HOMOCLINIC ORBIT IN A SIX DIMENSIONAL MODEL OF A PERTURBED HIGHER-ORDER NLS EQUATION

Guo Boling
(Institute of Applied Physics and Computational Mathematics, Beijing 100088, China)
Chen Hanlin
(Southwest University of Science and Technology, Mianyang, 621000, China)
Dedicated to the 80th birthday of Professor Zhou Yulin
(Received March 12, 2002)

Abstract

In this paper, the perturbed higher-order NLS equation with periodic boundary condition is considered. The existence of the homoclinic orbits for the truncation equation is established by Melnikov analysis and geometric singular perturbation theory.

Key Words homoclinic,higher-order NLS equation, perturbation. 2000 MR Subject Classification $35 Q 53$. Chinese Library Classification O175.29.

1. Introduction

By using the reductive perturbation method, Kodama and Hasegawa proposed a higher-order nonlinear Schrödinger (HNLS) equation

$$
\begin{align*}
& i q_{t}+\frac{1}{2} k_{1} q_{x x}+l|q|^{2} q \\
& \quad=-i \varepsilon\left[-\frac{1}{6} k_{2} q_{x x x}+h_{1}\left(q|q|^{2}\right)_{x}-h_{2}\left(|q|^{2}\right)_{x} q\right] . \tag{1}
\end{align*}
$$

It can be used to describe the propagation of a femtosecond optical pulse in a monomode optical fiber.

In this paper, we consider the following perturbation HNLS equation

$$
\begin{align*}
& i u_{t}+u_{x x}+\left(|u|^{2}-1\right) u \\
& \quad=i \varepsilon\left[\alpha u+\beta_{1} u_{x x x}+\beta_{2}\left(|u|^{2} u\right)_{x}+\beta_{3}\left(|u|^{2}\right)_{x} u+\Gamma\right] \tag{2}
\end{align*}
$$

with periodic boundary condition $u(x+2 \pi, t)=u(x, t)$. Where $u=u(x, t)$ is a complexvalue function of two real variables t and $x, \alpha, \beta_{1}, \beta_{2}, \beta_{3}$ and Γ are real parameters ($\alpha>$ $0, \Gamma>0)$, and $\varepsilon>0$ is a small perturbation parameter. We adopt a three mode Fourier truncation and get a six dimensional ordinary differential equations. This equations will be considered and the persistence of the homoclinic orbits will be obtained by Melnikov's analysis together with the geometrical singular perturbation theory.

2. The Fourier Truncation of the Perturbation HNLS Equation

Suppose that the equation (2) have a solution with the following type

$$
\begin{equation*}
u(x, t)=\frac{1}{\sqrt{2}} a(t)+b(t) \cos x+c(t) \sin x \tag{3}
\end{equation*}
$$

where a, b, and c are complex. Inserting (3) into the perturbed HNLS equation (2) and neglecting the higher Fourier modes yields

$$
\begin{align*}
i \dot{a}+ & \left(\frac{1}{2}|a|^{2}+\frac{1}{2}|b|^{2}+\frac{1}{2}|c|^{2}-1\right) a+\frac{1}{2}\left(a b^{*}+a^{*} b\right) b+\frac{1}{2}\left(a c^{*}+a^{*} c\right) c \\
= & i \varepsilon\left[\alpha a+\frac{1}{2} \beta_{3} b\left(a c^{*}+a^{*} c\right)-\frac{1}{2} \beta_{3} c\left(a b^{*}+a^{*} b\right)+\sqrt{2} \Gamma\right] \\
i \dot{b}+ & \left(\frac{1}{2}|a|^{2}+\frac{3}{4}|b|^{2}+\frac{1}{4}|c|^{2}-2\right) b+\frac{1}{2}\left(a b^{*}+a^{*} b\right) a+\frac{1}{4}\left(b c^{*}+b^{*} c\right) c \\
= & i \varepsilon\left[\beta_{2}\left(\frac{1}{2}|a|^{2}+\frac{1}{2}|b|^{2}+\frac{1}{2}|c|^{2}\right) c+\frac{1}{2}\left(\beta_{2}+\beta_{3}\right)\left(a c^{*}+a^{*} c\right) a\right. \\
& \left.+\frac{1}{4}\left(\beta_{2}+2 \beta_{3}\right)\left(b c^{*}+b^{*} c\right) b-\frac{1}{4}\left(\beta_{2}+2 \beta_{3}\right)\left(|b|^{2}-|c|^{2}\right) c\right]+i \varepsilon\left(\alpha b-\beta_{1} c\right) \tag{4}\\
i \dot{c}+ & \left(\frac{1}{2}|a|^{2}+\frac{1}{4}|b|^{2}+\frac{3}{4}|c|^{2}-2\right) c+\frac{1}{2}\left(a c^{*}+a^{*} c\right) a+\frac{1}{4}\left(b c^{*}+b^{*} c\right) b \\
= & -i \varepsilon\left[\beta_{2}\left(\frac{1}{2}|a|^{2}+\frac{1}{2}|b|^{2}+\frac{1}{2}|c|^{2}\right) b+\frac{1}{2}\left(\beta_{2}+\beta_{3}\right)\left(a b^{*}+a^{*} b\right) a\right. \\
& \left.+\frac{1}{4}\left(\beta_{2}+2 \beta_{3}\right)\left(b c^{*}+b^{*} c\right) c+\frac{1}{4}\left(\beta_{2}+2 \beta_{3}\right)\left(|b|^{2}-|c|^{2}\right) b\right]+i \varepsilon\left(\alpha c+\beta_{1} b\right) .
\end{align*}
$$

From (4) the unperturbed equations are obtained by setting $\varepsilon=0$

$$
\begin{align*}
i \dot{a}+\left(\frac{1}{2}|a|^{2}+\frac{1}{2}|b|^{2}+\frac{1}{2}|c|^{2}-1\right) a+\frac{1}{2}\left(a b^{*}+a^{*} b\right) b+\frac{1}{2}\left(a c^{*}+a^{*} c\right) c=0 \\
i \dot{b}+\left(\frac{1}{2}|a|^{2}+\frac{3}{4}|b|^{2}+\frac{1}{4}|c|^{2}-2\right) b+\frac{1}{2}\left(a b^{*}+a^{*} b\right) a+\frac{1}{4}\left(b c^{*}+b^{*} c\right) c=0 \tag{5}\\
i \dot{c}+\left(\frac{1}{2}|a|^{2}+\frac{1}{4}|b|^{2}+\frac{3}{4}|c|^{2}-2\right) c+\frac{1}{2}\left(a c^{*}+a^{*} c\right) a+\frac{1}{4}\left(b c^{*}+b^{*} c\right) b=0
\end{align*}
$$

By inspection, we see that the unperturbed equations are invariant under the following coordinate transformations

$$
\begin{equation*}
(a, b, c) \rightarrow(-a, b, c) ;(a, b, c) \rightarrow(a,-b,-c) \tag{6a,6~b}
\end{equation*}
$$

We want to describe the invariant manifold structure and phase space geometry of (5), we also want ultimately to utilize the generalized Melnikov theory described in [1]. For these purpose, we rewrite the equations (4) in the appropriate form by introducing the following coordinate transformation

$$
\begin{align*}
a & =\rho(t) \exp \{i \theta(t)\} \\
b & =\left[x_{1}(t)+i x_{2}(t)\right] \exp \{i \theta(t)\} \tag{7}\\
c & =\left[y_{1}(t)+i y_{2}(t)\right] \exp \{i \theta(t)\},
\end{align*}
$$

and Let $I=\frac{1}{2}\left(\rho^{2}+x^{2}+y^{2}\right)$. In these coordinates the perturbed equations (4) become

$$
\begin{align*}
& \dot{I}=2 \varepsilon \alpha I+\sqrt{2} \varepsilon \Gamma \sqrt{2 I-x^{2}-y^{2}} \cos \theta \\
& \dot{\theta}=I-1+x_{1}^{2}+y_{1}^{2}+\varepsilon \beta_{3}\left(x_{2} y_{1}-x_{1} y_{2}\right)-\frac{1}{\rho} \sqrt{2} \varepsilon \Gamma \sin \theta \\
& \dot{x}_{1}=x_{2}+\frac{3}{4} x_{1}^{2} x_{2}-\frac{1}{4} x_{2}^{3}+\frac{5}{4} x_{2} y_{1}^{2}+\frac{1}{4} x_{2} y_{2}^{2}-\frac{1}{2}\left(x_{1} y_{1}+x_{2} y_{2}\right) y_{2} \\
& +\varepsilon\left(\alpha x_{1}-\beta_{1} y_{1}\right)+\varepsilon\left\{\beta_{2} y_{1} I+\rho^{2}\left(\beta_{2}+\beta_{3}\right) y_{1}+\frac{1}{2}\left(\beta_{2}+2 \beta_{3}\right)\left(x_{1} y_{1}+x_{2} y_{2}\right) x_{1}\right. \\
& \left.-\frac{1}{4}\left(\beta_{2}+2 \beta_{3}\right)\left(x^{2}-y^{2}\right) y_{1}\right\}+\varepsilon \beta_{3}\left(x_{2} y_{1}-x_{1} y_{2}\right) x_{2}-\frac{1}{\rho} \sqrt{2} \varepsilon \Gamma x_{2} \sin \theta \\
& \dot{x}_{2}=(2 I-1) x_{1}-\frac{3}{4} x_{1} x_{2}^{2}-\frac{7}{4} x_{1}^{3}-\frac{9}{4} x_{1} y_{1}^{2}-\frac{5}{4} x_{1} y_{2}^{2}+\frac{1}{2}\left(x_{1} y_{1}+x_{2} y_{2}\right) y_{1} \\
& +\varepsilon\left(\alpha x_{2}-\beta_{1} y_{2}\right)+\varepsilon\left\{\beta_{2} y_{2} I+\frac{1}{2}\left(\beta_{2}+2 \beta_{3}\right)\left(x_{1} y_{1}+x_{2} y_{2}\right) x_{2}\right. \\
& \left.-\frac{1}{4}\left(\beta_{2}+2 \beta_{3}\right)\left(x^{2}-y^{2}\right) y_{2}\right\}-\varepsilon \beta_{3}\left(x_{2} y_{1}-x_{1} y_{2}\right) x_{1}+\frac{1}{\rho} \sqrt{2} \varepsilon \Gamma x_{1} \sin \theta \tag{8}\\
& \dot{y}_{1}=y_{2}+\frac{3}{4} y_{1}^{2} y_{2}-\frac{1}{4} y_{2}^{3}+\frac{5}{4} x_{1}^{2} y_{2}+\frac{1}{4} x_{2}^{2} y_{2}-\frac{1}{2}\left(x_{1} y_{1}+x_{2} y_{2}\right) x_{2} \\
& +\varepsilon\left(\alpha y_{1}+\beta_{1} x_{1}\right)-\varepsilon\left\{\beta_{2} x_{1} I+\rho^{2}\left(\beta_{2}+\beta_{3}\right) x_{1}+\frac{1}{2}\left(\beta_{2}+2 \beta_{3}\right)\left(x_{1} y_{1}+x_{2} y_{2}\right) y_{1}\right. \\
& \left.+\frac{1}{4}\left(\beta_{2}+2 \beta_{3}\right)\left(x^{2}-y^{2}\right) x_{1}\right\}+\varepsilon \beta_{3}\left(x_{2} y_{1}-x_{1} y_{2}\right) y_{2}-\frac{1}{\rho} \sqrt{2} \varepsilon \Gamma y_{2} \sin \theta \\
& \dot{y}_{2}=(2 I-1) y_{1}-\frac{3}{4} y_{1} y_{2}^{2}-\frac{7}{4} y_{1}^{3}-\frac{9}{4} x_{1}^{2} y_{1}-\frac{5}{4} x_{2}^{2} y_{1}+\frac{1}{2}\left(x_{1} y_{1}+x_{2} y_{2}\right) x_{1} \\
& +\varepsilon\left(\alpha y_{2}+\beta_{1} x_{2}\right)-\varepsilon\left\{\beta_{2} x_{2} I+\frac{1}{2}\left(\beta_{2}+2 \beta_{3}\right)\left(x_{1} y_{1}+x_{2} y_{2}\right) y_{2}\right. \\
& \left.+\frac{1}{4}\left(\beta_{2}+2 \beta_{3}\right)\left(x^{2}-y^{2}\right) x_{2}\right\}-\varepsilon \beta_{3}\left(x_{2} y_{1}-x_{1} y_{2}\right) y_{1}+\frac{1}{\rho} \sqrt{2} \varepsilon \Gamma y_{1} \sin \theta,
\end{align*}
$$

where $x^{2}=x_{1}^{2}+x_{2}^{2}, y^{2}=y_{1}^{2}+y_{2}^{2}$ and $\rho=\sqrt{2 I-x_{1}^{2}-x_{2}^{2}-y_{1}^{2}-y_{2}^{2}}$. Under the coordinate transformation (7) the unperturbed equations (5) become

$$
\begin{array}{rlr}
\dot{x}_{1}=\frac{\partial H}{\partial x_{2}} ; & \dot{x}_{2}=-\frac{\partial H}{\partial x_{1}} \\
\dot{y}_{1}=\frac{\partial H}{\partial y_{2}} ; & \dot{y}_{2}=-\frac{\partial H}{\partial y_{1}} \tag{9}\\
\dot{I}=0 ; & \dot{\theta}=-\frac{\partial H}{\partial I}
\end{array}
$$

Where H is the following energy integration

$$
\begin{align*}
H= & -\frac{1}{2} I^{2}+I-\left(x_{1}^{2}+y_{1}^{2}\right) I+\frac{1}{2} x_{1}^{2}+\frac{7}{16} x_{1}^{4}+\frac{9}{8} x_{1}^{2} y_{1}^{2}+\frac{3}{8} x_{1}^{2} x_{2}^{2} \\
& +\frac{5}{8} x_{1}^{2} y_{2}^{2}+\frac{1}{2} y_{1}^{2}+\frac{7}{16} y_{1}^{4}+\frac{3}{8} y_{1}^{2} y_{2}^{2}+\frac{5}{8} x_{2}^{2} y_{1}^{2}+\frac{1}{2}\left(x_{2}^{2}+y_{2}^{2}\right) \\
& -\frac{1}{16} x_{2}^{4}+\frac{1}{8} x_{2}^{2} y_{2}^{2}-\frac{1}{16} y_{2}^{4}-\frac{1}{4}\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2} . \tag{10}
\end{align*}
$$

Hence, when $\varepsilon=0$ the unperturbed system is an integrable Hamiltonian system.

3. The unperturbed integrable structure

In order to show that (9) has the invariant manifold structure described in the general theory [1] we must consider the $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ component of (9) which we rewrite below

$$
\begin{align*}
& \dot{x}_{1}=x_{2}+\frac{3}{4} x_{1}^{2} x_{2}-\frac{1}{4} x_{2}^{3}+\frac{5}{4} x_{2} y_{1}^{2}+\frac{1}{4} x_{2} y_{2}^{2}-\frac{1}{2}\left(x_{1} y_{1}+x_{2} y_{2}\right) y_{2} \\
& \dot{x}_{2}=(2 I-1) x_{1}-\frac{3}{4} x_{1} x_{2}^{2}-\frac{7}{4} x_{1}^{3}-\frac{9}{4} x_{1} y_{1}^{2}-\frac{5}{4} x_{1} y_{2}^{2}+\frac{1}{2}\left(x_{1} y_{1}+x_{2} y_{2}\right) y_{1} \\
& \dot{y}_{1}=y_{2}+\frac{3}{4} y_{1}^{2} y_{2}-\frac{1}{4} y_{2}^{3}+\frac{5}{4} x_{1}^{2} y_{2}+\frac{1}{4} x_{2}^{2} y_{2}-\frac{1}{2}\left(x_{1} y_{1}+x_{2} y_{2}\right) x_{2} \\
& \dot{y}_{2}=(2 I-1) y_{1}-\frac{3}{4} y_{1} y_{2}^{2}-\frac{7}{4} y_{1}^{3}-\frac{9}{4} x_{1}^{2} y_{1}-\frac{5}{4} x_{2}^{2} y_{1}+\frac{1}{2}\left(x_{1} y_{1}+x_{2} y_{2}\right) x_{1} \tag{11}
\end{align*}
$$

Note that (11) has a fixed point at $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=(0,0,0,0)$ for all values of I, this is a result of the symmetry given by (6b). A simple linear stability analysis shows that $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=(0,0,0,0)$ is a saddle point for $I>\frac{1}{2}$. Moreover, an examination of the level set of the Hamiltonian that contains the origin, i.e.,

$$
\left\{\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \mid H\left(x_{1}, x_{2}, y_{1}, y_{2}, I\right)-H(0,0,0,0, I)=0\right\}
$$

shows that for each I in this range the origin has a pair of symmetric homoclinic orbits. Interpreting these results in the full six-dimensional phase space, the set

$$
M_{0}=\left\{x_{1}=x_{2}=y_{1}=y_{2}=0, I_{1}<I<I_{2}, \theta \in[0,2 \pi]\right\}
$$

is a two-dimensional invariant manifold under the flow generated by (9) (where I_{1} and I_{2} are given constants).

In calculating the Melnikov functions it will be important to have analytical expressions for the homoclinic orbits of (11) that connect the origin as a function of I. For $\frac{1}{2}<I<4$, the hyperbolic fixed point $(0,0,0,0)$ for the system (11) has two dimensional stable and unstable manifolds. These two manifolds intersect into a two-dimensional homoclinic manifold.

Proposition 2.1 For any point $(I, \theta)\left(\frac{1}{2}<I<4, \theta \in[0,2 \pi]\right)$, the homoclinic manifold has the following form:
(1) If $x_{1} \neq 0$ or $x_{2} \neq 0$, then for any $k \in R$,

$$
\begin{aligned}
& x_{1}(t)=r(t) \cos \varphi(t) \\
& x_{2}(t)=r(t) \sin \varphi(t) \\
& y_{1}(t)=k r(t) \cos \varphi(t) \\
& y_{2}(t)=k r(t) \sin \varphi(t) .
\end{aligned}
$$

(2) If $x_{1}=x_{2}=0$, then

$$
\begin{aligned}
& x_{1}(t)=x_{2}(t)=0 \\
& y_{1}(t)=r(t) \cos \varphi(t) \\
& y_{2}(t)=r(t) \sin \varphi(t)
\end{aligned}
$$

Where

$$
\begin{aligned}
r^{2} & =\frac{8 I(1+\cos 2 \varphi)-8}{\left(1+k^{2}\right)(3+4 \cos 2 \varphi)}, \\
\tan \varphi & =\lambda \tanh (-\lambda t)
\end{aligned}
$$

and $\lambda=\sqrt{2 I-1}$.
Proof One would notice that the eigenfunction of the fixed point ($0,0,0,0$) for system (11) is

$$
F(\lambda)=\left|\begin{array}{llll}
\lambda & -1 & 0 & 0 \\
1-2 I & \lambda & 0 & 0 \\
0 & 0 & \lambda & -1 \\
0 & 0 & 1-2 I & \lambda
\end{array}\right|
$$

The eigenvalues are $\lambda_{1}=\lambda_{3}=\sqrt{2 I-1}, \lambda_{2}=\lambda_{4}=-\sqrt{2 I-1}$ for $\frac{1}{2}<I$, and the eigenvectors are

$$
\begin{aligned}
& v_{1}=\left(f_{1}(I), f_{2}(I), 0,0\right)^{T} \\
& v_{2}=\left(f_{1}(I),-f_{2}(I), 0,0\right)^{T} \\
& v_{3}=\left(0,0, f_{1}(I), f_{2}(I)\right)^{T} \\
& v_{4}=\left(0,0, f_{1}(I),-f_{2}(I)\right)^{T} .
\end{aligned}
$$

So the local unstable manifold near $(0,0,0,0)$ is the combination of the two vectors v_{1} and v_{3}, i. e., $\left\{v \mid v=c_{1} v_{1}+c_{3} v_{3}\right\}$. If $c_{1} \neq 0$, we have $y_{1}=k x_{1}, y_{2}=k x_{2}$ (where $\left.k=\frac{c_{3}}{c_{1}} \in R\right)$.

We would also notice that for any $k \in R$, manifold $\left\{\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \mid y_{1}=k x_{1}, y_{2}=\right.$ $\left.k x_{2}\right\}$ is invariant for system (11). The system restricted on the invariant plane is

$$
\begin{align*}
& \dot{x}_{1}=x_{2}+\frac{3}{4}\left(1+k^{2}\right) x_{1}^{2} x_{2}-\frac{1}{4}\left(1+k^{2}\right) x_{2}^{3} \\
& \dot{x}_{2}=(2 I-1) x_{1}-\frac{3}{4}\left(1+k^{2}\right) x_{1} x_{2}^{2}-\frac{7}{4}\left(1+k^{2}\right) x_{1}^{3} \tag{12}
\end{align*}
$$

It is also a Hamilton system with energy function

$$
\begin{align*}
H_{0}= & -\frac{1}{2} I^{2}+I-\left(I-\frac{1}{2}\right) x_{1}^{2}+\frac{1}{2} x_{2}^{2}+\frac{7}{16}\left(1+k^{2}\right) x_{1}^{4} \\
& -\frac{1}{16}\left(1+k^{2}\right) x_{2}^{4}+\frac{3}{8}\left(1+k^{2}\right) x_{1}^{2} x_{2}^{2} \tag{13}
\end{align*}
$$

Simple analysis gives that the point $(0,0)$ is a hyperbolic fixed point, there is a homoclinic orbit connecting the fixed point. Now we give the explicit form of the homoclinic orbit.

Let $x_{1}=r \cos \varphi$ and $x_{2}=r \sin \varphi$, then

$$
\begin{align*}
& \dot{r}=\frac{1}{2}\left[2 I r-\left(1+k^{2}\right) r^{3}\right] \sin 2 \varphi \\
& \dot{\varphi}=-1+I(1+\cos 2 \varphi)-\left(1+k^{2}\right) r^{2}\left(\frac{3}{4}+\cos 2 \varphi\right) \tag{14}
\end{align*}
$$

The Hamilton energy function (13) becomes

$$
H_{0}=-\frac{1}{2} I^{2}+I+\left(1+k^{2}\right) r^{4}\left(\frac{3}{16}+\frac{1}{4} \cos 2 \varphi\right)-r^{2}\left[\frac{1}{2} I+\frac{1}{2}(I \cos 2 \varphi-1)\right]
$$

Then

$$
\begin{equation*}
r^{2}=\frac{8 I(1+\cos 2 \varphi)-8}{\left(1+k^{2}\right)(3+4 \cos 2 \varphi)} \tag{15}
\end{equation*}
$$

and

$$
\dot{\varphi}=1-I(1+\cos 2 \varphi)
$$

For $\frac{1}{2}<I<4$ with initial condition $\varphi(t=0)=0$, we have

$$
\begin{equation*}
\tan \varphi=\lambda \tanh (-\lambda t) \tag{16}
\end{equation*}
$$

where $\lambda=\sqrt{2 I-1}$. So we get

$$
\begin{equation*}
r^{2}=\frac{8 \lambda^{2}}{\left(1+k^{2}\right)[(4-I) \cosh (2 \lambda t)+3+I]} \tag{17}
\end{equation*}
$$

Then the proposition is true.
Next we let $\xi=\theta+\varphi$, then

$$
\begin{equation*}
\dot{\xi}=\dot{\theta}+\dot{\varphi}=I-1+\frac{1}{8}\left(1+k^{2}\right) r^{2} \tag{18}
\end{equation*}
$$

Using (17) and (18) with the initial condition $\xi(t=0)=\xi_{0}$ we have

$$
\begin{equation*}
\xi(t)=\frac{1}{\sqrt{7}\left(1+k^{2}\right)} \tanh ^{-1}\left[\frac{\lambda}{\sqrt{7}} \tanh (\lambda t)\right]+(I-1) t+\xi_{0} \tag{19}
\end{equation*}
$$

The unperturbed vector field restricted to M_{0} is given by

$$
\begin{align*}
& \dot{I}=0 \\
& \dot{\theta}=I-1 . \tag{20}
\end{align*}
$$

The dynamics described by (20) is quite simple; all trajectories lie on periodic orbits except at $I=1$. At $I=1$ the frequency $(\dot{\theta})$ vanishes, which results in a circle of fixed points. Thus we have a resonance and we will often refer to $I=1$ as the resonant I level or value.

Using (16) and (19) at $I=1$ gives

$$
\begin{align*}
\theta(-\infty) & =\xi_{0}-\frac{\pi}{4}-\frac{1}{\sqrt{7}\left(1+k^{2}\right)} \tanh ^{-1}\left(\frac{1}{\sqrt{7}}\right) \\
\theta(\infty) & =\xi_{0}+\frac{\pi}{4}+\frac{1}{\sqrt{7}\left(1+k^{2}\right)} \tanh ^{-1}\left(\frac{1}{\sqrt{7}}\right) \tag{21}\\
\Delta \theta & =\theta(\infty)-\theta(-\infty) \\
& =\frac{\pi}{2}+\frac{2}{\sqrt{7}\left(1+k^{2}\right)} \tanh ^{-1}\left(\frac{1}{\sqrt{7}}\right) . \tag{22}
\end{align*}
$$

4. The Persistence of the Normally Hyperbolic Invariant Manifold

In this section, we will list some results about the existence of the normal hyperbolic invariant manifold and its stable and unstable manifolds. First, for $\varepsilon=0, M_{0}$ is a normal hyperbolic invariant manifold.

For $\varepsilon \neq 0$, we have that $x_{1}=x_{2}=y_{1}=y_{2}=0$ is invariant under the perturbed system (8). Thus, the set

$$
\begin{equation*}
M_{\varepsilon}=\left\{(x, y, I, \theta) \mid x=y=0, \frac{1}{2}<I<4, \theta \in[0,2 \pi]\right\} \tag{23}
\end{equation*}
$$

is an invariant manifold for the perturbed problem (here we denote $\left(x_{1}, x_{2}\right)$ and (y_{1}, y_{2}) by x and y respectively). However, there is an important, general difference in the behavior of trajectories in M_{0} and M_{ε}. Since $\dot{I} \neq 0$ in the perturbed problem, M_{ε} must be considered as an invariant manifold with boundary. This means that trajectories in M_{ε} may leave M_{ε} but only by crossing the boundary of M_{ε}. In this case one can show that, for ε sufficiently small, there exists locally invariant manifolds of the perturbed problem, denoted $W_{l o c}^{s}\left(M_{\varepsilon}\right)$ and $W_{l o c}^{u}\left(M_{\varepsilon}\right)$, that can be represented as graphs over the local unperturbed stable and unstable manifolds, $W_{l o c}^{s}\left(M_{0}\right)$ and $W_{l o c}^{u}\left(M_{0}\right)$, respectively. Moreover, these manifolds are as differentiable as the vector field. We define the global stable and unstable manifolds of M_{ε}, denote $W^{s}\left(M_{\varepsilon}\right)$ and $W^{u}\left(M_{\varepsilon}\right)$, respectively, as follows: let $\Phi_{t}(\cdot)$ denote the flow generated by (8), then

$$
\begin{aligned}
W^{s}\left(M_{\varepsilon}\right) & =\bigcup_{t \leq 0} \Phi_{t}\left(W_{l o c}^{s}\left(M_{\varepsilon}\right) \cap U^{\delta}\right) \\
W^{u}\left(M_{\varepsilon}\right) & =\bigcup_{t \geq 0} \Phi_{t}\left(W_{l o c}^{u}\left(M_{\varepsilon}\right) \cap U^{\delta}\right)
\end{aligned}
$$

Where U^{δ} is a δ neighborhood of M_{0}. A more detailed description of the perturbed stable and unstable manifolds can be found in [1].

Next we study the dynamics on M_{ε} near resonance. The perturbed vector field (8) restricted to M_{ε} is given by

$$
\begin{align*}
& \dot{I}=2 \varepsilon[\Gamma \sqrt{I} \cos \theta+\alpha I] \\
& \dot{\theta}=I-1-\frac{\varepsilon \Gamma}{\sqrt{I}} \sin \theta . \tag{24}
\end{align*}
$$

Let $I=1+\sqrt{2 \varepsilon \Gamma} h, \tau=\sqrt{2 \varepsilon \Gamma} t$, the equations (24) can be written as

$$
\begin{align*}
h^{\prime} & =\cos \theta+\frac{\alpha}{\Gamma}+\eta\left(\frac{\alpha}{\Gamma}+\frac{1}{2} \cos \theta\right) h+O\left(\eta^{2}\right) \\
\theta^{\prime} & =h-\frac{1}{2} \eta \sin \theta+O\left(\eta^{2}\right) \tag{25}
\end{align*}
$$

where the prime denotes differentiation with respect to τ and $\eta=\sqrt{2 \varepsilon \Gamma}$. Since we will be interested mainly in the dynamics near the resonance we will restrict the domain of M_{ε} to an annulus containing the resonance. More precisely, the region of interest on M_{ε} is defined as follows:

$$
\mathcal{A}_{\varepsilon}=\{(x, y, h, \theta)|x=y=0,|h|<C, \theta \in[0,2 \pi]\}
$$

where C is an $O(1)$ constant chosen sufficiently large to contain the resonance structures.

For $\eta=0$ the equations (25) reduce to

$$
\begin{align*}
h^{\prime} & =\cos \theta+\frac{\alpha}{\Gamma} \\
\theta^{\prime} & =h . \tag{26}
\end{align*}
$$

A simple analysis shows:
(1) The system (26) is a Hamiltonian system with Hamilton energy function

$$
\begin{equation*}
\mathcal{H}=-\frac{h^{2}}{2}+\sin \theta+\frac{\alpha}{\Gamma} \theta \tag{27}
\end{equation*}
$$

(2) The system (26) has two fixed points: a center p_{0} and a saddle q_{0}, their coordinates are given by

$$
\begin{align*}
& p_{0}=\left(h_{p_{0}}, \theta_{p_{0}}\right)=\left(0, \pi-\arccos \frac{\alpha}{\Gamma}\right) \\
& q_{0}=\left(h_{q_{0}}, \theta_{q_{0}}\right)=\left(0, \pi+\arccos \frac{\alpha}{\Gamma}\right) . \tag{28}
\end{align*}
$$

From an application of the implicit function theorem and standard phase plane results, for η sufficiently small and $0<\frac{\alpha}{\Gamma}<1, p_{0}$ becomes a sink, denoted p_{ε}, q_{0} remains a saddle, denoted q_{ε}, and the homoclinic orbit breaks with a branch of the unstable manifold of q_{ε} falling into p_{ε}. We emphasize here that

$$
\begin{aligned}
p_{\varepsilon} & =p_{0}+O(\varepsilon) \\
q_{\varepsilon} & =p_{0}+O\left(\eta^{2}\right) \\
+O(\varepsilon) & =q_{0}+O\left(\eta^{2}\right) .
\end{aligned}
$$

For the stable and unstable manifolds of $\mathcal{A}_{\varepsilon}$, we have a fibers theorem which is similar to the theorem 7.52 in ref.[2]. Moreover, we can construct the fiber representations of $W^{u}\left(q_{\varepsilon}\right)$ and $W^{s}\left(q_{\varepsilon}\right)$.

5. The Persistence of the Homoclinic Orbits

The perturbed system (8) can be rewritten as

$$
\begin{align*}
& \dot{x}_{1}=\frac{\partial H}{\partial x_{2}}+\varepsilon g^{x_{1}}, \\
& \dot{x}_{2}=-\frac{\partial H}{\partial x_{1}}+\varepsilon g^{x_{2}}, \\
& \dot{y}_{1}=\frac{\partial H}{\partial y_{2}}+\varepsilon g^{y_{1}}, \tag{29}\\
& \dot{y}_{2}=-\frac{\partial H}{\partial y_{1}}+\varepsilon g^{y_{2}}, \\
& \dot{I}=0+\varepsilon g^{I}, \\
& \dot{\theta}=-\frac{\partial H}{\partial I}+\varepsilon g^{\theta} .
\end{align*}
$$

Where H have been given in (10). $\left(g^{x_{1}}, g^{x_{2}}, g^{y_{1}}, g^{y_{2}}, g^{I}, g^{\theta}\right)^{T}$ is defined by (8) and have the following representation

$$
\left(\begin{array}{l}
g^{x_{1}} \tag{30}\\
g^{x_{2}} \\
g^{y_{1}} \\
g^{y_{2}} \\
g^{I} \\
g^{\theta}
\end{array}\right)=\left(\begin{array}{l}
\frac{\partial H_{1}}{\partial x_{2}} \\
-\frac{\partial H_{1}}{\partial x_{1}} \\
\frac{\partial H_{1}}{\partial y_{2}} \\
-\frac{\partial H_{1}}{\partial y_{1}} \\
\frac{\partial H_{1}}{\partial \theta} \\
-\frac{\partial H_{1}}{\partial I}
\end{array}\right)+\alpha\left(\begin{array}{l}
x_{1} \\
x_{2} \\
y_{1} \\
y_{2} \\
2 I \\
0
\end{array}\right)+\left(\begin{array}{l}
g_{1}^{x_{1}} \\
g_{1}^{x_{2}} \\
g_{1}^{y_{1}} \\
g_{1}^{y_{2}} \\
g_{1}^{I} \\
g_{1}^{\theta}
\end{array}\right) .
$$

Where $H_{1}=\sqrt{2} \Gamma \sqrt{2 I-x_{1}^{2}-x_{2}^{2}-y_{1}^{2}-y_{2}^{2}} \sin \theta$ and $\left(g_{1}^{x_{1}}, g_{1}^{x_{2}}, g_{1}^{y_{1}}, g_{1}^{y_{2}}, g_{1}^{I}, g_{1}^{\theta}\right)^{T}$ consists of terms that have $\beta_{j}(j=1,2,3)$ coefficients in (8).

To show the existence of the homoclinic orbit for the system (29) we use two steps to analysis this problem. First, we use Melnikov's method to compute the distance of $W^{s}\left(M_{\varepsilon}\right)$ and $W^{u}\left(M_{\varepsilon}\right)$. By this method we will show that the unstable manifold of the fixed point in M_{ε} is in $W^{s}\left(M_{\varepsilon}\right)$. The second step we show that the unstable manifold will be intersect to the stable fiber of the stable manifold of the fixed point in M_{ε}.

Now we discuss the distance of $W^{u}\left(q_{\varepsilon}\right)$ and $W^{s}\left(\mathcal{A}_{\varepsilon} \subset M_{\varepsilon}\right)$. From the higher dimensional Melnikov theory in [1] we known that for any point in the homoclinic manifold, denote $\left(x_{1}, x_{2}, y_{1}, y_{2}, I, \theta\right)$, the normal vector of the point is $\vec{n}=\left(\frac{\partial H}{\partial x_{1}}, \frac{\partial H}{\partial x_{2}}, \frac{\partial H}{\partial y_{1}}, \frac{\partial H}{\partial y_{2}}, \frac{\partial H}{\partial I}, 0\right)$ and the Melnikov function is given by

$$
\begin{equation*}
M\left(\theta_{0}\right)=\int_{-\infty}^{\infty}<\vec{n},\left(g^{x_{1}}, g^{x_{2}}, g^{y_{1}}, g^{y_{2}}, g^{I}, g^{\theta}\right)>\left(q^{h}\left(t, I=1, \theta_{0}\right)\right) d t \tag{31}
\end{equation*}
$$

Where $q^{h}\left(t, I=1, \theta_{0}\right)$ is a homoclinic orbit in the homoclinic manifold which pass the point $\left(x_{1}, x_{2}, y_{1}, y_{2}, I, \theta\right)=\left(0,0,0,0,1, \theta_{0}\right)$. It is easy to show that the function $M\left(\theta_{0}\right)$ is independent in $\beta_{j}(j=1,2,3)$. Hence,in the homoclinic manifold we have

$$
\begin{align*}
& <\vec{n},\left(g^{x_{1}}, g^{x_{2}}, g^{y_{1}}, g^{y_{2}}, g^{I}, g^{\theta}\right)>\left(q^{h}(t, I=1, \theta)\right) \\
& =-\quad-\dot{x}_{2}\left(\frac{\partial H_{1}}{\partial x_{2}}+\alpha x_{1}\right)+\dot{x}_{1}\left(-\frac{\partial H_{1}}{\partial x_{1}}+\alpha x_{2}\right)-\dot{y}_{2}\left(\frac{\partial H_{1}}{\partial y_{2}}+\alpha y_{1}\right) \\
& \quad+\dot{y}_{1}\left(-\frac{\partial H_{1}}{\partial y_{1}}+\alpha y_{2}\right)-\dot{\theta}\left(\frac{\partial H_{1}}{\partial \theta}+2 \alpha\right) \\
& \quad=-\frac{d H_{1}}{d t}+\alpha\left(1+k^{2}\right)\left(\dot{x}_{1} x_{2}-x_{1} \dot{x}_{2}\right)-2 \alpha \dot{\theta} . \tag{32}
\end{align*}
$$

We now integrate (32) around the unperturbed heteroclinic orbit at $I=1$ that approaches q_{0} asymptotically as $t \rightarrow-\infty$. It is clear that the first term and the third term in (32) can be integrated directly to give

$$
\begin{align*}
& -\int_{-\infty}^{\infty} \frac{d H_{1}}{d t} d t=-2 \Gamma\left[\sin \left(\theta_{q_{0}}+\Delta \theta\right)-\sin \theta_{q_{0}}\right], \tag{33}\\
& -\int_{-\infty}^{\infty} 2 \alpha \dot{\theta} d t=-2 \alpha \Delta \theta . \tag{34}
\end{align*}
$$

We now examine the second term in (32). Since $x_{1}=r \cos \varphi$ and $x_{2}=r \sin \varphi$, then

$$
\dot{x}_{1} x_{2}-x_{1} \dot{x}_{2}=-r^{2} \dot{\varphi} .
$$

Hence

$$
\begin{align*}
\int_{-\infty}^{\infty}\left(\dot{x}_{1} x_{2}-x_{1} \dot{x}_{2}\right) d t & =-\int_{-\infty}^{\infty} r^{2} \dot{\varphi} d t \\
& =-\frac{8}{1+k^{2}} \int_{\varphi(-\infty)}^{\varphi(+\infty)} \frac{\cos 2 \varphi}{3+4 \cos 2 \varphi} d \varphi \\
& =-\frac{2}{1+k^{2}} \Delta \varphi+\frac{6}{1+k^{2}} \int_{\varphi(-\infty)}^{\varphi(+\infty)} \frac{d \varphi}{3+4 \cos 2 \varphi} \\
& =-\frac{2}{1+k^{2}} \Delta \varphi-\frac{6}{\sqrt{7}\left(1+k^{2}\right)} \tanh ^{-1}\left(\frac{\sqrt{7}}{4}\right) . \tag{35}
\end{align*}
$$

Where $\Delta \varphi=\varphi(+\infty)-\varphi(-\infty)=\frac{\pi}{2}$.
Using (33), (34) and (35), the Melnikov function becomes

$$
\begin{align*}
M\left(\alpha, \Gamma, k ; \theta_{q_{0}}\right)= & -2 \Gamma\left[\sin \left(\theta_{q_{0}}+\Delta \theta\right)-\sin \theta_{q_{0}}\right] \\
& -\frac{2 \alpha}{\sqrt{7}\left(1+k^{2}\right)} \tanh ^{-1}\left(\sqrt{\frac{1}{7}}\right)-\frac{6 \alpha}{\sqrt{7}} \tanh ^{-1}\left(\frac{\sqrt{7}}{4}\right) . \tag{36}
\end{align*}
$$

Where $\theta_{q_{0}}=\pi+\arccos \frac{\alpha}{\Gamma}$. and $\Delta \theta=\frac{\pi}{2}+\frac{2}{\sqrt{7}\left(1+k^{2}\right)} \tanh ^{-1}\left(\sqrt{\frac{1}{7}}\right)$.

Following the theory developed in [1, 3], in order to show that there exists an orbit homoclinic to q_{ε} we must first show that the Melnikov function has a simple zero. This condition is a sufficient condition for the existence of an orbit that is asymptotic to q_{ε} as $t \rightarrow-\infty$ and asymptotic to an orbit in $\mathcal{A}_{\varepsilon}$ as $t \rightarrow+\infty$. Further, in order to verify that the unstable manifold $W^{u}\left(q_{\varepsilon}\right)$ is intersect to the stable fiber of the stable manifold of the fixed point in $\mathcal{A}_{\varepsilon}$, we define

$$
\Delta \mathcal{H}=\mathcal{H}\left(0, \theta_{b}\right)-\mathcal{H}\left(0, \pi+\arccos \frac{\alpha}{\Gamma}\right),
$$

where \mathcal{H} is given by (27). Hence, the location that the unstable manifold of q_{ε} returns to $\mathcal{A}_{\varepsilon}$ is given by the solution of the following equation

$$
\begin{equation*}
\Delta \mathcal{H}=\frac{\alpha}{\Gamma}\left(\theta_{b}-\theta_{q_{0}}\right)+\sin \theta_{b}-\sin \theta_{q_{0}}=0 . \tag{37}
\end{equation*}
$$

Where θ_{b} is called as "take off angle".
By the above discussion we can get the following theorem for the existence of homoclinic orbit for the saddle point q_{ε}.

Theorem 5.1 Choosing the parameters such that $M\left(\alpha, \Gamma, k ; \theta_{q_{0}}\right)$ has simple zero with parameters and

$$
\frac{\alpha}{\Gamma}\left(\theta_{b}-\theta_{q_{0}}\right)+\sin \theta_{b}-\sin \theta_{q_{0}}=0
$$

take value throughout an $O(1)$ interval at a zero point of the Melnikov function. Then for ε sufficiently small, there are homoclinic orbits connecting to q_{ε}.

Remark (1) Taking the similar discussion in $[4,6]$ we may show that the conditions of the theorem 5.1 can be satisfied for the appropriate parameters α and Γ.
(2) By the same discussion we can get the existence of homoclinic orbit for the fixed point p_{ε}.

References

[1] Kovacic G. and Wiggins S., Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped Sine-Gordon equation, Phys. D, $\mathbf{5 7}(1992), 185-225$.
[2] Wiggins S., Normally Hyperbolic Invariant Manifold in Dynamical Systems, SpringerVerlag, New York, 1994.
[3] Mclaughlin D.W., Overman E., Wiggins S., and Xiong C., Homoclinic orbits in a four dimensional model of a perturbed NLS equation, Dynamics Reported: Exposition in Dynamical Systems (New Series), 5(1996), 190-287.
[4] Kodama Y. and Hasegawa A., IEEE J. Quantum Electron, QE-23(1987), 510.
[5] Li Y., Mclaughlin D. W., Shatah J. and Wiggins S., Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation, Comm. Pure and Appl. Math., 49(1996), 11751255.
[6] Fenichel N., Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31(1979), 53-98.
[7] Sasa N. and Satsuma J., New type of soliton solution for higher-order nonlinear Schrödinger equation, J. Phys. Soc. Japan, 60(1991), 409-417.

