, \xi \Omega} \leq C\|F\|_{\alpha, b, \Omega} \tag{14}
\end{equation*}
$$

Proof Let $l \geq 1$. By Lemma 3.2 we have

$$
\begin{aligned}
\|D u\|_{\alpha, b, \Omega_{l}} \leq & C \sum_{k=1}^{l-K_{0}} C \xi^{l b}\left(\frac{\left|\lambda_{N+1}\right|+\varepsilon}{\xi^{1+\alpha}}\right)^{l-k}\left\|F_{k}\right\|_{\alpha}+\sum_{k=l-K_{0}+1}^{l-4} C \xi^{(k-l)(1+\alpha)+l b}\left\|F_{k}\right\|_{\alpha} \\
& +\sum_{k=l-3}^{l+1} C \xi^{l b}\left\|F_{k}\right\|_{\alpha}+\sum_{k=l+2}^{\infty} C \xi^{l b}\left\{\xi^{(k-l)(1+\alpha)}+\left(\frac{\xi^{1+\alpha}}{\left|\lambda_{N}\right|-\varepsilon}\right)^{k-l-1}\right\}\left\|F_{k}\right\|_{\alpha} \\
\leq & C\|F\|_{\alpha, b}\left\{\sum_{k=1}^{l-K_{0}} \xi^{(l-k) b}\left(\frac{\left|\lambda_{N+1}\right|+\varepsilon}{\xi^{1+\alpha}}\right)^{l-k}+\sum_{k=l-K_{0}+1}^{l-4} \xi^{(k-l)(1+\alpha-b)}\right. \\
& \left.+\sum_{k=l-3}^{l+1} 1+\sum_{k=l+2}^{\infty} \xi^{(l-k) b}\left(\xi^{(k-l)(1+\alpha)}+\left(\frac{\xi^{1+\alpha}}{\left|\lambda_{N}\right|-\varepsilon}\right)^{k-l-1}\right)\right\} \\
\leq & C\|F\|_{\alpha, b} .
\end{aligned}
$$

The lemma is proved.

4. Nonlinear Equations

We recall some results in [7] for the boundary value problem (1) (2) first. The solution u belongs to $C^{0, \bar{\delta}}(\Omega)$, and in the neighborhood of a singular point it holds that $\left\|r^{1-\delta_{1}} D u\right\|_{L^{\infty}} \leq C$ with $\bar{\delta}>0$ and $\delta_{1}>0$. Following the same argument we can prove the following lemma.

Lemma 4.1 The weak solution u to (1), (2) satisfies

$$
\begin{equation*}
\|D u\|_{\alpha, 1} \leq C \tag{15}
\end{equation*}
$$

provided $0<\alpha \leq \bar{\delta}$.

Proof Let $v=u \circ T_{k-1}$, then v satisfies

$$
\frac{\partial}{\partial x_{j}}\left(a_{i j}\left(\xi^{k-1} x, v \circ T_{-k+1}\right) \frac{\partial v}{\partial x_{i}}\right)=\xi^{k-1} \frac{\partial}{\partial x_{i}}\left(f_{i} \circ T_{k-1}\right) .
$$

It was shown in [7] that

$$
\|D v\|_{\alpha, \Omega_{1}} \leq C\left(|v|_{H^{1}\left(\Omega \backslash \overline{\xi^{3} \Omega}\right)}+\xi^{k-1}\left\|F \circ T_{k}\right\|_{\alpha, \Omega \backslash \overline{\xi^{3} \Omega}}\right) .
$$

Then

$$
\begin{equation*}
\xi^{k-1}\|D u\|_{\alpha, \Omega_{k}} \leq C\left(\xi^{-(k-1) \alpha}|u|_{H^{1}\left(\xi^{k-1} \Omega \backslash \overline{\xi^{k+2} \Omega}\right)}+\|F\|_{\alpha, \xi^{k-1} \Omega \backslash \overline{\xi^{k+2} \Omega}}\right) \tag{16}
\end{equation*}
$$

By the Caccioppoli inequality we have the estimate

$$
\|D v\|_{L^{2}\left(\Omega_{1}\right)} \leq C\left(\|v-v(0)\|_{L^{2}\left(\Omega \backslash \overline{\xi^{3} \Omega}\right)}+\left\|\xi^{k-1} F \circ T_{k-1}\right\|_{L^{2}\left(\Omega \backslash \overline{\xi^{3} \Omega}\right)}\right)
$$

Then

$$
\begin{equation*}
\|D u\|_{L^{2}\left(\Omega_{k}\right)} \leq C\left(\xi^{-k+1}\|u-u(0)\|_{L^{2}\left(\xi^{k-1} \Omega \backslash \overline{\xi^{k+2} \Omega}\right)}+\|F\|_{L^{2}\left(\xi^{k-1} \Omega \backslash \overline{\xi^{k+2} \Omega}\right)}\right) \tag{17}
\end{equation*}
$$

Since $|u-u(0)| \leq C r^{\bar{\delta}}$, we have

$$
\begin{equation*}
\|u-u(0)\|_{L^{2}\left(\xi^{k-1} \Omega \backslash \overline{\xi^{k+2} \Omega}\right)} \leq C \xi^{k(1+\bar{\delta})} \tag{18}
\end{equation*}
$$

We substitute (18) into (17), then (17) into (16). Then (15) follows. The lemma is proved.

To prove the main theorem we need the following lemma. We will assume that $u(0)=0$, otherwise $u(x)$ can be replaced by $u(x)-u(0)$. We denote $L=\frac{\partial}{\partial x_{j}}\left(a_{i j}(0,0) \frac{\partial}{\partial x_{i}}\right)$, where $a_{i j}(0,0)$ are piecewise constant functions, which are equal to $a_{i j}(0,0)$ on each sector S_{m}.

Lemma 4.2 If a solution u of (1) can be decomposed as

$$
\begin{equation*}
u=\sum_{n=1}^{N} u_{n}+w \tag{19}
\end{equation*}
$$

where u_{n} are in the form of (4), and

$$
\begin{equation*}
\|D w\|_{\alpha, b}+r^{-1}\|w\|_{\alpha, b, s(o, r)} \leq C \tag{20}
\end{equation*}
$$

where $b \in[0,1], 0<\operatorname{Re} \alpha_{1} \leq \operatorname{Re} \alpha_{2} \leq \cdots \leq \operatorname{Re} \alpha_{N}$, and $\alpha<\operatorname{Re} \alpha_{1}$, then there is a new decomposition of u, still given by (19), such that

$$
\begin{equation*}
\|D w\|_{\alpha, b_{1}}+r^{-1}\|w\|_{\alpha, b_{1}, s(o, r)} \leq C \tag{21}
\end{equation*}
$$

where $b_{1}>b-\operatorname{Re} \alpha_{1}, b_{1} \geq \max (b-\bar{\delta}, 0)$, and there exists an integer N such that $\left|\lambda_{N+1}\right|<\xi^{1+\alpha-b_{1}}<\left|\lambda_{N}\right|$.

Proof We rewrite the equation (1) as

$$
L u=-\frac{\partial}{\partial x_{j}}\left(\left(a_{i j}(x, u)-a_{i j}(0,0)\right) \frac{\partial u}{\partial x_{i}}\right)+\frac{\partial f_{i}}{\partial x_{i}} .
$$

By Taylor's expansion we have

$$
\begin{aligned}
a_{i j}(x, u)-a_{i j}(0,0) & =\left\{a_{i j}(0, u)-a_{i j}(0,0)\right\}+\left\{a_{i j}(x, u)-a_{i j}(0, u)\right\} \\
& =a_{i j}^{(1)}(0, u)+a_{i j}^{(2)}(x, u)
\end{aligned}
$$

where

$$
\begin{aligned}
a_{i j}^{(1)}(0, u) & =b_{1} u+\cdots+b_{N_{1}} u^{N_{1}} \\
a_{i j}^{(2)}(x, u) & =b(u) u^{N_{1}+1}+\left\{a_{i j}(x, u)-a_{i j}(0, u)\right\}
\end{aligned}
$$

Then

$$
\begin{align*}
L u= & -\frac{\partial}{\partial x_{j}}\left(\left(a_{i j}(x, u)-a_{i j}(0,0)\right) \sum_{n=1}^{N} \frac{\partial u_{n}}{\partial x_{i}}\right) \\
& -\frac{\partial}{\partial x_{j}}\left(\left(a_{i j}(x, u)-a_{i j}(0,0)\right) \frac{\partial w}{\partial x_{i}}\right)+\frac{\partial f_{i}}{\partial x_{i}} \\
= & -\frac{\partial}{\partial x_{j}}\left(a_{i j}^{(1)}\left(0, \sum_{n=1}^{N} u_{n}\right) \sum_{n=1}^{N} \frac{\partial u_{n}}{\partial x_{i}}\right)-\frac{\partial f_{j}^{\prime}}{\partial x_{j}}+\frac{\partial f_{i}}{\partial x_{i}} \tag{22}
\end{align*}
$$

where

$$
\begin{aligned}
f_{j}^{\prime}= & \left(a_{i j}^{(1)}(0, u)-a_{i j}^{(1)}\left(0, \sum_{n=1}^{N} u_{n}\right)\right) \sum_{n=1}^{N} \frac{\partial u_{n}}{\partial x_{i}} \\
& +a_{i j}^{(2)}(x, u) \sum_{n=1}^{N} \frac{\partial u_{n}}{\partial x_{i}}+\left(\left(a_{i j}(x, u)-a_{i j}(0,0)\right) \frac{\partial w}{\partial x_{i}}\right.
\end{aligned}
$$

We consider the first term on the right of (22). By Lemma 3.1 there is a particular solution $w_{1}=\sum_{n=1}^{N^{\prime}} w_{1 n}, w_{1 n}=c_{n} r^{\gamma_{n}} \log ^{m_{n}} r \varphi_{n}(\theta)$, such that $\left|c_{n}\right| \leq C$, and $\operatorname{Re} \gamma_{n} \geq$ $2 \operatorname{Re} \alpha_{1}$, to the equation

$$
L w_{1}=-\frac{\partial}{\partial x_{j}}\left(a_{i j}^{(1)}\left(0, \sum_{n=1}^{N} u_{n}\right) \sum_{n=1}^{N} \frac{\partial u_{n}}{\partial x_{i}}\right)
$$

We estimate $\left\|f_{j}^{\prime}\right\|_{\alpha, \Omega_{k}}$ next. We have the following estimates on $\Omega_{k} \bigcap S_{m}$:

$$
\begin{aligned}
& \left|a_{i j}^{(1)}(0, u)-a_{i j}^{(1)}\left(0, \sum_{n=1}^{N} u_{n}\right)\right| \leq C|w| \leq C \xi^{k(1-b+\alpha)} \\
& {\left[a_{i j}^{(1)}(0, u)-a_{i j}^{(1)}\left(0, \sum_{n=1}^{N} u_{n}\right)\right]_{\alpha} \leq C[w]_{\alpha}+C\left([u]_{\alpha}+\sum_{n=1}^{N}\left[u_{n}\right]_{\alpha}\right) \max |w| \leq C \xi^{k(1-b)}} \\
& \left|\frac{\partial u_{n}}{\partial x_{i}}\right| \leq C \xi^{k(\delta-1)}
\end{aligned}
$$

where $\delta=\operatorname{Re} \alpha_{1}-\varepsilon>0$ with ε positive and small,

$$
\begin{aligned}
& {\left[\frac{\partial u_{n}}{\partial x_{i}}\right]_{\alpha} \leq C \xi^{k(\delta-1-\alpha)}} \\
& \left|a_{i j}^{(2)}\right| \leq C \xi^{k\left(\min \left(N_{1}+1\right) \delta, 1\right)}=C \xi^{k} \\
& {\left[a_{i j}^{(2)}\right]_{\alpha} \leq C \xi^{k N_{1} \delta}[u]_{\alpha}+C \xi^{k(1-\alpha)} \leq C \xi^{k(1-\alpha)}}
\end{aligned}
$$

for N_{1} large enough;

$$
\begin{aligned}
& \left|a_{i j}(x, u)-a_{i j}(0,0)\right| \leq C \xi^{k \bar{\delta}} \\
& {\left[a_{i j}(\cdot, u)-a_{i j}(0,0)\right]_{\alpha} \leq C \xi^{k(\bar{\delta}-\alpha)}}
\end{aligned}
$$

By interpolation we get

$$
|D w| \leq C \xi^{k(-b+\alpha)}
$$

Therefore, we have

$$
\begin{equation*}
\left\|f_{j}^{\prime}\right\|_{\alpha} \leq C \xi^{k(\delta-b)}+C \xi^{k(\delta-\alpha)}+C \xi^{k(\bar{\delta}-b)} \tag{23}
\end{equation*}
$$

Let ε be small enough, then $b-\delta=b-\operatorname{Re} \alpha_{1}+\varepsilon \leq b_{1}, \delta-\alpha=\operatorname{Re} \alpha_{1}-\varepsilon-\alpha \geq 0$. By Lemma 3.3 there is a solution w_{2} to the equation $L w_{2}=-\frac{\partial f_{j}^{\prime}}{\partial x_{j}}$ such that

$$
\begin{equation*}
\left\|D w_{2}\right\|_{\alpha, b_{1}, \xi \Omega} \leq C \sum_{j}\left\|f_{j}^{\prime}\right\|_{\alpha, b_{1}, \Omega} \tag{24}
\end{equation*}
$$

Finally, by Lemma 3.3 there is a solution w_{3} to the equation $L w_{3}=\frac{\partial f_{i}}{\partial x_{i}}$ such that

$$
\begin{equation*}
\left\|D w_{3}\right\|_{\alpha, b_{1}, \xi \Omega} \leq C \sum_{i}\left\|f_{i}\right\|_{\alpha, b_{1}, \Omega} \tag{25}
\end{equation*}
$$

By (24) (25) we have

$$
\left\|w_{1}+w_{2}+w_{3}\right\|_{H, \Gamma_{1}} \leq C
$$

Since $\|u\|_{1} \leq C$, we get $\|u\|_{H, \Gamma_{1}} \leq C . u-w_{1}-w_{2}-w_{3}$ is a solution to the homogeneous equation $L u=0$, then using the results for homogeneous equations [4], we get a decomposition on $\xi^{2} \Omega, u-w_{1}-w_{2}-w_{3}=v+w_{4}$, such that

$$
\begin{equation*}
\left\|D w_{4}\right\|_{\alpha, \xi^{2} \Omega}<C \tag{26}
\end{equation*}
$$

and $v=\sum_{n} u_{n}$. Let $w=w_{2}+w_{3}+w_{4}$ and combine the terms of w_{1} and v, still denoted by $\sum_{n} u_{n}$. If there are some terms in $\sum_{n} u_{n}$ satisfying the conditions for w, then we put them in w. It has no harm in assuming $w(0)=0$, otherwise we can plus a constant on it, then there is no constant term in $\sum_{n} u_{n}$. Combining the estimates (24)-(26), the inequality (21) is verified on the domain $\xi^{2} \Omega$. Then applying the condition (20), we see that (21) is in fact satisfied on Ω. The lemma is proved.

Proof of Theorem 1.1 We use Lemma 4.2 to prove by induction. We fix a positive constant Δb such that $\Delta b<\operatorname{Re} \alpha_{1}$ and $\Delta b \leq \bar{\delta}$. By Lemma 4.1 we take $w=u$, $b=1$ first. If $\xi^{1+\alpha-b+\Delta b}=\left|\lambda_{k}\right|$ for some k, we reduce Δb slightly, denoted by Δb^{\prime}, such that $\Delta b^{\prime}>\Delta b / 2$ and there exists an integer N such that $\left|\lambda_{N+1}\right|<\xi^{1+\alpha-b+\Delta b^{\prime}}<\left|\lambda_{N}\right|$. Then we get (21) with $b_{1}=b-\Delta b$ or $b_{1}=b-\Delta b^{\prime}$. Again we take $b=b_{1}$, and so on. In each step the exponents decrease by a positive constant Δb or Δb^{\prime}. We notice that the spectrum set is discrete, so there is no eigenvalue λ_{k} satisfying $\xi^{1+\alpha}=\left|\lambda_{k}\right|$ for small α. After a finite number of steps we get $b=0$, then (3) follows and the proof is complete.

References

[1] Kellogg R. B., Sigularities in Interface Problems, SYNSPADE II, ed. B.Hubbard, 351-400, 1971.
[2] Kellogg R. B., High order regularity for interface problems, in The Mathematical Foundation of the Finite Element Method, ed. A.K.Aziz, Academic Press, 1972.
[3] Blumenfeld M., The regularity of interface problems on corner regions, Lecture Notes in Mathematics 1121, Springer-Verlag, 38-54, 1985.
[4] Ying L.-a., Interface problems for elliptic differential equations, Chin. Ann. of Math., 18B(1997), 139-152.
[5] Ying L.-a., High order regularity for interface problems, Northeast. Math. J.,13(1997), 459-476.
[6] Wu J., Interface problems for elliptic systems, J.Partial Diff. Eqs., 12(1999), 313-323.
[7] Wu J., Interface problems for quasilinear elliptic equations, J. Diff. Eqs., 157(1999), 102119.
[8] Ying L.-a., A decomposition theorem for the solutions to the interface problems of quasilinear elliptic equations, Research Report No.31, School of Mathematical Sciences and Institute of Marthematics, Peking University, 2001.
[9] Chen Y. Z. and Wu L. C., Second Order Elliptic Equations and Elliptic Systems of Equations (in Chinese), Science Press, Beijing, 1991.
[10] Gilbarg D. and Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977.
[11] Lions J. L. and Magenes E., Nonhomogeneous Boundary Value Problems and Applications, Springer-Verlag, 1972.
[12] Adams R. A., Sobolev Spaces, Academic Press, 1975.

[^0]: *This work was supported by the Major State Research Program of China G1999032803 and the Research Fund for the Doctorial Program of Higher Education.

