HYPERBOLIC-PARABOLIC CHEMOTAXIS SYSTEM WITH NONLINEAR PRODUCT TERMS*

Chen Hua and Wu Shaohua
(School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China)
(Email: chenhua@whu.edu.cn)
Dedicated to the 70th birthday of Professor Li Tatsien

(Received July. 25, 2007)

Abstract

We prove the local existence and uniqueness of week solution of the hyperbolic-parabolic Chemotaxis system with some nonlinear product terms. For one dimensional case, we prove also the global existence and uniqueness of the solution for the problem.

Key Words Hyperbolic-parabolic system; Chemotaxis; external signal.
2000 MR Subject Classification 35K50, 35M10, 35R25, 92C45.
Chinese Library Classification O175.29.

1. Introduction

Let $u(x, t)$ and $v(x, t)$ represent the population of an organism and an external signal at place $x \in \Omega \subset R^{N}$ and time t respectively, in general speaking, the external signal is produced by the individuals and decays, which is described by a nonlinear function $g(v, u)$. Under the spatial spread of the external signal is driven by diffusion, the full system for u and v reads (see [1-3])

$$
\begin{align*}
& u_{t}=\nabla(d \nabla u-\chi(v) \nabla v \cdot u), \tag{1}\\
& v_{t}=d \Delta v+g(v, u) . \tag{2}
\end{align*}
$$

In the case of that the external stimulus were based on the light (or the electromagnetic wave), H. Chen and S . Wu [4] studied following hyperbolic-parabolic type chemotaxis system:

$$
\begin{align*}
& u_{t}=\nabla(d \nabla u-\chi(v) \nabla v \cdot u), \tag{3}\\
& v_{t t}=d \Delta v+g(v, u), \tag{4}
\end{align*}
$$

*Research supported by NSFC (No.10631020).
where v represents the potential function of the external signal, for example, if the external signal is the electromagnetic field, then v would be voltage (in this case ∇v denotes the electromagnetic field).

The result of [4] gives the existence and uniqueness of the solution for the system (3)-(4) with Neumann boundary value condition on a smoothly bounded open domain Ω and $g(v, u)=-v+f(u)$. In this paper, we shall study the case for more general nonlinear term $g(v, u)$.

Throughout this article, we assume that we can choose a constant σ, satisfying

$$
\begin{align*}
& 1<\sigma<2 \tag{5}\\
& N<2 \sigma<N+2 \tag{6}\\
& \sigma-1 \geq \frac{N}{4} \tag{7}
\end{align*}
$$

where $1 \leq N \leq 3$ are space dimensions.
It is easy to check that there exists some constant σ such that the three conditions above can be simultaneously satisfied in the cases of $1 \leq N \leq 3$. In fact, we can choose $\sigma=\frac{5}{4}$ for $N=1, \sigma=\frac{13}{8}$ for $N=2$ and $\sigma=\frac{15}{8}$ for $N=3$.

Next, we define

$$
\begin{aligned}
& X_{t_{0}}=C\left(\left[0, t_{0}\right], H^{\sigma}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right\}\right) \\
& X_{\infty}=C\left([0,+\infty), H^{\sigma}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right\}\right) \\
& Y_{t_{0}}=C\left(\left[0, t_{0}\right], H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0 \text { on } \partial \Omega\right\}\right) \cap C^{1}\left(\left[0, t_{0}\right], H^{1}(\Omega)\right) \\
& Y_{\infty}=C\left([0,+\infty), H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0 \quad \text { on } \partial \Omega\right\}\right) \cap C^{1}\left([0,+\infty), H^{1}(\Omega)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
Z_{t_{0}}=C^{1}\left(\left[0, t_{0}\right], L^{2}(\Omega)\right), & \left.Z_{\infty}=C^{1}\left([0, \infty), L^{2}(\Omega)\right)\right) \\
W_{t_{0}} & =C^{2}\left(\left[0, t_{0}\right], L^{2}(\Omega)\right),
\end{aligned} W_{\infty}=C^{2}\left([0, \infty), L^{2}(\Omega)\right) .
$$

2. Local Existence and Uniqueness for $g(u, v)=\alpha u v$

In this section we consider following system in which the nonlinear function $g(u, v)$ is a product term:

$$
\left\{\begin{array}{l}
u_{t}=\nabla(\nabla u-\chi u \nabla v), \quad \text { in } \Omega \times(0, T), \tag{8}\\
v_{t t}=\Delta v+\alpha u v, \quad \text { in } \Omega \times(0, T) \\
\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0, \quad \text { on } \quad \partial \Omega \times(0, T), \\
u(0, \cdot)=u_{0}, \quad v(0, \cdot)=\varphi, \quad v_{t}(0, \cdot)=\psi, \quad \text { in } \Omega
\end{array}\right.
$$

where $\Omega \subset R^{N}$, a bounded open domain Ω with smooth boundary, α is a constant and χ is a nonnegative constant.

We have following result
Theorem 2.1 Under the conditions (5), (6) and (7), for each initial data $u_{0} \in$ $H^{\sigma}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}, \quad \varphi \in H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}$ and $\psi \in H^{1}(\Omega)$, the problem (8) has a unique local solution ($u, v) \in\left(X_{t_{0}} \cap Z_{t_{0}}\right) \times\left(Y_{t_{0}} \cap W_{t_{0}}\right)$.

Let us divide the system (8) into two parts,

$$
\left\{\begin{array}{l}
u_{t}=\nabla(\nabla u-\chi u \nabla v), \quad \text { in } \Omega \times(0, T), \tag{9}\\
\frac{\partial u}{\partial n}=0, \quad \text { on } \partial \Omega \times(0, T), \\
u(0, \cdot)=u_{0}, \quad \text { in } \Omega,
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
v_{t t}=\Delta v+\alpha u v, \quad \text { in } \Omega \times(0, T), \tag{10}\\
\frac{\partial v}{\partial n}=0, \quad \text { on } \quad \partial \Omega \times(0, T), \\
v(0, \cdot)=\varphi, \quad v_{t}(0, \cdot)=\psi, \quad \text { in } \Omega
\end{array}\right.
$$

For $v \in Y_{t_{0}}$ fixed, by using the proposition [5, p.273], we can deduce that for each $u_{0} \in H^{\sigma}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}$ and $v \in Y_{t_{0}}$, the problem (9) has a unique solution $u \in X_{t_{0}} \cap Z_{t_{0}}$ (also see the proof of [4, Lemma 3.2]).

Secondly we have
Lemma 2.2 Assume σ satisfies the conditions (5), (6) and (7), then for the solution $u \in X_{t_{0}} \cap Z_{t_{0}}$ of (9), there exists a constant C, which is independent of t_{0}, such that

$$
\begin{equation*}
\|u\|_{X_{t_{0}}} \leq C\left\|u_{0}\right\|_{H^{\sigma}}+C t_{0}^{1-\frac{\sigma}{2}}\|v\|_{Y_{t_{0}}} \cdot\|u\|_{X_{t_{0}}} . \tag{11}
\end{equation*}
$$

Proof See [4, Lemma 3.3].
Lemma 2.3 If $u \in X_{t_{0}}, v \in L^{2}\left(0, t_{0} ; W^{1,4}(\Omega)\right)$, then $u v \in L^{2}\left(0, t_{0} ; H^{1}(\Omega)\right)$ and

$$
\begin{equation*}
\|u v\|_{H^{1}} \leq c\left(\|u\|_{L^{4}} \cdot\|v\|_{W^{1,4}}+\|v\|_{L^{4}} \cdot\|u\|_{W^{1,4}}\right), \quad 0 \leq t \leq t_{0} \tag{12}
\end{equation*}
$$

for some positive constant c.
Proof Since $u \in X_{t_{0}}$, we have that $u(t, \cdot) \in H^{\sigma}(\Omega)$ for each $t\left(0 \leq t \leq t_{0}\right)$. By Sobolev imbedding theorem, we know that $H^{\sigma} \subset W^{1, \frac{2 N}{N-2(\sigma-1)}}$.

The condition (7) implies that $\frac{2 N}{N-2(\sigma-1)} \geq 4$, which means $u \in W^{1,4}$. By virtue of Cauchy inequality, we have

$$
\begin{equation*}
\|u v\|_{L^{2}} \leq\|u\|_{L^{4}} \cdot\|v\|_{L^{4}}, \quad 0 \leq t \leq t_{0} . \tag{13}
\end{equation*}
$$

Furthermore $\nabla(u v)=\nabla u \cdot v+u \cdot \nabla v$, which implies that

$$
\begin{equation*}
\|\nabla(u v)\|_{L^{2}} \leq\|\nabla u \cdot v\|_{L^{2}}+\|u \cdot \nabla v\|_{L^{2}}, \quad 0 \leq t \leq t_{0} . \tag{14}
\end{equation*}
$$

Thus we use Cauchy inequality to get

$$
\begin{array}{ll}
\|\nabla u \cdot v\|_{L^{2}} \leq\|\nabla u\|_{L^{4}} \cdot\|v\|_{L^{4}} & 0 \leq t \leq t_{0}, \\
\|\nabla v \cdot u\|_{L^{2}} \leq\|\nabla v\|_{L^{4}} \cdot\|u\|_{L^{4}} & 0 \leq t \leq t_{0} . \tag{16}
\end{array}
$$

Lemma 2.3 is proved.
Similar to [4, Lemma 3.1], we can deduce that
Lemma 2.4 For each $T>0$, assume

$$
\varphi \in H^{2}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0 \quad \text { on } \quad \partial \Omega\right\}, \quad \psi \in H^{1}(\Omega), \quad u \in X_{t_{0}}
$$

then the problem (10) has a unique solution $v \in Y_{t_{0}} \cap W_{t_{0}}$ and

$$
\begin{equation*}
\|v\|_{Y_{t_{0}}} \leq c e^{|\alpha| t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+t_{0}\|u\|_{X_{t_{0}}} \cdot\|v\|_{Y_{t_{0}}}\right) . \tag{17}
\end{equation*}
$$

Proof of Theorem 2.1 Let $g \in X_{t_{0}}, g(0)=u_{0}$ and $v=v(g)$ denotes the corresponding solution of following equation

$$
\left\{\begin{array}{l}
v_{t t}=\Delta v+\alpha g v, \tag{18}\\
\frac{\partial v}{\partial n}=0, \quad \text { on } \quad \partial \Omega \times(0, T), \\
v(0, \cdot)=\varphi, \quad v_{t}(0, \cdot)=\psi
\end{array}\right.
$$

By using Lemma 2.4, we know that the problem (18) has a unique local solution $v \in Y_{t_{0}}$, which satisfies

$$
\begin{equation*}
\|v\|_{Y_{t_{0}}} \leq c e^{|\alpha| t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}\right)+c t_{0} e^{|\alpha| t_{0}}\|g\|_{X_{t_{0}}} \cdot\|v\|_{Y_{t_{0}}} . \tag{19}
\end{equation*}
$$

For the solution v above, let $u=u(v(g))$ be the corresponding solution of

$$
\left\{\begin{array}{l}
u_{t}=\nabla(\nabla u-\chi u \nabla v), \tag{20}\\
\frac{\partial u}{\partial n}=0, \quad \text { on } \partial \Omega \times(0, T), \\
u(0, \cdot)=u_{0}=g(0)
\end{array}\right.
$$

The lemma 2.2 shows that the solution $u \in X_{t_{0}}$, thus we have obtained a mapping $G: X_{t_{0}} \rightarrow X_{t_{0}}$, defined by $G g=u(v(g))$, and the estimate (11) gives

$$
\begin{equation*}
\|G g\|_{X_{t_{0}}} \leq C\left\|u_{0}\right\|_{H^{\sigma}}+C t_{0}^{1-\frac{\sigma}{2}} \cdot\|v\|_{Y_{t_{0}}} \cdot\|G g\|_{X_{t_{0}}} \tag{21}
\end{equation*}
$$

Next, we choose a ball $B_{M}=\left\{g \in X_{t_{0}} \mid g(0)=u_{0},\|g(t, \cdot)\|_{H^{\sigma}} \leq M, 0 \leq t \leq t_{0}\right\}$, where $M=2 C\left\|u_{0}\right\|_{H^{\sigma}}$ and the constant $C(\geq 1)$ is given by (11).

For $g \in B_{M}$, we know that from the estimate (19)

$$
\begin{align*}
\|v\|_{Y_{t_{0}}} & \leq c e^{|\alpha| t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}\right)+c t_{0} e^{|\alpha| t_{0}}\|g\|_{X_{t_{0}}} \cdot\|v\|_{Y_{t_{0}}} \\
& \leq c e^{|\alpha| t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}\right)+c t_{0} e^{|\alpha| t_{0}} M \cdot\|v\|_{Y_{t_{0}}} . \tag{22}
\end{align*}
$$

Thus we choose $t_{0}>0$ small enough, then

$$
\begin{equation*}
\|v\|_{Y_{t_{0}}} \leq 2 c e^{|\alpha| t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}\right) . \tag{23}
\end{equation*}
$$

In view of (21) and (22), we obtain

$$
\|G g\|_{X_{t_{0}}} \leq C\left\|u_{0}\right\|_{H^{\sigma}}+C t_{0}^{1-\frac{\sigma}{2}} \cdot 2 c e^{|\alpha| t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}\right) \cdot\|G g\|_{X_{t_{0}}}
$$

Choosing t_{0} small enough, so that $2 c t_{0} \cdot e^{|\alpha| t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}\right) \leq \frac{1}{2}$, then $\|G g\|_{X_{t_{0}}} \leq$ $2 C\left\|u_{0}\right\|_{H^{\sigma}}=M$, which indicates that G maps B_{M} into B_{M} itself.

Next, we shall prove that G is contract mapping for sufficiently small t_{0}.
Let us consider that $g_{1}, g_{2} \in X_{t_{0}}$, and let $v_{i}(i=1,2)$ be the corresponding solutions of the problem (18). Thus the difference $G g_{1}-G g_{2}$ satisfies:

$$
\begin{aligned}
G g_{1}-G g_{2}= & u_{1}-u_{2} \\
= & -\chi \int_{0}^{t} T(t-s) u_{1} \Delta v_{1} \mathrm{~d} s-\chi \int_{0}^{t} T(t-s) \nabla u_{1} \nabla v_{1} \mathrm{~d} s \\
& +\chi \int_{0}^{t} T(t-s) u_{2} \nabla v_{2} \mathrm{~d} s+\chi \int_{0}^{t} T(t-s) \nabla u_{2} \nabla v_{2} \mathrm{~d} s \\
= & -\chi \int_{0}^{t} T(t-s)\left(u_{1} \Delta v_{1}-u_{2} \Delta v_{2}\right) \mathrm{d} s-\chi \int_{0}^{t} T(t-s)\left(\nabla u_{1} \nabla v_{1}-\nabla u_{2} \nabla v_{2}\right) \mathrm{d} s,
\end{aligned}
$$

where $T(t)=e^{t \Delta}$ is a mapping from $L^{2}(\Omega)$ to $H^{\sigma}(\Omega)$ with norm $c_{\sigma} t^{-\frac{\sigma}{2}}$. Thus we have

$$
\begin{aligned}
& \left\|\int_{0}^{t} T(t-s)\left(u_{1} \Delta v_{1}-u_{2} \Delta v_{2}\right) \mathrm{d} s\right\|_{H^{\sigma}} \\
& \quad \leq\left\|\int_{0}^{t} T(t-s) u_{1}\left(\Delta v_{1}-\Delta v_{2}\right) \mathrm{d} s\right\|_{H^{\sigma}}+\left\|\int_{0}^{t} T(t-s)\left(u_{1}-u_{2}\right) \Delta v_{2} \mathrm{~d} s\right\|_{H^{\sigma}},
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\int_{0}^{t} T(t-s) u_{1}\left(\Delta v_{1}-\Delta v_{2}\right) \mathrm{d} s\right\|_{H^{\sigma}} & \leq c t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|u_{1}\left(\Delta v_{1}-\Delta v_{2}\right)\right\|_{2} \\
& \leq c t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|u_{1}\right\|_{L^{\infty}} \cdot\left\|\Delta\left(v_{1}-v_{2}\right)\right\|_{2}
\end{aligned}
$$

where $\|\cdot\|_{p}$ as the norm of L^{p}, and $\sigma>\frac{N}{2}$, so

$$
\begin{aligned}
\left\|\int_{0}^{t} T(t-s) u_{1}\left(\Delta v_{1}-\Delta v_{2}\right) \mathrm{d} s\right\|_{H^{\sigma}} & \leq C t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|u_{1}\right\|_{H^{\sigma}} \cdot\left\|\Delta\left(v_{1}-v_{2}\right)\right\|_{2} \\
& \leq C M t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|v_{1}-v_{2}\right\|_{H^{2}} .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
\left\|\int_{0}^{t} T(t-s)\left(u_{1}-u_{2}\right) \Delta v_{2} \mathrm{~d} s\right\|_{H^{\sigma}} & \leq c t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|\left(u_{1}-u_{2}\right) \Delta v_{2}\right\|_{2} \\
& \leq c t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|v_{2}\right\|_{H^{2}} \cdot\left\|u_{1}-u_{2}\right\|_{L^{\infty}} \\
& \leq c t_{0}^{1-\frac{\sigma}{2}}\left\|v_{2}\right\|_{Y_{t_{0}}} \cdot\left\|u_{1}-u_{2}\right\|_{X_{t_{0}}},
\end{aligned}
$$

which means

$$
\begin{aligned}
& \left\|\int_{0}^{t} T(t-s)\left(u_{1} \Delta v_{1}-u_{2} \Delta v_{2}\right) \mathrm{d} s\right\|_{H^{\sigma}} \\
& \quad \leq C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}}+C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{2}\right\|_{Y_{t_{0}}} \cdot\left\|u_{1}-u_{2}\right\|_{X_{t_{0}}}, \quad 0 \leq t \leq t_{0}
\end{aligned}
$$

Secondly, we have

$$
\begin{aligned}
\left\|\int_{0}^{t} T(t-s)\left(\nabla u_{1} \nabla v_{1}-\nabla u_{2} \nabla v_{2}\right) \mathrm{d} s\right\|_{H^{\sigma}} \leq & \left\|\int_{0}^{t} T(t-s)\left(\nabla u_{1} \nabla v_{1}-\nabla u_{2} \nabla v_{1}\right) \mathrm{d} s\right\|_{H^{\sigma}} \\
& +\left\|\int_{0}^{t} T(t-s)\left(\nabla u_{2} \nabla v_{1}-\nabla u_{2} \nabla v_{2}\right) \mathrm{d} s\right\|_{H^{\sigma}} .
\end{aligned}
$$

Here

$$
\begin{aligned}
& \left\|\int_{0}^{t} T(t-s)\left(\nabla u_{1} \nabla v_{1}-\nabla u_{2} \nabla v_{1}\right) \mathrm{d} s\right\|_{H^{\sigma}} \\
& \quad \leq c t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|\nabla v_{1} \cdot \nabla\left(u_{1}-u_{2}\right)\right\|_{2}, \quad 0 \leq t \leq t_{0}
\end{aligned}
$$

By Sobolev imbedding theorem, $H^{1}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ for $N=1$, we have

$$
\begin{aligned}
\left\|\nabla f_{1} \nabla f_{2}\right\|_{2} & \leq\left\|\nabla f_{1}\right\|_{\infty} \cdot\left\|\nabla f_{2}\right\|_{2} \\
& \leq c\left\|f_{1}\right\|_{H^{2}} \cdot\left\|f_{2}\right\|_{H^{1}} \\
& \leq c\left\|f_{1}\right\|_{H^{2}} \cdot\left\|f_{2}\right\|_{H^{\sigma}}
\end{aligned}
$$

For $N=2,3$, we have $H^{1}(\Omega) \hookrightarrow L^{\frac{N}{\sigma-1}}(\Omega), H^{\sigma-1}(\Omega) \hookrightarrow L^{\frac{2 N}{N-2(\sigma-1)}}(\Omega)$, thus $f_{1}^{2} \in$ $L^{\frac{N}{2(\sigma-1)}}, f_{2}^{2} \in L^{\frac{N}{N-2(\sigma-1)}}$ if $f_{1} \in H^{1}$ and $f_{2} \in H^{\sigma-1}$. Hence Cauchy inequality yields

$$
\left\|f_{1}^{2} f_{2}^{2}\right\|_{1} \leq\left\|f_{1}^{2}\right\|_{\frac{N}{2(\sigma-1)}} \cdot\left\|f_{2}^{2}\right\|_{\frac{N}{N-2(\sigma-1)}}
$$

which implies $\left\|f_{1} f_{2}\right\|_{2} \leq\left\|f_{1}\right\|_{\frac{N}{\sigma-1}} \cdot\left\|f_{2}\right\|_{\frac{2 N}{N-2(\sigma-1)}}$. Thus

$$
\begin{aligned}
\left\|\nabla f_{1} \nabla f_{2}\right\|_{2} & \leq\left\|\nabla f_{1}\right\|_{\frac{N}{\sigma-1}} \cdot\left\|\nabla f_{2}\right\|_{\frac{2 N}{N-2(\sigma-1)}} \\
& \leq c\left\|\nabla f_{1}\right\|_{H^{1}} \cdot\left\|\nabla f_{2}\right\|_{\frac{2 N}{N-2(\sigma-1)}} \\
& \leq c\left\|f_{1}\right\|_{H^{2}} \cdot\left\|\nabla f_{2}\right\|_{H^{\sigma-1}} \leq c\left\|f_{1}\right\|_{H^{2}} \cdot\left\|f_{2}\right\|_{H^{\sigma}}
\end{aligned}
$$

Therefore, we obtain

$$
\left\|\int_{0}^{t} T(t-s)\left(\nabla u_{1} \nabla v_{1}-\nabla u_{2} \nabla v_{1}\right) \mathrm{d} s\right\|_{H^{\sigma}} \leq C t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}\right\|_{Y_{t_{0}}} \cdot\left\|u_{1}-u_{2}\right\|_{X_{t_{0}}}, 0 \leq t \leq t_{0} .
$$

Similarly

$$
\begin{aligned}
\left\|\int_{0}^{t} T(t-s)\left(\nabla u_{2} \nabla v_{1}-\nabla u_{2} \nabla v_{2}\right) \mathrm{d} s\right\|_{H^{\sigma}} & \leq c t_{0}^{1-\frac{\sigma}{2}} \sup _{0 \leq t \leq t_{0}}\left\|\nabla u_{2} \cdot \nabla\left(v_{1}-v_{2}\right)\right\|_{2} \\
& \leq c t_{0}^{1-\frac{\sigma}{2}}\left\|u_{2}\right\|_{X_{t_{0}}} \cdot\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}} \\
& \leq c M t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}}, \quad 0 \leq t \leq t_{0}
\end{aligned}
$$

Hence we have deduced that

$$
\begin{align*}
\left\|G g_{1}-G g_{2}\right\|_{X_{t_{0}}} & =\left\|u_{1}-u_{2}\right\|_{X_{t_{0}}} \\
& \leq 2 c t_{0}^{1-\frac{\sigma}{2}}\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}}+c t_{0}^{1-\frac{\sigma}{2}}\left(\left\|v_{2}\right\|_{Y_{t_{0}}}+\left\|v_{1}\right\|_{Y_{t_{0}}}\right) \cdot\left\|G g_{1}-G g_{2}\right\|_{X_{t_{0}}} . \tag{24}
\end{align*}
$$

Next, the difference $v_{1}-v_{2}$ satisfies

$$
\left\{\begin{aligned}
&\left(v_{1}-v_{2}\right)_{t t}=\Delta\left(v_{1}-v_{2}\right)+\alpha\left(g_{1} v_{1}-g_{2} v_{2}\right) \\
&=\Delta\left(v_{1}-v_{2}\right)+\alpha v_{1}\left(g_{1}-g_{2}\right)+\alpha g_{2}\left(v_{1}-v_{2}\right) \\
& \\
& \frac{\partial v_{1}}{\partial n}=\frac{\partial v_{2}}{\partial n}=0, \quad \text { on } \quad \partial \Omega \times(0, T) \\
&\left(v_{1}-v_{2}\right)(0, \cdot)=0, \quad\left(v_{1}-v_{2}\right)_{t}(0, \cdot)=0
\end{aligned}\right.
$$

Applying Lemma 2.3 and Lemma 2.4, we have

$$
\begin{aligned}
\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}} \leq & c e^{|\alpha| t_{0}}\left(\int_{0}^{t_{0}}\left\|\alpha v_{1}\left(g_{1}-g_{2}\right)+\alpha g_{2}\left(v_{1}-v_{2}\right)\right\|_{H^{1}} \mathrm{~d} \tau\right) \\
\leq & c|\alpha| e^{|\alpha| t_{0}} \cdot t_{0} \cdot \sup _{0 \leq \tau \leq t_{0}}\left\|v_{1}\left(g_{1}-g_{2}\right)+g_{2}\left(v_{1}-v_{2}\right)\right\|_{H^{1}} \\
\leq & c|\alpha| e^{|\alpha| t_{0}} \cdot t_{0} \cdot \sup _{0 \leq \tau \leq t_{0}}\left\|v_{1}\left(g_{1}-g_{2}\right)\right\|_{H^{1}} \\
& +c|\alpha| e^{|\alpha| t_{0}} \cdot t_{0} \cdot \sup _{0 \leq \tau \leq t_{0}}\left\|g_{2}\left(v_{1}-v_{2}\right)\right\|_{H^{1}} \\
\leq & c|\alpha| e^{|\alpha| t_{0}} \cdot t_{0} \cdot \sup _{0 \leq \tau \leq t_{0}}\left(\left\|v_{1}\right\|_{H^{2}} \cdot\left\|g_{1}-g_{2}\right\|_{H^{\sigma}}\right) \\
& +c|\alpha| e^{|\alpha| t_{0}} \cdot t_{0} \cdot \sup _{0 \leq \tau \leq t_{0}}\left(\left\|g_{2}\right\|_{H^{\sigma}} \cdot\left\|v_{1}-v_{2}\right\|_{H^{2}}\right) \\
\leq & c|\alpha| e^{|\alpha| t_{0}} \cdot t_{0} \cdot\left\|v_{1}\right\|_{Y_{t_{0}}} \cdot\left\|g_{1}-g_{2}\right\|_{X_{t_{0}}} \\
& +c|\alpha| e^{|\alpha| t_{0}} \cdot t_{0} \cdot\left\|g_{2}\right\|_{X_{t_{0}}} \cdot\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}}
\end{aligned}
$$

Thus we choose t_{0} small enough to get

$$
\begin{equation*}
\left\|v_{1}-v_{2}\right\|_{Y_{t_{0}}} \leq 2 c|\alpha| t_{0} e^{|\alpha| t_{0}} \cdot\left\|v_{1}\right\|_{Y_{t_{0}}} \cdot\left\|g_{1}-g_{2}\right\|_{X_{t_{0}}} \tag{25}
\end{equation*}
$$

For t_{0} small enough, we use the estimate (23) directly to get

$$
\begin{equation*}
\left\|v_{i}\right\|_{Y_{t_{0}}} \leq c_{1} e^{|\alpha| t_{0}} \cdot\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}\right), \quad i=1,2 \tag{26}
\end{equation*}
$$

Since $1-\frac{\sigma}{2}>0$, thus combining the estimates (24), (25) and (26) and choosing t_{0} small enough, we can deduce that the mapping G is contract. So it follows that the problem (8) has a unique local solution $(u, v) \in\left(X_{t_{0}} \cap Z_{t_{0}}\right) \times\left(Y_{t_{0}} \cap W_{t_{0}}\right)$, Theorem 2.1 is proved.

3. Local and Global Existence and Uniqueness

$$
\text { for } g(u, v)=h\left(v^{2}\right) v+f(u)
$$

Consider the following system

$$
\left\{\begin{array}{l}
u_{t}=\nabla(\nabla u-\chi u \nabla v), \quad \text { in } \quad \Omega \times(0, T), \tag{27}\\
v_{t t}=\Delta v+h\left(v^{2}\right) v+f(u), \quad \text { in } \Omega \times(0, T), \\
\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0, \quad \text { on } \quad \partial \Omega \times(0, T), \\
u(0, \cdot)=u_{0}, \quad v(0, \cdot)=\varphi, \quad v_{t}(0, \cdot)=\psi, \quad \text { in } \Omega
\end{array}\right.
$$

where $\Omega \subset R^{N}(1 \leq N \leq 3)$ is a bounded open domain with smooth boundary, and the functions $h(x), f(x) \in C^{2}(R)$ satisfying following conditions (cf. [6]):
(a) For $N=1, h$ is bounded on bounded sets and $h^{\prime}(w) w$ is bounded on bounded sets of R^{+}.
(b) For $N=2,|h(w)| \leq c\left(w^{k}+1\right)$ and $\left|h^{\prime}(w) w\right| \leq c\left(w^{k}+1\right)$, for $k \geq 0$.
(c) For $N=3,|h(w)| \leq c\left(w^{k}+1\right)$, and $\left|h^{\prime}(w) w\right| \leq c\left(w^{k}+1\right)$, for $0 \leq k \leq 1$.

Theorem 3.1 Under the conditions (a), (b) and (c), if σ satisfies the conditions (5), (6) and (7), then for each initial data $u_{0} \in H^{\sigma}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}, \varphi \in$ $H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}$ and $\psi \in H^{1}(\Omega)$, the problem (27) has a unique local solution $(u, v) \in\left(X_{t_{0}} \cap Z_{t_{0}}\right) \times\left(Y_{t_{0}} \cap W_{t_{0}}\right)$. In the case of $N=1, \sigma=\frac{5}{4}$ and $u_{0} \geq 0$, then the onedimensional problem (27) has a unique global solution $(u, v) \in\left(X_{\infty} \cap Z_{\infty}\right) \times\left(Y_{\infty} \cap W_{\infty}\right)$.

The result of Theorem 3.1 has following obviously extension:
Corollary 3.2 For a positive integer m, if $u_{0} \in H^{\sigma+m}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}$, $\varphi \in H^{2+m}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0\right.$ on $\left.\partial \Omega\right\}, \psi \in H^{1+m}(\Omega)$ and $f \in C^{2+m}(\mathbf{R})$ (or $f \in C_{0}^{2+m}(\mathbf{R})$ in the case of $N=1$ and $\sigma=\frac{5}{4}$), then the solution (u, v) of (27) also belongs to $X_{t_{0}}^{m} \times Y_{t_{0}}^{m}\left(\right.$ or $X_{\infty}^{m} \times Y_{\infty}^{m}$ in the case of $N=1$ and $\sigma=\frac{5}{4}$). Where

$$
\begin{aligned}
& X_{t_{0}}^{m}=C\left(\left[0, t_{0}\right], H^{\sigma+m}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right\}\right), \\
& X_{\infty}^{m}=C\left([0,+\infty), H^{\sigma+m}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right\}\right), \\
& Y_{t_{0}}^{m}=C\left(\left[0, t_{0}\right], H^{2+m}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0 \text { on } \partial \Omega\right\}\right) \cap C^{1}\left(\left[0, t_{0}\right], H^{1+m}(\Omega)\right), \\
& Y_{\infty}^{m}=C\left([0,+\infty), H^{2+m}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0 \text { on } \partial \Omega\right\}\right) \cap C^{1}\left([0,+\infty), H^{1+m}(\Omega)\right) .
\end{aligned}
$$

In order to prove Theorem 3.1, we divide the system (27) into two parts,

$$
\left\{\begin{array}{l}
u_{t}=\nabla(\nabla u-\chi u \nabla v), \quad \text { in } \Omega \times(0, T), \tag{28}\\
\frac{\partial u}{\partial n}=0, \quad \text { on } \partial \Omega \times(0, T), \\
u(0, \cdot)=u_{0}, \quad \text { in } \Omega,
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
v_{t t}=\Delta v+h\left(v^{2}\right) v+f(u), \quad \text { in } \Omega \times(0, T), \tag{29}\\
\frac{\partial v}{\partial n}=0, \quad \text { on } \quad \partial \Omega \times(0, T), \\
v(0, \cdot)=\varphi, \quad v_{t}(0, \cdot)=\psi, \quad \text { in } \Omega .
\end{array}\right.
$$

We have
Lemma 3.3 For each $T>0$, suppose

$$
\varphi \in H^{2}(\Omega) \cap\left\{\frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega\right\}, \quad \psi \in H^{1}(\Omega), \quad f(u) \in C\left([0, T] ; H^{1}(\Omega)\right),
$$

then (29) has a unique solution $v \in Y_{T} \cap W_{T}$ and satisfies

$$
\begin{aligned}
& v \in C\left([0, T] ; H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0 \quad \text { on } \partial \Omega\right\}\right), \\
& v_{t} \in C\left([0, T] ; H^{1}(\Omega)\right), \quad v_{t t} \in C\left([0, T] ; L^{2}(\Omega)\right),
\end{aligned}
$$

and

$$
\begin{align*}
& \|v(t, \cdot)\|_{H^{2}(\Omega)}+\left\|v_{t}(t, \cdot)\right\|_{H^{1}(\Omega)} \\
& \quad \leq e^{c T}\left(\|\varphi\|_{H^{2}(\Omega)}+\|\psi\|_{H^{1}(\Omega)}+\int_{0}^{T}\|f(u(\tau, \cdot))\|_{H^{1}(\Omega)} \mathrm{d} \tau\right), \quad \forall t \in[0, T], \tag{30}
\end{align*}
$$

where $C>0$ is a constant which is independent of T.
Proof Set $v_{t}=w$, we introduce following system

$$
\left\{\begin{array}{l}
v_{t}=w, \tag{31}\\
w_{t}=\triangle v+h\left(v^{2}\right) v+f(u),
\end{array}\right.
$$

then we obtain a abstract form, for $U=(v, w)$:

$$
\begin{equation*}
U_{t}=L U+F(U) \text { in } X=H^{1}(\Omega) \times L^{2}(\Omega), \tag{32}
\end{equation*}
$$

where $D(L)=H^{2}(\Omega) \cap\left\{\frac{\partial v}{\partial n}=0\right.$ on $\left.\partial \Omega\right\} \times H^{1}(\Omega)$ and $L(v, w)=(w, \Delta v-v)$ for $(v, w) \in D(L), F(v, w)=\left(0,\left(h\left(v^{2}\right)+1\right) v+f(u)\right)$.

We know that L is a generator of a unitary group. If we can prove that $F(U)$: $X \rightarrow X$, and $F(U)$ is locally Lipschitz from X to X, then we can obtain the existence of solution of (29).

Firstly we prove that

$$
F(U): X \rightarrow X
$$

For $N=1$ and $v \in H^{1}(\Omega) \hookrightarrow L^{\infty}(\Omega)$, the condition (a) gives $h\left(v^{2}\right) v \in L^{2}(\Omega)$, so $F(v, w) \in X$. If $N=2$, then for each $p>0, v \in H^{1}(\Omega) \hookrightarrow L^{p}(\Omega)$, so we can also deduce that $h\left(v^{2}\right) v \in L^{2}(\Omega)$ by using the condition (b) and Cauchy inequality, which implies $F(v, w) \in X$. If $N=3$, then $v \in H^{1}(\Omega) \hookrightarrow L^{\frac{2 N}{N-2}}(\Omega)\left(\frac{2 N}{N-2}=6\right)$, similarly we have, from Cauchy inequality, that

$$
\left\|h\left(v^{2}\right) v\right\|_{2} \leq\left\|h\left(v^{2}\right)\right\|_{N} \cdot\|v\|_{\frac{2 N}{N-2}},
$$

thus the condition (c) implies that $h\left(v^{2}\right) v \in L^{2}(\Omega)$ and $F(v, w) \in X$.
Secondly, we prove that $F(U)$ is locally Lipschitz from X to X. Since

$$
\begin{aligned}
F\left(U_{1}\right)-F\left(U_{2}\right) & =F\left(v_{1}, w_{1}\right)-F\left(v_{2}, w_{2}\right) \\
& =\left(0, h\left(v_{1}^{2}\right) v_{1}-h\left(v_{2}^{2}\right) v_{2}+v_{1}-v_{2}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|F\left(U_{1}\right)-F\left(U_{2}\right)\right\|_{X} & =\left\|h\left(v_{1}^{2}\right) v_{1}-h\left(v_{2}^{2}\right) v_{2}+v_{1}-v_{2}\right\|_{L^{2}} \\
& \leq\left\|h\left(v_{1}^{2}\right) v_{1}-h\left(v_{2}^{2}\right) v_{2}\right\|_{L^{2}}+\left\|v_{1}-v_{2}\right\|_{L^{2}} .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\left\|h\left(v_{1}^{2}\right) v_{1}-h\left(v_{2}^{2}\right) v_{2}\right\|_{L^{2}} & =\left\|\int_{v_{2}}^{v_{1}}\left(h\left(\xi^{2}\right)+2 \xi^{2} h^{\prime}\left(\xi^{2}\right)\right) \mathrm{d} \xi\right\|_{L^{2}} \\
& \left.\leq\left\|\int_{v_{2}}^{v_{1}} h\left(\xi^{2}\right) \mathrm{d} \xi\right\|_{L^{2}}+\| \int_{v_{2}}^{v_{1}} 2 \xi^{2} h^{\prime}\left(\xi^{2}\right)\right) \mathrm{d} \xi \|_{L^{2}} .
\end{aligned}
$$

Similar to the process above, we have that

$$
\left\|F\left(U_{1}\right)-F\left(U_{2}\right)\right\|_{X} \leq C\left\|v_{1}-v_{2}\right\|_{H^{1}} \leq C\left\|U_{1}-U_{2}\right\|_{X}
$$

thus F is locally Lipschitz function, which implies the existence of the solution of (29).
Now we prove the estimate (30), which implies the uniqueness of the solution. From the equation (32), we have

$$
\begin{align*}
\|U(t)\|_{H^{2} \times H^{1}} \leq & \left\|T(t) U_{0}\right\|_{H^{2} \times H^{1}}+\int_{0}^{t}\|T(t-s) F(U(s))\|_{H^{2} \times H^{1}} \mathrm{~d} s \\
\leq & \left\|U_{0}\right\|_{H^{2} \times H^{1}}+\int_{0}^{t}\|F(U)\|_{H^{2} \times H^{1}} \mathrm{~d} s \\
= & \|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{t}\left\|\left(h\left(v^{2}\right)+1\right) v+f(u)\right\|_{H^{1}} \mathrm{~d} s \\
\leq & \|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{t}\left\|\left(h\left(v^{2}\right)+1\right) v\right\|_{H^{1}} \mathrm{~d} s \\
& +\int_{0}^{t}\|f(u)\|_{H^{1}} \mathrm{~d} s, \quad 0 \leq t \leq T, \tag{33}
\end{align*}
$$

where $T(t)=e^{t L}$. From the conditions (a), (b) and (c), we know that $\left\|h\left(v^{2}\right) v\right\|_{H^{1}} \leq$ $C\|v\|_{H^{2}}$, so

$$
\begin{aligned}
& \|U(t)\|_{H^{2} \times H^{1}} \\
& \quad \leq\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+c \int_{0}^{t}\|v\|_{H^{2}} \mathrm{~d} s+\int_{0}^{T}\|f(u)\|_{H^{1}} \mathrm{~d} s \\
& \quad \leq\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+c \int_{0}^{t}\|U(s)\|_{H^{2} \times H^{1}} \mathrm{~d} s+\int_{0}^{T}\|f(u)\|_{H^{1}} \mathrm{~d} s, \quad 0 \leq t \leq T
\end{aligned}
$$

By using the Gronwall inequality, we have that

$$
\begin{align*}
\|U\|_{H^{2} \times H^{1}} & \leq e^{c t}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{T}\|f(u)\|_{H^{1}} \mathrm{~d} s\right) \\
& \leq e^{c T}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{T}\|f(u)\|_{H^{1}} \mathrm{~d} s\right), \quad 0 \leq t \leq T \tag{34}
\end{align*}
$$

which is the estimate (30).
The proof of Theorem 3.1 Consider $g \in X_{t_{0}}, g(0)=u_{0}$ and let $v=v(g)$ denote the corresponding solution of following equation

$$
\left\{\begin{array}{l}
v_{t t}=\Delta v+h\left(v^{2}\right) v+f(g), \quad \text { in } \Omega \times(0, T), \tag{35}\\
\frac{\partial v}{\partial n}=0, \quad \text { on } \quad \partial \Omega \times(0, T), \\
v(0, \cdot)=\varphi, \quad v_{t}(0, \cdot)=\psi, \quad \text { in } \Omega
\end{array}\right.
$$

In terms of Lemma 3.3, we can solve the problem (35) to get the solution $v \in Y_{t_{0}}$ and

$$
\begin{equation*}
\|v\|_{Y_{t_{0}}} \leq e^{c t_{0}}\left(\|\varphi\|_{H^{2}(\Omega)}+\|\psi\|_{H^{1}(\Omega)}+\int_{0}^{t_{0}}\|f(g(\tau, \cdot))\|_{H^{1}(\Omega)} \mathrm{d} \tau\right) . \tag{36}
\end{equation*}
$$

For above v, we define $u=u(v(g))$ to be the corresponding solution of

$$
\left\{\begin{array}{l}
u_{t}=\nabla(\nabla u-\chi u \nabla v), \quad \text { in } \Omega \times(0, T), \tag{37}\\
\frac{\partial v}{\partial n}=0, \quad \text { on } \quad \partial \Omega \times(0, T) \\
u(0, \cdot)=u_{0}=g(0), \quad \text { in } \Omega
\end{array}\right.
$$

Thus from Lemma 2.2, we know the solution $u \in X_{t_{0}}$, which implies that we have a mapping $G: X_{t_{0}} \rightarrow X_{t_{0}}$, as defined by $G g=u(v(g))$. Let $B_{M}=\left\{g \in X_{t_{0}} \mid g(0)=u_{0}\right.$, $\left.\|g(t, \cdot)\|_{H^{\sigma}} \leq M, 0 \leq t \leq t_{0}\right\}$, where $M=2 C\left\|u_{0}\right\|_{H^{\sigma}}$ and the constant $C \geq 1$ is given by (11), then from the estimates (11) and (36), we have

$$
\begin{align*}
\|G g\|_{X_{t_{0}}} \leq & C\left\|u_{0}\right\|_{H^{\sigma}}+C t_{0}^{1-\frac{\sigma}{2}}\|v\|_{Y_{t_{0}}} \cdot\|G g\|_{X_{t_{0}}} \\
\leq & C\left\|u_{0}\right\|_{H^{\sigma}}+C t_{0}^{1-\frac{\sigma}{2}} e^{c t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}\right. \\
& \left.+\int_{0}^{t_{0}}\|f(g(\tau, \cdot))\|_{H^{1}} \mathrm{~d} \tau\right) \cdot\|G g\|_{X_{t_{0}}} . \tag{38}
\end{align*}
$$

If $g \in B_{M},\|g\|_{H^{1}} \leq\|g\|_{H^{\sigma}} \leq M$, and $f \in C^{2}(\mathbf{R})$, we can deduce that

$$
\|f(g(\tau, \cdot))\|_{H^{1}} \leq\|f\|_{C^{2}[-M, M]} \cdot M+\|f(0)\|_{L^{2}}
$$

thus the estimate (38) gives that $\|G g\|_{X_{t_{0}}} \leq 2 C\left\|u_{0}\right\|_{H^{\sigma}}$ if $t_{0}>0$ is small enough. Hence we have proved that, for $t_{0}>0$ small enough, G maps B_{M} into B_{M} itself. It is similar to the proof of Theorem 2.1, we can prove that, if t_{0} is small enough, the mapping G is a contract mapping, that means the problem (27) has a unique local solution $(u, v) \in\left(X_{t_{0}} \cap Z_{t_{0}}\right) \times\left(Y_{t_{0}} \cap W_{t_{0}}\right)$.

Next, similar to the estimate (30), we can prove that, for $s \leq 2$, the solution (u, v) will satisfy

$$
\begin{equation*}
\|v(t, \cdot)\|_{H^{s}} \leq e^{c t_{0}}\left(c_{0}+\int_{0}^{t_{0}}\|f(u(\tau, \cdot))\|_{H^{s-1}} \mathrm{~d} \tau\right), \quad 0 \leq t \leq t_{0} \tag{39}
\end{equation*}
$$

where $c_{0}=\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}$ and c is independent of t_{0}. In fact, from the equation (32) we know that $U=(v, w)$ and $\left.F(U)=\left(0, h\left(v^{2}\right)+1\right) v+f(u)\right)$. Then for $s>1$ we have $H^{s} \times H^{s-1} \subset H^{1} \times L^{2}$. If we denote $\left.T(t)\right|_{H^{s} \times H^{s-1}}$ as the restriction of $T(t)=e^{t L}$ on $H^{s} \times H^{s-1}$, thus, by similar process of (33) and (34), we can deduce that

$$
\begin{equation*}
\|U(t)\|_{H^{s} \times H^{s-1}} \leq e^{c t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{t_{0}}\|f(u)\|_{H^{s-1}} \mathrm{~d} \tau\right), \quad 0 \leq t \leq t_{0} \tag{40}
\end{equation*}
$$

If $s<1$, then $H^{1} \times L^{2} \subset H^{s} \times H^{s-1}$, we use Hahn-Banach theorem to get the operator $T(t)$ can be continuously extended on $H^{s} \times H^{s-1}$ and the norm of $T(t)$ is invariable. Thus for $s<1$, we have also that

$$
\begin{equation*}
\|U(t)\|_{H^{s} \times H^{s-1}} \leq e^{c t_{0}}\left(\|\varphi\|_{H^{2}}+\|\psi\|_{H^{1}}+\int_{0}^{t_{0}}\|f(u)\|_{H^{s-1}} \mathrm{~d} \tau\right), \quad 0 \leq t \leq t_{0} \tag{41}
\end{equation*}
$$

The estimate (39) can be deduced directly by (40) and (41).
In the case of $N=1$, we know the problem (27) has a unique local solution $(u, v) \in$ $\left(X_{t_{0}} \times Y_{t_{0}}\right) \cap\left(Z_{t_{0}} \times W_{t_{0}}\right)$. If we take $\mathrm{s}=1 / 2$ in (39), then

$$
\begin{equation*}
\|v(t, \cdot)\|_{H^{\frac{1}{2}}}^{2} \leq c e^{2 c t_{0}}\left(c_{0}+\int_{0}^{t_{0}}\|f(u(\tau, \cdot))\|_{H^{-\frac{1}{2}}}^{2} \mathrm{~d} \tau\right), \quad 0 \leq t \leq t_{0} \tag{42}
\end{equation*}
$$

Since $u_{0} \geq 0$ and from the first equation of (27), we can deduce that $\|u(t, \cdot)\|_{L^{1}}=$ $\left\|u_{0}\right\|_{L^{1}}$, also Sobolev imbedding theorem implies that $W^{0,1}(\Omega) \hookrightarrow H^{-\frac{1}{2}}(\Omega)$, hence we have

$$
\begin{align*}
\|v(t, \cdot)\|_{H^{\frac{1}{2}}}^{2} & \leq c e^{2 c t_{0}}\left(c_{0}+\int_{0}^{t_{0}}\|f(u(\tau, \cdot))\|_{H^{-\frac{1}{2}}}^{2} \mathrm{~d} \tau\right) \\
& \leq c e^{2 c t_{0}}\left(c_{0}+\int_{0}^{t_{0}}\|f(u(\tau, \cdot))\|_{L^{1}}^{2} \mathrm{~d} \tau\right) \\
& \leq c e^{2 c t_{0}}\left(c_{0}+\int_{0}^{t_{0}}\left(M_{1}\|u\|_{L^{1}}+\|f(0)\|_{L^{1}}\right)^{2} \mathrm{~d} \tau\right) \\
& =c e^{2 c t_{0}}\left(c_{0}+t_{0}\left(M_{1}\left\|u_{0}\right\|_{L^{1}}+\|f(0)\|_{L^{1}}\right)^{2}\right), \quad 0 \leq t \leq t_{0} \tag{43}
\end{align*}
$$

where $M_{1}=\|f\|_{C^{2}}$.
On the other hand, for each $s \leq \sigma$ and $0 \leq \sigma_{0}<2$,

$$
\begin{align*}
\|u(t, \cdot)\|_{H^{s}} & \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{1-\frac{\sigma_{0}}{2}} \sup _{0 \leq t \leq t_{0}}\|\nabla(u \nabla v)\|_{H^{s-\sigma_{0}}} \\
& \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{1-\frac{\sigma_{0}}{2}} \sup _{0 \leq t \leq t_{0}}\|u \nabla v\|_{H^{s-\sigma_{0}+1}}, \quad 0 \leq t \leq t_{0} . \tag{44}
\end{align*}
$$

Especially for $s=-\frac{1}{2}+\frac{1}{4}$ and $\sigma_{0}=2-\frac{1}{8}$, we have

$$
\begin{equation*}
\|u(t, \cdot)\|_{H^{-\frac{1}{2}+\frac{1}{4}}} \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}} \sup _{0 \leq t \leq t_{0}}\|u \nabla v\|_{H^{-1-\frac{1}{8}}}, \quad 0 \leq t \leq t_{0} . \tag{45}
\end{equation*}
$$

By Sobolev imbedding theorem and (43),

$$
\begin{align*}
\|u \nabla v\|_{H^{-1-\frac{1}{8}}} & \leq c\|u\|_{H^{-1-\frac{1}{8}}} \cdot\|\nabla v\|_{W^{-1-\frac{1}{8}, \infty}} \\
& \leq c\|u\|_{H^{-1}} \cdot\|\nabla v\|_{H^{-\frac{1}{2}}} \\
& \leq c\|u\|_{L^{1}} \cdot\|v\|_{H^{\frac{1}{2}}} \\
& \leq c\left\|u_{0}\right\|_{L^{1}} \cdot e^{c t_{0}}\left(c_{0}^{\frac{1}{2}}+t_{0}^{\frac{1}{2}}\left(M_{1}\left\|u_{0}\right\|_{L^{1}}+\|f(0)\|_{L^{1}}\right)\right), \quad 0 \leq t \leq t_{0} . \tag{46}
\end{align*}
$$

Thus from (45) we have

$$
\begin{align*}
\|u(t, \cdot)\|_{H^{-\frac{1}{4}}} & \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}} \sup _{0 \leq t \leq t_{0}}\|u \nabla v\|_{H^{-1-\frac{1}{8}}} \\
& \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}}\left\|u_{0}\right\|_{L^{1}} \cdot e^{c t_{0}}\left(c_{0}^{\frac{1}{2}}+t_{0}^{\frac{1}{2}}\left(M_{1}\left\|u_{0}\right\|_{L^{1}}+\|f(0)\|_{L^{1}}\right)\right) . \tag{47}
\end{align*}
$$

Take $s=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$ in (39), then from (47) we have

$$
\begin{align*}
\|v(t, \cdot)\|_{H^{\frac{3}{4}}}^{2} \leq & c e^{2 c t_{0}}\left(c_{0}+\int_{0}^{t_{0}}\|f(u(\tau, \cdot))\|_{H^{\frac{3}{4}-1}}^{2} \mathrm{~d} \tau\right) \\
\leq & c e^{2 c t_{0}}\left(c_{0}+t_{0}\left(M_{1} \sup _{0 \leq \tau \leq t_{0}}\|u(\tau, \cdot)\|_{H^{-\frac{1}{4}}}+\|f(0)\|_{H^{-\frac{1}{4}}}\right)^{2}\right) \\
\leq & c e^{2 c t_{0}}\left\{c_{0}+t_{0}\left[M _ { 1 } \left[c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}}\left\|u_{0}\right\|_{L^{1}} \cdot e^{c t_{0}}\left(c_{0}^{\frac{1}{2}}\right.\right.\right.\right. \\
& \left.\left.\left.\left.\quad+t_{0}^{\frac{1}{2}}\left(M_{1}\left\|u_{0}\right\|_{L^{1}}+\|f(0)\|_{L^{1}}\right)\right)\right]+\|f(0)\|_{H^{-\frac{1}{4}}}\right]^{2}\right\}, \quad 0 \leq t \leq t_{0} . \tag{48}
\end{align*}
$$

Take $s=-\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=0$ and $\sigma_{0}=2-\frac{1}{8}$ in (44) again, we obtain

$$
\begin{align*}
\|u(t, \cdot)\|_{L^{2}} & \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{1-\frac{\sigma_{0}}{2}} \sup _{0 \leq t \leq t_{0}}\|\nabla(u \nabla v)\|_{H^{-\sigma_{0}}} \\
& \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}} \sup _{0 \leq t \leq t_{0}}\|u \nabla v\|_{H^{-\sigma_{0}+1}} \\
& \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}} \sup _{0 \leq t \leq t_{0}}\|u \nabla v\|_{H^{-1+\frac{1}{8}}}, \quad 0 \leq t \leq t_{0} . \tag{49}
\end{align*}
$$

Here

$$
\begin{align*}
\|u \nabla v\|_{H^{-1+\frac{1}{8}}} & \leq c\|u\|_{H^{-1+\frac{1}{8}}} \cdot\|\nabla v\|_{W^{-1+\frac{1}{8}, \infty}} \\
& \leq c\|u\|_{H^{-\frac{1}{4}}} \cdot\|\nabla v\|_{H^{-\frac{1}{2}+\frac{1}{4}}} \\
& \leq c\|u\|_{H^{-\frac{1}{4}}} \cdot\|v\|_{H^{\frac{3}{4}}}, \quad 0 \leq t \leq t_{0}, \tag{50}
\end{align*}
$$

which implies, from the estimate (49), that

$$
\begin{align*}
\|u(t, \cdot)\|_{L^{2}} & \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{1-\frac{\sigma_{0}}{2}} \sup _{0 \leq t \leq t_{0}}\|\nabla(u \nabla v)\|_{H^{-\sigma_{0}}} \\
& \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}} \sup _{0 \leq t \leq t_{0}}\|u \nabla v\|_{H^{-1+\frac{1}{8}}} \\
& \leq c\left\|u_{0}\right\|_{H^{\sigma}}+c t_{0}^{\frac{1}{16}} \sup _{0 \leq t \leq t_{0}}\|u\|_{H^{-\frac{1}{4}}} \cdot\|v\|_{H^{\frac{3}{4}}}, \quad 0 \leq t \leq t_{0} . \tag{51}
\end{align*}
$$

From the estimates (47) and (48) above, we have obtained that $\|u(t, \cdot)\|_{L^{2}}$ grows by a bounded manner in time.

Again we take $s=\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1$ in (39), then the estimates (39) and (51) imply that $\|v(t, \cdot)\|_{H^{1}}$ grows also by a bounded manner in time.

Taking $s=-\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{1}{4}$ and $\sigma_{0}=2-\frac{1}{8}$ in (44) once more, since $\|v(t, \cdot)\|_{H^{1}}$ grows by a bounded manner in time, similar to which we have done in (49), (50) and (51), we can deduce that $\|u(t, \cdot)\|_{H^{\frac{1}{4}}}$ grows by a bounded manner in time.

Let us repeat processes above four times, we can prove that $\|u(t, \cdot)\|_{H^{\frac{5}{4}}}\left(\sigma=\frac{5}{4}\right)$ and $\|v(t, \cdot)\|_{H^{2}}$ grow by a bounded manner in time, that means the solution of (27) is global.

References

[1] Keller E. Mathematical aspects of bacterial chemotaxis[J]. Antibiotics and Chemotherapy, 1974, 19: 79-93.
[2] Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability[J]. J Theor Biol, 1970, 26: 399-415.
[3] Keller E F, Segel L A. Travelling bands of chemotactic bacteria: A theoretical analysis[J]. J Theor Biol, 1971, 30: 235-248.
[4] Chen Hua, Wu Shaohua. On existence of solutions for some hyperbolic-parabolic type chemotaxis systems[J]. IMA J Appl Math, 2007, 72: 1-17.
[5] Taylor M E. Partial Differential Equations III[M]. New York: Springer, 1996.
[6] Haraux Alain. Nonlinear Evolution Equations Global Behavior of Solutions[M]. Lecture Notes in Math., Vol. 841, Berlin: Springer-Verlag, 1981.

