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1 Introduction

In this paper, we discuss the existence of nontrivial traveling wave solutions to the three-
dimensional nonlinear viscoelastic system exhibiting long range memory:

utt(x,t)=divxσ, (1.1a)

where u(x,t) = (u1(x,t),u2(x,t),u3(x,t)) is the displacement of a material particle x =
(x1,x2,x3) at time t, and σ =(σij) is the stress tensor. For viscoelastic materials, the stress
at time t depends on all the history of the deformation gradient up to time t. Here we
discuss only the case when the stress is given by a single integral law (see, [1, 2])

σ(x,t)= g(∇u(x,t))−
∫ ∞

0
h(τ,∇u(x,t−τ))dτ, (1.1b)
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where g(ξ)=(gij(ξ)),h(τ,η)=(hij(τ,η)),ξ =(ξij),η=(ηij), i, j=1, 2, 3.
Our interest is to find traveling wave solutions to the nonlinear Volterra integro-

differential system (1.1). That is, we are looking for a solution u(x,t) depending only
on ξ =λt+ω ·x, where λ is the speed of propagation, ω=(ω1,ω2,ω3) with |ω|=1. More-
over, we require that the solution satisfies the upstream condition:

lim
ξ→−∞

du(ξ)

dξ
=v− (1.2)

for a given constant vector v− =(v−1 ,v−2 ,v−3 ).
Qin and Ni studied the special case in [3] when

h(τ,∇u(x,t−τ))= a(τ)h(∇u(x,t−τ)). (1.3)

As pointed out in [3], for the pure elastic case

σ = g(∇u(x,t)), (1.4)

the problem has no nontrivial traveling wave solution except when λ is the speed of
propagation for the wave v− determined by the elastic tensor. For viscoelastic materi-
als, the instantaneous elastic tensor (1.4) is different from the equilibrium elastic tensor
determined by the stress tensor

p(u(x,t))= g(∇u(x,t))−
∫ ∞

0
h(τ,∇u(x,t))dτ, (1.5)

which governs the long time behavior of waves. Thanks to the dissipative effect, in gen-
eral, the speed of propagation for the wave determined by the equilibrium elastic tensor
is less than that determined by the instantaneous elastic tensor. Therefore, we should
find nontrivial traveling wave solutions to the problem with the propagation speed λ
between the two speeds.

For the one-dimensional case, the system (1.1) is reduced to

utt(x,t)=
∂

∂x
g(ux(x,t))−

∫ ∞

0

∂

∂x
h(τ,ux(x,t−τ))dτ, (1.6)

and the corresponding instantaneous and equilibrium elastic modulus are g′(ux) and
p′(ux), respectively. The authors of [4] and [5] proved that if

p′(v−)<λ2
< g′(v−), (1.7)

then there exist nontrivial traveling wave solutions to (1.6).
All the methods used in the one-dimensional case depend strongly on the monotonic-

ity of both traveling wave solutions and iterative sequences. Therefore, they cannot be
applied to the three-dimensional case. In order to overcome this difficulty, we apply the
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higher-order iterative process, introduced by Qin and Ni in [3], to show the local exis-
tence of traveling wave solutions near ξ =−∞, and then prove the corresponding global
existence.

In the next section, we state the hypotheses and the main results of this paper. In Sec-
tion 3, we give the proof of the existence of nontrivial traveling wave solutions. Finally,
the uniqueness of trivial traveling wave solution is established.

2 Hypotheses and main results

Set v(ξ)=du(ξ)/dξ and

aijkl(F)=
∂gij(F)

∂ fkl
, bijkl(η,F)=

∂hij(η,F)

∂ fkl
, cijkl(F)=

∂pij(F)

∂ fkl

with F =( fij). For traveling wave solutions, the system (1.1) is reduced to

−λ2 dvi(ξ)

dξ
+

3

∑
j,k,l=1

ωjωlaijkl(v(ξ)⊗ω)
dvk(ξ)

dξ

=
∫ ∞

0

3

∑
j,k,l=1

ωjωlbijkl(η,v(ξ−λη)⊗ω)
dvk(ξ−λη)

dξ
dη, i=1, 2, 3 (2.1)

with v(ξ)⊗ω =(vi(ξ)ωj). The upstream condition (1.2) is written as

lim
ξ→−∞

v(ξ)=v−. (2.2)

It is clear that v(ξ)≡v− is a solution to (2.1)-(2.2), which we refer to as the trivial solution.
Integrating (2.1) with respect to ξ from −∞ to ξ and using (2.2), we have

−λ2vi(ξ)+
3

∑
j=1

ωjgij(v(ξ)⊗ω)

=
∫ ∞

0

3

∑
j=1

ωjhij(η,v(ξ−λη)⊗ω)dη−Ai, i=1, 2, 3, (2.3)

where

Ai =λ2v−i −
3

∑
j=1

ωjgij(v−⊗ω)+
∫ ∞

0

3

∑
j=1

ωjhij(η,v−⊗ω)dη. (2.4)

For convenience, we refer to λ satisfying

det
(

−λ2 I+
3

∑
j,l=1

ωjωlaijkl(v⊗ω)
)

=0, (2.5)
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where (aijkl) stands for elastic tensor, as the speed of propagation for the wave v associ-
ated with the direction ω.

Without loss of generality, we assume that

v−≡0. (2.6)

In this paper, for a tensor aijkl , the symmetry means that

aijkl = aklij , ∀ i, j, k, l =1, 2, 3. (2.7)

Definition 2.1. If there exists a constant α>0 such that

3

∑
i,j,k,l=1

aijkl ξiξkηjηl ≥α|ξ|2|η|2, ∀ ξ, η∈R
3, (2.8)

then the tensor A=(aijkl) is said to satisfy the strongly elliptic condition.

Now we state the hypotheses for the system (2.3).

(H) (aijkl(F)), (bijkl(η,F)) and (cijkl(F)) are sufficiently smooth and symmetric.
Moreover, (aijkl(0)) and (cijkl(0)) satisfy the strongly elliptic condition.

Let

A(F)=
( 3

∑
j,l=1

ωjωlaijkl(F)
)

, B(η,F)=
( 3

∑
j,l=1

ωjωlbijkl(η,F)
)

,

C(F)=
( 3

∑
j,l=1

ωjωlcijkl(F)
)

.

From the hypothesis (H), it is easy to see that A(0) and C(0) are positive definite ma-
trices. Let ρ(A) and r(A) be the spectral radius and the least eigenvalue of a symmetric
matrix A, respectively. For definiteness, we consider only the case λ > 0; the discussion
for the case λ<0 is similar.

Now the problem is reduced to find a traveling wave solution to the nonlinear Volterra
integral system (2.3) such that the upstream condition (2.2) holds. In the proof of either
existence or uniqueness of traveling wave solutions, the key step is to solve the problem
near ξ =−∞.

Theorem 2.1. Suppose that the hypothesis (H) holds and there exists a(η)∈L1(0,∞) such that

|bijkl(η,0)|≤ a(η), ∀ η >0, i, j, k, l =1, 2, 3. (2.9)

If ρ(C(0))< λ2
< r(A(0)), then the system (2.3) admits a nontrivial continuous solution satis-

fying the upstream condition (2.2) near ξ =−∞.
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If we get the solution on (−∞,ξ0] for a certain value of ξ0, then the system (2.3) can
be rewritten as

−λ2vi(ξ)+
3

∑
j=1

ωjgij(v(ξ)⊗ω)

=
∫ 1

λ (ξ−ξ0)

0

3

∑
j=1

ωjhij(η,v(ξ−λη)⊗ω)dη+ fi(ξ), i=1, 2, 3, (2.10)

where

fi(ξ)=
∫ ∞

1
λ (ξ−ξ0)

3

∑
j=1

ωjhij(η,v(ξ−λη)⊗ω)dη−Ai

are given functions. Eq. (2.10) is a nonlinear Volterra integral system. Under some as-
sumptions on (gij) and (hij), it is not difficult to get the global existence through the
Schauder’s fixed point theorem.

Theorem 2.2. Assume the hypotheses of Theorem 2.1 hold. Furthermore, we assume that

λ2
< r̄ < r(A(F)), ∀ F∈R

3×3, (2.11)

and there exists b(η)∈L1(0,∞) such that

|bijkl(η,F)|, |∂ηhij(η,F)|≤b(η), ∀ η >0, F∈R
3×3, i, j=1, 2, 3, (2.12)

where r̄ is a constant. Then the system (2.3) has a nontrivial continuous solution satisfying the
upstream condition (2.2) on R.

Theorems 2.1 and 2.2 will be proved in Section 3.

Roughly speaking, for a given direction ω, if λ is less than all the speeds of propaga-
tion determined by the equilibrium elastic tensor or larger than all ones determined by
the instantaneous elastic tensor, the problem has only the trivial solution.

Now we introduce the definition on the positive type of matrix-valued function (see,
e.g., p. 492, [6]).

Definition 2.2. A matrix-valued function M(t)∈ L1(R
+;R3×3) is said to be of positive type if

and only if

∫ T

0

〈

v(t),(M∗v)(t)
〉

dt=
∫ T

0

〈

v(t),
∫ t

0
M(t−τ)v(τ)dτ

〉

dt≥0, ∀ T >0 (2.13)

for every v∈C(R
+;R3).
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Theorem 2.3. Suppose that the hypothesis (H) holds and there exists a constant δ0 > 0 and
c(η)≥0 such that

|bijkl(η,0)|≤ c(η), ∀ η >0, i, j, k, l =1, 2, 3. (2.14)

Moreover, eδ0ηc(η)∈L1(0,∞), and eδ0ηB(η,0) is of positive type. If

λ2
>ρ(A(0)) or λ2

< r(A(0))−ρ
(

∫ ∞

0
B(η,0)dη

)

,

then the problem (2.1)-(2.2) admits only the trivial solution.

Theorem 2.3 will be proved in Section 4.

3 Proof of the existence of nontrivial solution

Following the idea in [3], we first construct a nontrivial continuous traveling wave so-
lution near ξ = −∞. Then, by the Schauder’s fixed point theorem, we get the global
behavior of the traveling wave solution.

3.1 Local existence near ξ =−∞

We are looking for a solution to the system (2.3) in the following form

v(ξ)=a1eδξ +···+aNeNδξ +p(ξ), (3.1)

where aj=(a
j
1,a

j
2,a

j
3)

T(j=1,···,N),p=(p1,p2,p3)T, |p|=O(e(N+1)δξ), and N is a sufficiently
large integer to be determined later.

Similarly to the proof of Lemma 3.1 in [3], we can show the following lemma.

Lemma 3.1. If ρ(C(0))<λ2
< r(A(0)), then there exists a constant σ>0 such that

det
(

−λ2I+A(0)−
∫ ∞

0
B(η,0)e−λσηdη

)

=0. (3.2)

Let

δ=max
{

σ∈R
1,det

(

−λ2I+A(0)−
∫ ∞

0
B(η,0)e−λσηdη

)

=0
}

.

There exists a nontrivial solution a1 =(a1
1,a1

2,a1
3)

T such that

(

−λ2 I+A(0)−
∫ ∞

0
B(η,0)e−λσηdη

)

a1 =0. (3.3)
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Inserting (3.1) into the system (2.3), we have, for i=1,2,3,

−λ2
(

a1
i eδξ +···+aN

i eNδξ +pi(ξ)
)

+
3

∑
j=1

ωjgij

(

(a1eδξ +···+aNeNδξ +p(ξ))⊗ω
)

=
∫ ∞

0

3

∑
j=1

ωjhij

(

η,(a1eδ(ξ−λη)+···+aNeNδ(ξ−λη)+p(ξ−λη))⊗ω
)

dη−Ai. (3.4)

Comparing the coefficients of e2δξ ,···,eNδξ in both sides of the system (3.4), we can deter-
mine a2,···,aN , successively. In fact, once a1,···,a j−1 have been determined, comparing
the coefficients of ejδξ in both sides of (3.4), it is not difficult to see that aj satisfies

(

−λ2 I+A(0)−
∫ ∞

0
B(η,0)e−jλδηdη

)

aj =bj(a1,···,a j−1), (3.5)

where bj =(b
j
1,b

j
2,b

j
3) is a given polynomial of a1,···,aj−1. Note that the choice of δ and aj

is determined uniquely by the system (3.5).
We next employ the contraction mapping principle to determine p(ξ) in (3.1), such

that v(ξ) is a solution to the system (2.3). Let

SK =
{

p∈C((−∞,ξ0];R
3), ‖p‖≤K

}

,

where K is a fixed positive constant and

‖p‖= sup
ξ∈(−∞,ξ0]

e−Nδξ |p(ξ)|.

We consider a map T: q=Tp, ∀ p∈SK, determined by

−λ2qi+
3

∑
j,k,l=1

ωjωlaijkl(0)qk =λ2(a1
i eδξ +···+aN

i eNδξ)

+
3

∑
j,k,l=1

ωjωlaijkl(0)pk−
3

∑
j=1

ωjgij

(

(a1eδξ +···+aNeNδξ +p(ξ))⊗ω
)

+
∫ ∞

0

3

∑
j=1

ωjhij

(

η,(a1eδ(ξ−λη)+···+aNeNδ(ξ−λη)

+p(ξ−λη))⊗ω
)

dη−Ai, ∀ p∈SK, i=1,2,3. (3.6)

It is easy to see that this map T can be rewritten as

(−λ2 I+A(0))q=
∫ ∞

0
B(η,0)p(ξ−λη)dη+O

(

e(N+1)δξ
)

+M(p), ∀ p∈SK, (3.7)
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where O(e(N+1)δξ) is independent of p, and M(p) satisfies the following estimate with a
positive constant C(K) depending on K:

‖M(p)‖≤C(K)eδξ0 , ∀ p∈SK. (3.8)

In view of the assumptions in Theorem 2.1, we can take N so large that

ρ
(

∫ ∞

0
B(η,0)e−Nλδηdη

)

< r(A(0))−λ2. (3.9)

Then, we can take ξ0 sufficiently negative so that

‖O(e(N+1)δξ)‖, ‖M(p)‖<
1

2
(1−σ)(r(A(0))−λ2)K, ∀ ξ∈ (−∞,ξ0], p∈SK, (3.10)

where

σ=ρ
(

∫ ∞

0
B(η,0)e−Nλδηdη

)

/

(

r(A(0))−λ2
)

. (3.11)

Lemma 3.2. Suppose that the assumptions of Theorem 2.1 hold. Let N and ξ0 satisfy (3.9) and
(3.10), respectively. Then the map q=Tp,∀ p∈SK, defined by (3.6), is injective.

Proof. From (3.7) we have

(r(A(0))−λ2)‖q‖

≤ρ
(

∫ ∞

0
B(η,0)e−Nλδηdη

)

‖p‖+‖O(e(N+1)δξ)‖+‖M(p)‖, ∀ p∈SK. (3.12)

In view of (3.9) and (3.10), we get from (3.12) that ‖q‖≤K, that is, q∈SK.

Lemma 3.3. Suppose the assumptions of Lemma 3.2 hold. If ξ0 is sufficiently negative, then the
map T : SK −→SK is contractive.

Proof. Suppose that p, p̃∈SK and q=Tp,q̃=T p̃. Then, it follows from the definition (3.6)
of the map T and the expression (2.4) of Ai that

−λ2(q̃i−qi)+
3

∑
j,k,l=1

ωjωlaijkl(0)(q̃k−qk)

=
3

∑
j,k,l=1

ωjωl

∫ 1

0

(

aijkl(0)−aijkl

(

(a1eδξ +···+aNeNδξ +p(ξ)

+θ(p̃(ξ)−p(ξ)))⊗ω
)

)

dθ( p̃k−pk)

+
∫ ∞

0

3

∑
j,k,l=1

ωjωl

∫ 1

0
bijkl

(

η,(a1eδ(ξ−λη)+···+aNeNδ(ξ−λη)+p(ξ−λη)

+θ(p̃(ξ−λη)−p(ξ−λη)))⊗ω
)

dθ( p̃k(ξ−λη)−pk(ξ−λη))dη, i=1, 2, 3. (3.13)
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For σ given by (3.11), noting (2.9), we can take ε>0 sufficiently small such that

ρ
( 3

∑
j,l=1

ωjωl(aijkl(v⊗ω)−aijkl(0))
)

≤ 1

4
(1−σ)(r(A(0))−λ2), (3.14)

ρ
(

∫ ∞

0

3

∑
j,l=1

ωjωlbijkl(η,v⊗ω)e−Nλδηdη
)

≤ρ
(

∫ ∞

0
B(η,0)e−Nλδηdη

)

+
1

4
(1−σ)

(

r(A(0))−λ2
)

, (3.15)

provided that

|v⊗ω|≤ ε.

Taking ξ0 so negative that
∣

∣(a1eδξ +···+aNeNδξ +p(ξ))⊗ω
∣

∣≤ ε, ∀ p∈SK, ξ∈ (−∞,ξ0], (3.16)

by the above hypotheses, we obtain from (3.13) that

(

r(A(0))−λ2
)

‖q̃−q‖

≤ 1

4
(1−σ)(r(A(0))−λ2)‖p̃−p‖+

(

ρ
(

∫ ∞

0
B(η,0)e−Nλδηdη

)

+
1

4
(1−σ)(r(A(0))−λ2)

)

‖p̃−p‖. (3.17)

Consequently,

‖q̃−q‖≤ 1

2
(1+σ)‖p̃−p‖<‖p̃−p‖,

provided that (1+σ)/2<1.

Proof of Theorem 2.1. From Lemmas 3.2 and 3.3, we can reach the conclusion of Theorem
2.1 immediately.

3.2 Global existence

First, for any fixed T0 > ξ0, we give a prior estimate for the solution on [ξ0,T0]. Suppose
that there is a solution v(ξ) to the system (2.10) on [ξ0,T0]. Then we have

−λ2vi(ξ)+
3

∑
j,k,l=1

ωjωl

∫ 1

0
aijkl(θv(ξ)⊗ω)dθ vk(ξ)

=
∫ 1

λ (ξ−ξ0)

0

3

∑
j,k,l=1

ωjωl

∫ 1

0
bijkl(η,θv(ξ−λη)⊗ω)dθvk(ξ−λη)dη+Fi(ξ),
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with

Fi(ξ)=
∫ ∞

1
λ (ξ−ξ0)

3

∑
j=1

ωjhij(η,v(ξ−λη)⊗ω)dη−
∫ ∞

1
λ (ξ−ξ0)

3

∑
j=1

ωjhij(η,0)dη, i=1, 2, 3.

That is,

(

−λ2 I+
∫ 1

0
A(θv)dθ

)

·v(ξ)

=
∫ 1

λ (ξ−ξ0)

0

∫ 1

0
B(η,θv(ξ−λη))dθ ·v(ξ−λη)dη+F (ξ), (3.18)

where F (ξ)=(F1(ξ),F2(ξ),F3(ξ))T . Now, by (2.11) and (2.12), we get

(

−λ2+ r̄
)

|v(ξ)|≤
∫ 1

λ (ξ−ξ0)

0
b(η)|v(ξ−λη)|dη+ sup

ξ∈[ξ0 ,T0]

|F |

≤ C̃1

∫ ξ

ξ0

|v(τ)|dτ+C̃2.

Then, by Gronwall’s inequality, we obtain the estimate

|v(ξ)|≤C2+C3eC1(T0−ξ0) , M, ∀ ξ∈ [ξ0,T0]. (3.19)

Proof of the Theorem 2.2. According to Theorem 2.1, there exists a nontrivial solution on
(−∞,ξ0]. To obtain the existence on [ξ0,∞), we need to show only that the system (2.10)
admits a solution v(ξ) on [ξ0,T0] for any T0 > ξ0. For this purpose, we define an operator
T by

−λ2(Tv)i(ξ)+
3

∑
j=1

ωjgij

(

(Tv)(ξ)⊗ω
)

=
∫ 1

λ (ξ−ξ0)

0

3

∑
j=1

ωjhij(η,v(ξ−λη)⊗ω)dη+ fi(ξ), i=1, 2, 3. (3.20)

It is not difficult to show that (3.20) defines uniquely a continuous function (Tv)(ξ). The
function v satisfying

(Tv)(ξ)=v(ξ) for all ξ∈ [ξ0,T0]

is, of course, a solution to the system (2.1).
We take the domain of T to be

K =
{

v(ξ)∈C
(

[ξ0,T0];R
3
)

∣

∣

∣
v(ξ0)=v0, |v(ξ)|≤M

}

, (3.21)

where M is defined by (3.19), v0 is the value at ξ0 of the local solution which has been
constructed on (−∞,ξ0].
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It is clear that the function ξ 7→ (Tv)(ξ) is continuous. Now we prove that T maps K
into itself. To this end, taking ξ = ξ0 in the system (3.20), we get

−λ2(Tv)i(ξ0)+
3

∑
j=1

ωjgij((Tv)(ξ0)⊗ω)= fi(ξ0).

On the other hand, from the definition of v0, we have

−λ2v0
i +

3

∑
j=1

ωjgij(v0⊗ω)= fi(ξ0).

Recalling now (2.11), we obtain (Tv)(ξ0) = v0 immediately. Similarly to getting a prior
estimate (3.19), we can obtain that

|(Tv)(ξ)|≤M for any ξ∈ [ξ0 ,T0].

Therefore, T maps K into itself.
The set K is a bounded, closed and convex set. Now we show that T is a compact

map of K into itself. By Arzelà-Ascoli Theorem and what we have already proved, this
suffices to show that the set {Tv|v∈K} is equicontinuous. Let ξ0 ≤ ξ1 ≤ ξ2 ≤T0. Noting
(2.11), we have

(−λ2+ r̄)|(Tv)(ξ2)−(Tv)(ξ1)|

≤ | f (ξ2)− f (ξ1)|+
∫ 1

λ (ξ2−ξ0)

1
λ (ξ1−ξ0)

∣

∣

∣
h(η,v(ξ2−λη)⊗ω)

∣

∣

∣
dη

+
∣

∣

∣

∫ 1
λ (ξ1−ξ0)

0
h(η,v(ξ2−λη)⊗ω)−h(η,v(ξ1−λη)⊗ω)dη

∣

∣

∣
, (3.22)

where

f (ξ)=( f1(ξ), f2(ξ), f3(ξ))T , h=
( 3

∑
j=1

ωjh1j,
3

∑
j=1

ωjh2j,
3

∑
j=1

ωjh3j

)T
.

Then in view of (2.12), from (3.22) we conclude immediately that the set {Tv | v∈K} is
equicontinuous on [ξ0,T0].

An application of the Schauder’s fixed point theorem shows that there exists a fixed
point v of T. The proof of Theorem 2.2 is complete.

4 Proof of the uniqueness of trivial solution

Lemma 4.1. Let M(t) ∈ L1(R
+;R3×3) be of positive type. For any bounded function v ∈

C((−∞,ξ0];R3), we have
∫ ξ0

−∞

∫ ∞

0
M(η)v(ξ−λη)dη ·v(ξ)dξ≥0, ∀ λ>0. (4.1)
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Proof. The result can be obtained by using a way similar to that of Lemma 3.4 in [3].

In the same way we can prove the following result.

Lemma 4.2. Let M(t) ∈ L1(R
+;R3×3) be of positive type. For any function v ∈ C([ξ∗,ξ∗+

h];R3), we have

∫ ξ∗+h

ξ∗

∫ 1
λ (ξ−ξ∗)

0
M(η)v(ξ−λη)dη ·v(ξ)dξ≥0, ∀ λ>0, ξ∗≥ ξ0, h>0. (4.2)

Proof. It is easy to verify that

∫ ξ∗+h

ξ∗

∫ 1
λ (ξ−ξ∗)

0
M(η)v(ξ−λη)dη ·v(ξ)dξ

=
1

λ

∫ h

0

∫ ξ

0
M(

ξ−η

λ
)v(η+ξ∗)dη ·v(ξ+ξ∗)dξ.

Then from the definition of positive type, we get (4.2) immediately.

Proof of Theorem 2.3. Set λ2
>ρ(A(0)). Noting (2.4), the system (2.3) can be written as

λ2vi(ξ)=
3

∑
j,k,l=1

ωjωl

∫ 1

0
aijkl(θv(ξ)⊗ω)dθ vk(ξ)−

∫ ∞

0

3

∑
j,k,l=1

ωjωlbijkl(η,0)vk(ξ−λη)dη

−
∫ ∞

0

3

∑
j,k,l=1

ωjωl

∫ 1

0
Aijkldθ vk(ξ−λη)dη, (4.3)

where
Aijkl =bijkl(η,θv(ξ−λη)⊗ω)−bijkl(η,0). (4.4)

Multiplying both sides of (4.3) by e2δξ vi(ξ) (δ>0) and adding the resulting equations for
i=1, 2, 3, we get

3

∑
i=1

λ2e2δξ v2
i (ξ)=

3

∑
i,j,k,l=1

ωjωl

∫ 1

0
aijkl(θv(ξ)⊗ω)dθ e2δξ vk(ξ)vi(ξ)

−
∫ ∞

0

3

∑
i,j,k,l=1

ωjωlbijkl(η,0)vk(ξ−λη)dη e2δξvi(ξ)

−
∫ ∞

0

3

∑
i,j,k,l=1

ωjωl

∫ 1

0
Aijkldθ vk(ξ−λη)dη e2δξ vi(ξ), (4.5)

where Aijkl is defined by (4.4). Integrating (4.5) with respect to ξ from −∞ to ξ0 gives

λ2
∫ ξ0

−∞
e2δξ |v(ξ)|2dξ = I1− I2− I3 (4.6)
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with

I1 =
∫ ξ0

−∞

3

∑
i,j,k,l=1

ωjωl

∫ 1

0
aijkl(θv(ξ)⊗ω)dθ e2δξvk(ξ)vi(ξ)dξ,

I2 =
∫ ξ0

−∞

∫ ∞

0

3

∑
i,j,k,l=1

ωjωlbijkl(η,0)vk(ξ−λη) dη e2δξ vi(ξ)dξ,

I3 =
∫ ξ0

−∞

∫ ∞

0

3

∑
i,j,k,l=1

ωjωl

∫ 1

0
Aijkldθ e2δξvk(ξ−λη)dη vi(ξ)dξ.

Set ε=λ2−ρ(A(0)). Taking ξ0 sufficiently negative, we have

ρ
( 3

∑
j,l=1

ωjωl

∫ 1

0
aijkl(θv(ξ)⊗ω)dθ

)

<ρ(A(0))+
ε

4
. (4.7)

Then

|I1|≤
(

ρ(A(0))+
ε

4

)

∫ ξ0

−∞
e2δξ |v(ξ)|2dξ. (4.8)

Let δ=δ0/λ, w(ξ)= eδξ v(ξ). By Lemma 4.1, we have

I2 =
∫ ξ0

−∞

∫ ∞

0

3

∑
i,j,k,l=1

ωjωlbijkl(η,0)eλδηeδ(ξ−λη)vk(ξ−λη) dη eδξvi(ξ)dξ

=
∫ ξ0

−∞

∫ ∞

0
eδ0ηB(η,0)w(ξ−λη)dη ·w(ξ)dξ≥0. (4.9)

Taking ξ0 sufficiently negative, we have

sup
θ∈[0,1]

ξ∈(−∞,ξ0]

3

∑
j,l=1

∫ ∞

0
|ωj||ωl |

∣

∣Aijkl

∣

∣eδ0ηdη ·
∫ ∞

0
eδ0ηc(η)dη <

ε2

288
. (4.10)

Then, by Cauchy inequality, we get

|I3|≤
3

∑
i,j,k,l=1

∫ ξ0

−∞

∫ 1

0

∫ ∞

0
|ωjωl|

∣

∣Aijkl

∣

∣ eδ0η |vk(ξ−λη)| eδ(ξ−λη) dη dθ eδξ |vi(ξ)|dξ

≤
3

∑
i,j,k,l=1

∫ ξ0

−∞

∫ 1

0

(

∫ ∞

0
|ωjωl|

∣

∣Aijkl

∣

∣ eδ0ηdη
)

1
2

·
(

∫ ∞

0
|ωjωl|

∣

∣Aijkl

∣

∣ eδ0η |vk(ξ−λη)|2 e2δ(ξ−λη)dη
)

1
2

dθ eδξ |vi(ξ)| dξ
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≤ Bε√
2

3

∑
i,j,k,l=1

∫ ξ0

−∞

∫ 1

0

(

∫ ∞

0
|ωjωl|

∣

∣Aijkl

∣

∣ eδ0η |vk(ξ−λη)|2 e2δ(ξ−λη)dη
)

1
2

eδξ |vi(ξ)|dθ dξ

≤Bε

3

∑
i,k=1

∫ ξ0

−∞

(

∫ ∞

0
eδ0ηc(η)|vk(ξ−λη)|2 e2δ(ξ−λη)dη

)
1
2
eδξ |vi(ξ)| dξ

≤Bε

3

∑
i,k=1

(

∫ ∞

0
eδ0ηc(η)

∫ ξ0

−∞
|vk(ξ−λη)|2 e2δ(ξ−λη)dξdη

∫ ξ0

−∞
e2δξ |vi(ξ)|2dξ

)
1
2

≤ ε

4

∫ ξ0

−∞
e2δξ |v(ξ)|2dξ. (4.11)

where Aijkl is defined by (4.4), and

Bε =
ε

12

(

∫ ∞

0
eδ0ηc(η)dη

)− 1
2
.

Finally, combining (4.8), (4.9) with (4.11) yields

λ2
∫ ξ0

−∞
e2δξ |v(ξ)|2dξ≤

(

ρ(A(0))+
ε

2

)

∫ ξ0

−∞
e2δξ |v(ξ)|2dξ. (4.12)

Then, we obtain v(ξ)≡0 on (−∞,ξ0] immediately. Let

ξ∗ =sup{ξ | v(ζ)≡0,−∞< ζ < ξ}. (4.13)

If ξ∗ =+∞, it means that v(ξ)≡0 on R. Now we suppose ξ∗ < ∞. Then the system (2.3)
can be written as

λ2vi(ξ)=
3

∑
j,k,l=1

ωjωl

∫ 1

0
aijkl(θv(ξ)⊗ω)dθ vk(ξ)

−
∫ 1

λ (ξ−ξ∗)

0

3

∑
j,k,l=1

ωjωlbijkl(η,0)vk(ξ−λη)dη

−
∫ 1

λ (ξ−ξ∗)

0

3

∑
j,k,l=1

ωjωl

∫ 1

0
Aijkldθ vk(ξ−λη)dη. (4.14)

By Lemma 4.2, using the same proof as above, we can get v(ξ) ≡ 0 on [ξ∗,ξ∗+h] for
sufficiently small h. This is a contradiction. The proof of Theorem 2.3 is complete.

The proof for the case of

λ2
< r(A(0))−ρ

(

∫ ∞

0
B(η,0)dη

)

is similar and is omitted here.
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