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MAXWELL SOLUTIONS IN MEDIA WITH MULTIPLE

RANDOM INTERFACES
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(Communicated by Roger Temam)

Abstract. A hybrid operator splitting method is developed for computations of two-dimensional
transverse magnetic Maxwell equations in media with multiple random interfaces. By projecting
the solutions into the random space using the polynomial chaos (PC) projection method, the
deterministic and random parts of the solutions are solved separately.
There are two independent stages in the algorithm: the Yee scheme with domain decomposition
implemented on a staggered grid for the deterministic part and the Monte Carlo sampling in the
post-processing stage. These two stages of the algorithm are subject of computational studies.
A parallel implementation is proposed for which the computational cost grows linearly with the
number of random interfaces. Output statistics of Maxwell solutions are obtained including means,
variance and time evolution of cumulative distribution functions (CDF). The computational results
are presented for several configurations of domains with random interfaces.
The novelty of this article lies in using level set functions to characterize the random interfaces
and, under reasonable assumptions on the random interfaces (see Figure 1), the dimensionality
issue from the PC expansions is resolved (see Sections 1.1.2 and 1.2).

Key words. Maxwell Equations, Evolution of probability distribution, Monte Carlo simulation,
Stochastic partial differential equation, random media, random interface, Polynomial chaos.

1. Introduction

Time evolution of waves in random media has important applications in a wide
range of areas such as medical imaging, wave scattering, radar detection, iono-
spheric plasmas and photonics devices (see e.g. [11]). Although the problem under
consideration here is a forward problem, our approach reveals the effects of random
inputs and provide some insights on inverse problems, e.g. reconstruction of the
interior of a human body from MRI or Ultrasound, recovery of interior structural
parameters of machines from non-destructive measurements, ionospheric dynamics
and related problems.

In this article, we study the evolution of the cumulative distribution functions
(CDF) in time of electromagnetic (EM) fields. The randomness of the EM fields
is inherited from the randomness of the locations of interfaces, i.e., it is uncertain
where two or more different media interface (e.g. [4], [6], [9], [25]). In particular, the
permeability and permittivity fluctuate randomly in space (independently of time)
around their mean values. The EM fields with a single interface were studied and
simulated in [12]. It has been demonstrated that the polynomial chaos expansion
(PCE) methods are superior to Monte-Carlo methods in a number of applications
(see [1], [2], [7], [8], [10], [17], [18], [27], [28], [29], [30], [32], [22]). Here, we extend
the single interface to two or multiple interfaces which are described as level sets,
{z(x, y) = ξi} where the level function z = z(x, y) is a function of x, y, and ξi are
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independent random variables or parameters (see Figure1). The case where the
level function z depends on some random variables will be considered elsewhere.
For simplicity, here we consider only a deterministic level function.

We note that conventional PCE methods have some severe limitations. If the
number of random variables increases, the computational cost will grow exponen-
tially as indicated in the polynomial chaos expansions (1.2), (1.10) and (1.19) below
where the polynomials pertaining to each random variable are multiplied in a ten-
sor product form. Thus the number of unknown coefficients (PC modes) grows
exponentially and the computations are very expensive. Monte-Carlo methods are
then more feasible. To avoid this curse of dimensionality, in this article, along with
the time explicit scheme we will update the PC modes in each interval of the level
z = z(x, y) (see Figure 1, and also e.g. (1.18) for two random parameters). The
computational cost then grows linearly as explained in Sections 1.1.2 and 1.2 below.
See also the Conclusion below. This substantially reduces the computational time
with parallel computing as demonstrated in Figure 5 below.
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Figure 1. Multiple random interfaces {z(x, y) = ξi} described by a
level set function z(x, y) where ξi are distributed over disjoint (ai, bi),

i = 1, 2, · · · , n.

We consider the following two-dimensional transverse magnetic Maxwell equa-
tions (e.g. [3], [19], [24]): for (x, y, t) ∈ R

2 × (0,∞),





∂H1

∂t
= − 1

µ

∂E3

∂y
,

∂H2

∂t
=

1

µ

∂E3

∂x
,

∂E3

∂t
=

1

ǫ

∂H2

∂x
− 1

ǫ

∂H1

∂y
.

(1.1)

The initial conditions areH1(x, y, 0) = h1(x, y), H2(x, y, 0) = h2(x, y), E3(x, y, 0) =
e3(x, y), whereH = (H1, H2, 0)

T is the magnetic field, E = (0, 0, E3)
T is the electric
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field, and h1, h2, e3 are smooth functions. The boundary conditions will be specified
below.

The parameters (permeability, permittivity) are given (µ, ǫ) = (µ1, ǫ1) for z(x, y) <
ξ1, (µ, ǫ) = (µi, ǫi) for ξi−1 < z(x, y) < ξi, i = 2, 3, · · · , n and (µ, ǫ) = (µn+1, ǫn+1)
for z(x, y) > ξn where µi, ǫi > 0, µi’s and ǫi’s may be distinct (see Figure1). Here,
ξi’s are random variables and independent. Hence, we do not consider the correla-
tions between the random variables ξi.

The case with correlated random variables will be studied in the forthcoming
articles.

Remark 1.1. If an additive white noise (e.g. Gaussian) forcing drives System (1.1),
which varies with time, the computational cost grows exponentially with the number
of time steps because the PC expansion (1.2) is constructed in each time step. In
this article, we do not consider the noise varying with time and this study will
appear elsewhere.
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Figure 2. Two random interfaces for the model (1.1).

1.1. 2- random interfaces. We begin with two random interfaces (see Figure 2).
We consider two cases. The first one is that the two random interfaces depend on
a single random variable. In this case, a one-dimensional PC is used to approxi-
mate the randomness. The other one is that the two random interfaces depend on
different random variables which are independent.

1.1.1. Case 1. In this section we consider the case ξ1 = ξ ∈ (a, b), ξ2 = ξ +
δ, δ > b − a > 0, where ξ is a uniform random variable over (a, b), for which
its probability density function (PDF) is f(ξ) = 1

b−a
χ(a,b)(ξ). Here χ(a,b) is the

characteristic function of (a, b). To deal with the random interfaces {z(x, y) = ξ1}
and {z(x, y) = ξ2}, employing the so-called Legendre polynomial chaos (PC) we
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write:




H1 =

N∑

k=0

H1k(x, y, t)Pk(ξ),

H2 =

N∑

k=0

H2k(x, y, t)Pk(ξ),

E3 =

N∑

k=0

E3k(x, y, t)Pk(ξ),

(1.2)

where Pk = P a,b
k are shifted Legendre polynomials. Here,

Pk(ξ) = P a,b
k (ξ) = P̃k

(
2ξ − a− b

b − a

)
,(1.3)

where P̃k are the standard Legendre polynomials with span (−1, 1).
Note that the number of PC modes in (1.2) does not grow in time and is fixed as

N . This is because the fluctuations of the random variable(s) ξ or ξi below do not
depend on t, x, y and depend only on the span of ξ. See Remark 1.1. Substituting
the PC expansions (1.2) in Eq. (1.1)1, multiplying Pi(ξ) and integrating over (a, b)
in ξ we obtain the PC mode equations for H1i:

∂H1i

∂t
= −

N∑

k=0

cµik
∂E3k

∂y
,(1.4)

cµik =

∫∞

−∞
1
µ
Pi(ξ)Pk(ξ)χ(a,b)(ξ)dξ
∫ b

a
P 2
i (ξ)dξ

.(1.5)

The PC mode equations for H2i, E3i similarly follow.
Depending on the value of z the coefficients cµik = cµik(x, y) can be computed as

follows. We note that µ = µ1 for z < ξ, µ = µ2 for ξ < z < ξ + δ, and µ = µ3

for z > ξ + δ (the parameter ε follows similarly). As in Figure 1, a1 = a, b1 = b,

a2 = a+ δ and b2 = b + δ with n = 2. Using
∫ b

a
Pi(ξ)Pk(ξ)dξ =

b− a

2i+ 1
δik, we first

obtain that

cµik = δik






µ−1
1 if z < a,

µ−1
2 if b < z < a+ δ,

µ−1
3 if z > b+ δ,

(1.6a)

and

cµik =






1
µ1

δik +
(

1
µ2

− 1
µ1

)
2i+1
b−a

∫ z

a
Pi(ξ)Pk(ξ)dξ if a < z < b,

1
µ2

δik +
(

1
µ3

− 1
µ2

)
2i+1
b−a

∫ z−δ

a
Pi(ξ)Pk(ξ)dξ if a+ δ < z < b+ δ,

(1.6b)

where the integrations
∫ z

a
Pi(ξ)Pk(ξ)dξ are given in explicit forms as in [12], [13]

which can be evaluated with low computational cost.
We deduce the PCmode equations: forH1(x, y, t) = (H10, · · · , H1N ), H2(x, y, t) =

(H20, · · · , H2N ) and E3(x, y, t) = (E30, · · · , E3N ),





H1t = −Λµ(z)E3y,
H2t = Λµ(z)E3x,
E3t = Λǫ(z) (H2x −H1y) ,

(1.7)
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where the initial conditions are Hi(x, y, 0) = (hi(x, y), 0, · · · , 0), i = 1, 2, and
E3(x, y, 0) = (e3(x, y), 0, · · · , 0). The matrices Λµ(z) = Λµ(z(x, y)) = (cµik) and
Λǫ(z) = Λǫ(z(x, y)) = (cǫik), c

ǫ
ik is the cµik in (1.6) with µ1 and µ2 being replaced

by, respectively, ǫ1 and ǫ2. Note that the entries cµik, c
ǫ
ik are continuous in z and

we expect more regular solutions than in (1.1).
To compute the solutions of the system (1.7), we may incorporate some classical

numerical methods (e.g. [14], [15]). Among others, we apply the Finite-Difference
Time-Domain (FDTD) method by K. Yee (see [31], [24], and [12]). 2nd-order cen-
tered finite difference is employed on a staggered grid for the space discretizations
of the magnetic and electric fields. On this staggered grid, the magnetic and electric
fields are located on the sides and at the center of each grid cell, respectively. The
time derivatives are approximated in a same manner: the magnetic fields are first
updated to the half time step; then the electric field is marched to the next time
step based on the updated values of the former fields. For our Eqs. (1.7), we use
the following notations for the magnetic fields H1,2 and electric field E3 at the node
points on the staggered grid as in Figure 4: for I, J, n ∈ Z

+, on the space domain
Ω = (−2, 2)× (0, 1),






H
n− 1

2

1,i,j+ 1

2

= H1(xi, yj+ 1

2

, tn− 1

2

), i = 0 : I, j = 0 : J − 1,

H
n− 1

2

2,i+ 1

2
,j
= H2(xi+ 1

2

, yj , tn− 1

2

), i = 0 : I − 1, j = 0 : J,

En
3,i,j = E3(xi, yj, tn), i = 0 : I, j = 0 : J,

(1.8)

where xp = −2 + p∆x, yq = q∆y and tr = r∆t, p, q, r ∈ Z
+, p ∈ [0, I], q ∈ [0, J ],

r ∈ [0, T ]; and ∆x = 4/I, ∆y = 1/J are the space steps and ∆t is the time step.
We note that H1,2, E3 are vectors of the deterministic PC modes defined in Eqs.
(1.7). We then discretize the system (1.7) as follows: for n ∈ Z+,
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3,i,j = E

n
3,i,j + Λǫ

i,j

{

∆t

∆x

[

H
n+ 1

2

2,i+ 1

2
,j
−H

n+ 1

2

2,i− 1

2
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]

−
∆t

∆y

[

H
n+ 1

2

1,i,j+ 1

2

−H
n+ 1

2

1,i,j− 1

2
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,

i = 1 : I − 1, j = 1 : J − 1,

(1.9)

where Λµ

i,j+ 1

2

= Λµ(z(xi, yj+ 1

2

)), Λµ

i+ 1

2
,j
= Λµ(z(xi+ 1

2

, yj)) and Λǫ
i,j = Λǫ(z(xi, yj)).

1.1.2. Case 2. In this section we consider two random variables which determine
two random interfaces, respectively. The random variables ξi ∈ (ai, bi), i = 1, 2,
are uniformly distributed over (ai, bi) and independent where a1 < ξ1 < b1 <
a2 < ξ2 < b2, and the PDFs are, respectively, f1(ξ1) =

1
b1−a1

χ(a1,b1)(ξ1), f2(ξ2) =
1

b2−a2

χ(a2,b2)(ξ2).
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To deal with the random interfaces {z(x, y) = ξ1} and {z(x, y) = ξ2}, employing
the PC expansions we write:





H1 =

N1∑

k=0

N2∑

l=0

H1kl(x, y, t)P
a1,b1
k (ξ1)P

a2,b2
l (ξ2),

H2 =

N1∑

k=0

N2∑

l=0

H2kl(x, y, t)P
a1,b1
k (ξ1)P

a2,b2
l (ξ2),

E3 =

N1∑

k=0

N2∑

l=0

E3kl(x, y, t)P
a1,b1
k (ξ1)P

a2,b2
l (ξ2).

(1.10)

Substituting the PC expansions in (1.1), multiplying by Pi(ξ1)Pj(ξ2) and inte-
grating over (a1, b1)× (a2, b2) we obtain the following modal equations:

∂H1ij

∂t
= −

N1∑

k=0

N2∑

l=0

cµijkl
∂E3kl

∂y
,(1.11)

cµijkl =

∫
R2

1
µ
Pi(ξ1)Pk(ξ1)χ(a1,b1)(ξ1)Pj(ξ2)Pl(ξ2)χ(a2,b2)(ξ2)dξ1dξ2

∫ b1

a1

P 2
i (ξ1)dξ1

∫ b2

a2

P 2
i (ξ2)dξ2

.(1.12)

Then the coefficients cµijkl are evaluated as follows:

cµijkl = δikδjl






µ−1
1 if z < a1,

µ−1
2 if b1 < z < a2,

µ−1
3 if z > b2,

(1.13a)

and

cµijkl =






δjl

[
1
µ1

δik +
(

1
µ2

− 1
µ1

)
2i+1
b1−a1

∫ z

a1

Pi(ξ1)Pk(ξ1)dξ1

]
if a1 < z < b1,

δik

[
1
µ2

δjl +
(

1
µ3

− 1
µ2

)
2j+1
b2−a2

∫ z

a2

Pj(ξ2)Pl(ξ2)dξ2

]
if a2 < z < b2,

(1.13b)

Hence we similarly deduce the PC mode equations (1.7) and the Yee (FDTD)
scheme (1.9). Here the corresponding vectors are H1(x, y, t) = (H1,ij) (the indices
i, j are in a dictionary order), H2(x, y, t) = (H2,ij) and E3(x, y, t) = (E3,ij), and
the initial conditions are H1,00 = h1(x, y), H2,00 = h2(x, y), and E3,00 = e3(x, y).
The matrices Λµ(z) = (cµijkl) and Λǫ(z) = (cǫijkl).

One disadvantage of the modal equation (1.11) is that it leads to a huge algebraic
system when the Yee scheme (1.9) is applied since all the PC modes are arranged
into vector forms, which in turn causes the coefficient matrices Λµ and Λε to have
very large sizes, i.e., (1 +N1)(1+N2)× (1 +N1)(1 +N2). The case becomes worse
when more interfaces are introduced into the modal problem. In the following
part, we introduce a modification in deriving the PC modes which overcomes the
drawback discussed above.

Substituting the PC expansions (1.10) in (1.1), multiplying by Pi(ξ1)Pj(ξ2) and
integrating over (a1, b1) × (a2, b2), if a1 ≤ z < b1, since µ = µ(ξ1), ε = ε(ξ1) (see
Figure 1), ξ2 does not affect the parameters µ, ε and thus the integration with
respect to ξ2 has no effect in the resulting equations. Hence, we obtain:

∂H1ij

∂t
= −ci

N1∑

k=1

λik

∂E3kj

∂y
, i = 0 · · ·N1,(1.14)
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where

ci =

[∫ b1

a1

(Pi(ξ1))
2dξ1

]−1

=
2i+ 1

b1 − a1
,(1.15)

and

λik =

∫ b1

a1

1

µ
Pk(ξ1)Pi(ξ1)dξ1

=
1

µ2

∫ z

a1

Pk(ξ1)Pi(ξ1)dξ1 +
1

µ1

∫ b1

z

Pk(ξ1)Pi(ξ1)dξ1.

(1.16)

For other intervals, a similar procedure follows. Since λµ
ik = λµ

ki, ci and λµ
ik do not

change when we march the indexes, after the marching, we obtain,





∂H1

∂t
= − 1

µ1

∂E3

∂y
, z < a1,

∂H1

∂t
= −Λµ

1

∂E3

∂y
, a1 ≤ z < b1,

∂H1

∂t
= − 1

µ2

∂E3

∂y
, b1 ≤ z < a2,

∂H1

∂t
= −Λµ

2

∂E3

∂y
, a2 ≤ z < b2,

∂H1

∂t
= − 1

µ3

∂E3

∂y
, b2 ≤ z,

(1.17)

where H1 = (H1kl), E3 = (E3kl), k = 1, · · · , N1, l = 1, · · · , N2; and Λµ
1,2 =

(ckλkl)1,2 are matrices of sizes (1+N1)× (1+N1) and (1+N2)× (1+N2), respec-
tively. The entries (ckλkl)

1,2 are similar to the coefficients cµik defined in (1.6b)1,
respectively with the removal of δik and a, b replaced by appropriate a1, b1 and
a2, b2, respectively. We notice that the sizes of Λµ

(.) are much reduced. Moreover,

the computational cost is much reduced in case more random interfaces are intro-
duced. H2, E3 follow similarly.

Remark 1.2.
It is noted that in the system (1.17), we treat the matrices H1, E3 as vectors by
fixing one index and marching the other. Order of the indexes is important for
intervals containing the random interfaces ξ1, ξ2, i.e., (a1, b1) and (a2, b2), respec-
tively. In particular, for the interval (a1, b1), by fixing l, we march H1 by columns
and solve for each column vector (H1il), i = 0, · · · , N1 as in Eq. (1.14); whereas for
the interval (a2, b2), we fix k and solve for each row vector (H1kj), j = 0, · · · , N2.
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Applying the Yee scheme to (1.17), we obtain an algebraic system as below, for
n, i, j ∈ Z

+,



































if z < a1,

H
n+ 1

2

1,i,j+ 1

2

= H
n−

1

2

1,i,j+ 1

2

−
∆t

∆y

1

µ1

[

E
n
3,i,j+1 −E

n
3,i,j

]

,

H
n+ 1

2

2,i+ 1

2
,j
= H

n−

1

2

2,i+ 1

2
,j
+

∆t

∆y

1

µ1

[

E
n
3,i+1,j −E

n
3,i,j

]

,

E
n+1
1,i,j = E

n
1,i,j +

1

ǫ1

{

∆t

∆x

[

H
n+ 1

2

2,i+ 1

2
,j
−H

n+ 1

2

2,i− 1

2
,j

]

−
∆t

∆y

[

H
n+ 1

2

1,i,j+ 1

2

−H
n+ 1

2

1,i,j− 1

2

]}

,

(1.18a)



































if a1 ≤ z < b1,

H
n+ 1

2

1,i,j+ 1

2

= H
n−

1

2

1,i,j+ 1

2

−
∆t

∆y
Λµ

1,i,j+ 1

2

[

E
n
3,i,j+1 −E

n
3,i,j

]

,

H
n+ 1

2

2,i+ 1

2
,j
= H

n−

1

2

2,i+ 1

2
,j
+

∆t

∆y
Λµ

1,i+ 1

2
,j

[

E
n
3,i+1,j −E

n
3,i,j

]

,

E
n+1
1,i,j = E

n
1,i,j + Λǫ

1,i,j

{

∆t

∆x

[

H
n+ 1

2

2,i+ 1

2
,j
−H

n+ 1

2

2,i− 1

2
,j

]

−
∆t

∆y

[

H
n+ 1

2

1,i,j+ 1

2

−H
n+ 1

2

1,i,j− 1

2

]}

,

(1.18b)



































if b1 ≤ z < a2,

H
n+ 1

2

1,i,j+ 1

2

= H
n−

1

2

1,i,j+ 1

2

−
∆t

∆y

1

µ2

[

E
n
3,i,j+1 −E

n
3,i,j

]

,

H
n+ 1

2

2,i+ 1

2
,j
= H

n−

1

2

2,i+ 1

2
,j
+

∆t

∆y

1

µ2

[

E
n
3,i+1,j −E

n
3,i,j

]

,

E
n+1
1,i,j = E

n
1,i,j +

1

ǫ2

{

∆t

∆x

[

H
n+ 1

2

2,i+ 1

2
,j
−H

n+ 1

2

2,i− 1

2
,j

]

−
∆t

∆y

[

H
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if a2 ≤ z < b2,
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if z ≥ b2,
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where Λµ

(.),i,j+ 1

2

= Λµ(z(xi, yj+ 1

2

)), Λµ

(.),i+ 1

2
,j

= Λµ(z(xi+ 1

2

, yj)), and Λǫ
.,i,j =

Λǫ(z(xi, yj)).

Notice that the coefficient matrices Λ
(.)
1 (z) and Λ

(.)
2 (z) are independent of time.

We just store those matrices only at the first step n = 1 and reuse them at n ≥ 2.

1.2. n- random interfaces. We now extend the PC expansions (1.10) to the case
with n- interfaces. Substituting the expansion

H1 =
∑

H1j1...jn(x, y, t)Pj1 (ξ1) . . . Pjn(ξn),(1.19)
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into Eq. (1.1)1, we obtain

∑ ∂

∂t
H1j1...jn(x, y, t)Pj1 (ξ1) . . . Pjn(ξn)

= − 1

µ

∑ ∂

∂t
E3j1...jn(x, y, t)Pj1 (ξ1) . . . Pjn(ξn).

(1.20)

Here,
∑

=
∑N1

j1=1

∑N2

j2=1 . . .
∑Nn

jn=1 and µ = µi if ξi−1 ≤ z < ξi with ξ0 = −∞,
ξn+1 = ∞ as in Figure 1. Here, the random variables ξi are uniformly distributed
over (ai, bi) with ai+1 > bi, i = 1, 2, · · · , n, and independent. The PDFs are
respectively fi(ξi) =

1
bi−ai

χ(ai,bi)(ξi). Multiplying Eq. (1.20) by Pi1 (ξi) . . . Pin(ξn)

and integrating over Πn
i=1(ai, bi), we find that, if a1 ≤ z < b1, ξi, i = 2, 3, · · · , n, do

not affect the parameters µ, ε and we thud find that

∂

∂t
H1i1...in(x, y, t) = −ci1

N1∑

j1=1

λi1,j1

∂

∂y
E3j1,i2...in(x, y, t),(1.21)

where

ci1 =

[∫ b1

a1

(Pi1(ξ1))
2dξ1

]−1

=
2i1 + 1

b1 − a1
,(1.22)

and

λi1,j1 =

∫ b1

a1

1

µ
Pj1(ξ1)Pi1 (ξ1)dξ1(1.23)

=
1

µ2

∫ z

a1

Pj1(ξ1)Pi1(ξ1)dξ1 +
1

µ1

∫ b1

z

Pj1(ξ1)Pi1(ξ1)dξ1.

Note here that although we consider the n- tensor product of one-dimensional PC
expansions, only an integration in one dimension needs to be computed to evaluate
the coefficients in (1.21) and this makes the whole computational cost grows linearly.
Furthermore, the explicit formula of the integration in (1.23) is available in [12].

For other intervals, the same procedure can be applied. In particular, if b1 ≤
z < a2, µ = µ2, and hence

∂

∂t
Hi1...in(x, y, t) = − 1

µ2

∂

∂y
Ei1,i2...in(x, y, t),(1.24)

and H2, E3 follow similarly.
We can now discretize (1.21), (1.24) using the Yee scheme as in (1.18). The

numerical simulations with 3 and 5 random interfaces are shown in Figs. 11, 12
below.

2. Statistics

Thanks to the orthogonality of Legendre polynomials, we can explicitly obtain
the mean and variance. For example, we can obtain the mean and variance of E3:
for Case I, as in section 1.1.1,

E(E3) =

∫ ∞

−∞

E3f1(ξ)dξ = E3,0(x, y, t),(2.1)

V ar(E3) =

∫ ∞

−∞

(E3)
2f1(ξ)dξ − (E(E3))

2 =

N∑

i=1

(E3,i(x, t))
2

2i+ 1
.(2.2)



202 C. JUNG, B. KWON, A. MAHALOV AND T. NGUYEN

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Two random interfaces {z(x, y) = ξ1} and {z(x, y) = ξ2};
the case ξ1 = −0.5 (inner) and ξ2 = 1 (outer) are plotted.

and, in general,

E(E3) =

∫

Rn

E3

n∏

i=1

fi(ξi)dξ = E3,0···0(x, y, t),(2.3)

V ar(E3) =

∫

Rn

(E3)
2

n∏

i=1

fi(ξi)dξ − (E(E3))
2

=

N1∑

i1=0

N2∑

i2=0

· · ·
Nn∑

in=0
(i1,··· ,in) 6=(0,··· ,0)

(E3,i1i2···in(x, y, t))
2

Πin
k=i1

(2ik + 1)
,

(2.4)

where dξ = dξ1 · · · dξn. Here, fi(ξi) = 1
bi−ai

χ(ai,bi)(ξi) are uniform probability
density functions.

The Cumulative distribution functions (CDF) and density functions, e.t.c. can
also be evaluated via the PC expansions (see [12]).

3. Numerical results

For the simulation purposes, we use the level set function z as below,

z(x, y) =
3

4
x2 + 12(y − 1

2
)2 − 3

2
,(3.1)

for which two random interfaces {z(x, y) = ξ1} and {z(x, y) = ξ2}, where ξ1, ξ2
are uniform random variables over (a1, b1) and (a2, b2), respectively, are plotted in
Figure 3. The values of ai, bi, i = 1, 2, are specified in the simulations below.

Here and after, we use the computational domain Ω = (−2, 2)× (0, 1). In Figs. 6
and 7, we consider the initial conditions:

H1 = H2 = 0, E3 = (x+ 2)(x− 2)y(y − 1),(3.2)

boundary conditions

E3 = 0,(3.3)

and the parameters,





µ1 = ε1 = 1 if z < ξ1,

µ2 = ε2 = 2 if ξ1 ≤ z < ξ2,

µ3 = ε3 = 3 if ξ2 ≤ z < ξ3.

(3.4)
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We notice that the boundary conditions for H1, H2 are not needed since follow-
ing the Yee scheme (1.18), H1, H2 are first updated using the information of the
previous time step of E3; then E3 is updated by the newly obtained H1, H2.

We consider the case 1 in section 1.1.1 of two random interfaces fluctuating with
the same random parameter ξ and thickness δ between the two level sets. Two
cases are taken into account. One for a small fluctuation with a = −0.5, b = 0,
δ = 0.6; and a = −1, b = 0.8, δ = 2 for a large fluctuation. We observe the CDFs
of the Maxwell solutions evolving in time for both cases as in Figure 6. It is shown
that the fluctuation of the CDF of E3 for the latter case is much wider than the
former case. This is due to the wider variance of the random variable ξ in the
latter case compared with that in the former one. The CDF plots are obtained
via Monte-Carlo sampling at a post-processing stage after we obtain the PC mode
solutions, i.e. PC expansion; see more explanations in Sec. 4 below and [12].

We now test with case 2 in which the two random variables ξ1, ξ2 are independent
of each other. In this case, we use the intervals a1 = −1, b1 = −0.1, a2 = 0, b2 = 0.9.
The CDF, mean and variance of E3 at t = 1.5 are plotted in Figure 7. Here, we
also observe the fluctuation of the CDF of the field E3 when it evolves in time; and
the fluctuation occurs in the regions locating the random interfaces (see Figure 73
showing the variance of E3).

In Figure 8, for the compatible initial/boundary conditions, we use some known
solutions for (1.1) as follows:




H1

H2

E3


 =




−β
α√

µ

ǫ


 exp

(
iω

(
t√
ǫµ

+ αx+ βy + γ

))
,(3.5)

where α, β, γ, ω ∈ R, α2 + β2 = 1. We can then choose the compatible boundary
conditions which satisfy (3.5) on ∂Ω and the compatible initial conditions (3.5)

with t = 0. We try the real part of solutions (3.5) with α = β = 1/
√
2, ǫ = µ = 2

and ω = 2, γ = 0. Hence the initial conditions are: for all (x, y) ∈ Ω,







H1,00

H2,00

E3,00


 =




−1/
√
2

1/
√
2

1


 cos

(√
2x+

√
2y

)
,

H1kl = H2kl = E3kl = 0 for k, l = 1, · · · , N.

(3.6)

Here we set the parameters µ1 = ε1 = 1, µ2 = ε2 = 3, µ3 = ε3 = 2. Since
∂Ω ⊂ {z(x, y) = ξ} for all ξ ∈ [−1, 1], the conditions (3.6) are compatible with the
boundary conditions. For the boundary conditions, we only have to impose on E3

field as indicated in (1.9) and (1.18) (i.e., the H- fields are updated from the E-
field): for all (x,y) ∈ ∂Ω, t > 0,

{
E3,00 = cos

(
t+

√
2x+

√
2y

)
,

E3,kl = 0, for k, l = 1, · · · , N.
(3.7)

Notice also that the initial/boundary conditions are deterministic and thus only
the conditions of the zero PC mode are imposed as in (3.7) and the conditions of
other PC modes are zero.

The evolution in time of the electric field E3 for the case 2 of the compatible initial
and boundary conditions (3.6)–(3.7) is then simulated and the results are shown in
Figure 9 at time t = 0, 1, 2, 3 respectively with two random interfaces. It is shown in
the figures that even though we have deterministic initial and boundary conditions,
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Table 1. Mean and variance of E3 with 3 random interfaces at some
points (x, y), t = 1.5 with different number of PC modes.

PC
(x, y) 5 10 15

(−0.8, 0.2) −0.4535 −0.4525 −0.4517
(0, 0.75) −0.6236 −0.6227 −0.6220

Mean (−1.2, 0.8) −0.2212 −0.2200 −0.2194
(1.2, 0.5) −0.2645 −0.2631 −0.2625
(0.4, 0.4) −0.6585 −0.6572 −0.6565

(−0.8, 0.2) 4.25E-03 4.35E-03 4.35E-03
(0, 0.75) 8.51E-04 8.89E-04 8.98E-04

Variance (−1.2, 0.8) 1.26E-03 7.27E-03 7.29E-03
(1.2, 0.5) 5.19E-03 5.18E-03 5.17E-03
(0.4, 0.4) 8.15E-03 9.15E-03 9.17E-03

the mean of E3 becomes rough in the regions where the random interfaces fluctuate.
This can be explained by the discontinuity of the parameters µ and ε across the
interfaces.

We also check the decay of the PC modes of E3 for both cases of initial/boundary
conditions (3.2)–(3.6). The results are presented in Figure 10 with the z-axis is
plotted in log scale. We notice that the PC modes decay exponentially. This implies
that computations with only the first few modes, e.g., N = 10 in our numerical
simulations, can produce a good approximation.

In Figure 11, we plot the CDF, mean and variance of E3 at x = 0, y = 0.75 at
t = 1.5 with 3 random interfaces {z(x, y) = ξ1}, {z(x, y) = ξ2}, {z(x, y) = ξ3}. We
use the same initial/boundary conditions as in (3.2), µ and ε are as in (3.4) with
additional µ4 = ε4 = 4 if ξ3 ≤ z < ξ4 and a1 = −1, b1 = −0.5, a2 = −0.4, b2 = 1.4,
a3 = 1.5, b3 = 2. In Table 1, we compare the means and variances of the E3 field at
t = 1.5 at some specified points with different number of PC modes PC = 5, 10, 15.
It is shown that these results are not much different from each other. This is due
to the exponential decay of the PC modes (see Figure 10). Hence, for a simulation
of increasing number of interfaces, a relatively small number of PC modes (N = 5)
can be used for saving computational costs.

4. Parallel Computing

In this section, we present the parallelization of our numerical codes using the
Message Passing Interface (MPI) library (see [16], [5], and [21]) for the purpose of
saving computational time.

Before proceeding, we recall that our objective in this article is to study the
evolution of the CDF in time of the electromagnetic fields in case there appear
some uncertainties in the governing equations (1.1). By projecting the solutions of
Eqs. (1.1) into the random space using the PC projection method, we were able to
separate the deterministic and random parts of the solutions. We, then, could apply
the well-known Yee scheme for solving the former parts numerically. In order to
obtain the CDF evolution in time, we applied the Monte Carlo sampling method in
a post-processing stage. To compare our Monte Carlo sampling (e.g. [12]) with the
conventional one (e.g. [23]), we just note that the latter is applied as a preprocessing
to the equations and then the resulting equations are deterministic for which we
may use classical numerical methods. However, to get reliable statistics, large
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Figure 4. Domain decomposition for the parallel codes in a staggered grid.

samples are required and this causes a high cost in computations. Hence, there
are two independent stages in the algorithm, i.e., the Yee scheme and the Monte
Carlo sampling stages. Thus, it is natural that these two stages are objectives of
our parallelization.

In the first stage, i.e., the Yee scheme, for parallel purposes, we apply the so-
called domain decomposition in the x-direction to the 2D grid of the computational
domain. We divide the computational domain into sub-domains and assign all
computational loads relating to each of them to a process. We notice that between
two neighboring sub-domains, there exists an interface in which data transfer is
required between the two processes responsible for these sub-domains during the
parallel computing (see Figure 4). We call these interfaces “parallel boundaries”
to distinguish with the physical boundaries defined in the governing equations;
and the data transfer among processes “parallel boundary update”. Hence, for
each time step, we need to update both the physical and parallel boundaries in
each sub-domain. We note that since we parallel our computation based on the
computational domain, not on the PC modes, the amounts of data transferring
through the parallel boundaries are equal to each other and do not depend on the
number of random interfaces and the fact that whether the sub-domains contain
the random interfaces {z = ξi} or not. We also notice that the Yee scheme is a
type of multi-stage methods, i.e., at each time step, the update of H1, H2, and
E3 in the system (1.18) consists of two sub-steps: firstly, the new H1 and H2 are
updated based on the old E3 of the previous time step; then, the new E3 is updated
following the new H1, H2 of the current time step. Hence, we need to have the
parallel boundaries updated twice. Since we decompose the computational domain
in the x−direction, only parallel boundaries for H2 and E3 need updating (see the
Yee scheme in (1.18)).

The parallelization of the Monte Carlo sampling stage as a post-processing is
simpler than that of the Yee scheme stage because we parallel our codes based on
the number of samples used in the Monte Carlo method and all these samples are
independent of each other. Thus we only need to divide the samples into portions
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and assign each portion to a process. We, then, collect the results from all processes
to obtain the aiming CDFs.

For numerical simulations, we test our parallel codes with two cases. In the
first case, we simulate with two random variables or interfaces with initial and
boundary data as in (3.6) and (3.7) to illustrate for the necessity of updating of
both physical and parallel boundaries in each sub-domain. And in the second case,
we test with three random interfaces with initial and boundary conditions (3.2) and
(3.3) aiming for the saving of computational time. The numerical results of these
tests are similar to those of the serial cases shown in Figs. 8, 11, respectively.

In Figure 5, we plot the computational time (in minutes) for different numbers
of processes used in the parallel computation. The result obtained from the number
of processes 1 is equivalent to that of a serial code. We conclude that using parallel
computation, we can save a considerable amount of time. As shown in the figure,
a parallel code with 8 processes is about 8 times faster than a serial code. The
increase of computational time in case of two random variables or interfaces with
12 processes can be explained by the increase of the data transferring cost among
the processes. Hence, in our problem, we conclude that parallel codes using 8
processes are more optimal for cases of 2 random interfaces; whereas for 3 and 5
interfaces, 16 processes yield faster computational time.

In Figure 12, we further test with the case of 5 random interfaces with initial /
boundary conditions as in (3.2)–(3.3) and other parameters are as below:






µ1 = ε1 = 1,

µ2 = ε2 = 2,

µ3 = ε3 = 3,

µ4 = ε4 = 4,

µ5 = ε5 = 1,

µ6 = ε6 = 2,

and






ξ1 ∈ (a1, b1) = (−1,−0.5),

ξ2 ∈ (a2, b2) = (−0.4,−0.1),

ξ3 ∈ (a3, b3) = (0, 0.5),

ξ4 ∈ (a4, b4) = (1, 1.4),

ξ5 ∈ (a5, b5) = (1.5, 2),

(4.1)

It is shown in the figure that the mean and variance of E3 behave more wildly
than those of lesser numbers of random interfaces. It is because with the introduc-
tion of 5 random interfaces, their fluctuations occur in most of the computational
domain Ω.

5. Conclusion

We studied the uncertainty propagation from parameters pertaining to certain
random media for which multiple media randomly interface. Hence, multiple ran-
dom parameters are present in the system considered here, and then the compu-
tational cost via the PC expansions grows exponentially with the dimensionality,
i.e. the number of random parameters (ξi in this article). To overcome such di-
mensionality issues, rather than the tensor products of one-dimensional nodal sets,
the stochastic collocation on a sparse grid by e.g. the Smolyak algorithm can be
considered (see e.g [28], [26]). However, this collocation method is for approximat-
ing the multi-dimensional integrations involved in the coefficients, e.g. in (1.12).
To avoid the dimensionality problem, we compute the PC modes in each interval
of the level set function z (see Figure 1) which makes the computational cost grow
linearly with the dimensionality. Furthermore, evaluating the integrations via the
explicit formula given in [12], we avoid also the integration errors with low com-
putational cost. In the numerical simulations as in Figs. 5 and 12, the 5 random
parameters or interfaces were considered. Since increasing the number of random
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Figure 5. Computational time of different number of PC modes. x-
axis is the number of processes used in the computation. Number of
processes = 1 is equivalent to the serial codes.

parameters increases the computational time only linearly, with a linear growth
cost, more random parameters can be taken into account in the (parallel) com-
putations. We believe that our approach can be easily and efficiently applied to
wave-type equations or conservation laws with multiple random parameters.
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Figure 6. Case I: Evolution of Cumulative distribution function (CD-
F) of E3 at x = 0, y = 0.75 with N = 10, (µi, εi), µ1 = ε1 = 1,
µ2 = ε2 = 2 and µ3 = ε3 = 3; LEFT: with a relatively small fluctuation
(a = −0.5, b = 0, δ = 0.6); RIGHT: with a relatively large fluctuation
(a = −1, b = 0.8, δ = 2).
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Figure 7. Case II: TOP: Evolution of Cumulative distribution func-
tion (CDF) of E3 at x = 0, y = 0.75 with N = 10, initial and boundary
conditions as in (3.2) and (3.3); BOTTOM: mean and variance of E3 at
t = 1.5, respectively.
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Figure 8. Case II: TOP: Evolution of Cumulative distribution func-
tion (CDF) of E3 at x = 0, y = 0.75 with N = 10 using compatible
initial/boundary conditions (3.6) and (3.7), µ and ε as in (3.4); BOT-
TOM: mean and variance of E3 at t = 1.5, respectively.
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Figure 10. PC modes decay of E3 with 2 random interfaces at
x = 0, y = 0.75, t = 1.5. The z-axis is plotted in log scale. LEFT:
initial/boundary conditions as in (3.2) and (3.3); RIGHT: compatible
initial/boundary conditions (3.6) and (3.7).
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Figure 11. CDF, mean and variance of E3 at x = 0, y = 0.75 with 3
independent random variables and 5 PC modes using initial/boundary
conditions (3.2) and (3.3), µ and ε as in (3.4) with additional µ4 = ε4 = 4
if ξ3 ≤ z < ξ4.
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Figure 12. CDF, mean and variance of E3 with 5 random interfaces
with initial/boundary conditions (3.2)–(3.3) and other parameters as in
(4.1). PC = 5.


