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Abstract. Let u∈C(R,H1) be the solution to the initial value problem for a 2D semi-
linear Schrödinger equation with exponential type nonlinearity, given in [1]. We prove
that the Lr norms of u decay as t→±∞, provided that r>2.
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1 Introduction

In this work, we study some asymptotic properties of solution to the following initial
value Schrödinger equation

i∂tu+∆xu= f (u), in Rt×R
2
x, (1.1)

with data
u0 :=u(0,.)∈H1(R2), (1.2)

where u :=u(t,x) is a complex-valued function of (t,x)∈R×R2, and

f (u) :=u
(

e4π|u|2−1
)

. (1.3)

Two important conserved quantities of (1.1) are the mass and the Hamiltonian. The mass
is defined by

M(u(t)) :=‖u(t)‖2
L2(R2), (1.4)
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and the Hamiltonian is defined by

H(u(t)) :=‖∇u(t)‖2
L2(R2)+

1

4π
‖e4π|u(t)|2−1−4π|u(t)|2‖L1(R2). (1.5)

We know [1] that the Cauchy problem (1.1)-(1.2) has a unique solution u in the space
C(R,H1(R2))∩L4

loc(C
1/2(R2)). Moreover, u satisfies conservation of the mass and the

Hamiltonian. Our aim, in this paper, is to prove some asymptotic properties of such
solution.

Before going further, let recall some historic facts about well-posedness of the mono-
mial defocusing semilinear Schrödinger equation

i∂tu+∆xu= |u|p−1u, p>1, u : (−T∗,T∗)×R
d→C. (1.6)

A solution u to (1.6) satisfies conservation of the mass and the Hamiltonian

Hp(u(t)) :=‖∇u(t)‖2
L2(R2)+

2

p+1

∫

Rd
|u|p+1(t,x)dx.

Moreover, for any λ>0,

uλ : (−T∗λ2,T∗λ2)×R
d→C,

(t,x) 7−→λ
2

1−p u(λ−2t,λ−1x)

is a solution to (1.6). Note also that for sc :=d/2−2/(p−1), the Ḣsc(Rd) norm is relevant
in the well-posedness theory of (1.6) because it is invariant under the mapping

f (x) 7−→λ
2

1−p f (λ−1x), λ>0.

We refer to Eq. (1.6) with the notation NLSp(Rd) and we limit our discussion to the
case 0≤ sc ≤1. If sc>1, (1.6) is locally well-posed in Hs, for s> sc.

1. NLSp(Rd) local well-posedness in Hs(Rd). It is known (see, e.g., [2–4]) that

(a) If s> sc, then (1.6) is locally well-posed in Hs, with an existence interval depending
only upon ‖u0‖Hs .

(b) For s = sc, (1.6) is locally well-posed in Hs, with an existence interval depending
upon eit∆u0.

(c) If s< sc, then (1.6) is ill-posed in Hs (see, e.g., [5–9]).

So, it is naturel to refer to Hsc as the critical regularity for (1.6). 2. NLSp(Rd) global

well-posedness .
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(a) The energy subcritical case sc < 1. Using local well-posedness and conservation
laws, we obtain global well-posedness of (1.6) in H1. It is expected that the local
Hsc solutions of (1.6) extend to global solutions. For certain choice of p,d, there are
results (see for instance [10–14]) which show that Hs initial data evolve into global
solutions of (1.6) for s∈(s̃p,d,1) with sc< s̃p,d<1 such that s̃p,d is close to 1 and away
from sc. For all problems with 0≤sc<1, global well-posedness in the scale invariant
space Hsc is unknown but conjured to hold. Moreover, the solutions scatter when
p> p∗ :=1+4/d [4, 15].

(b) The energy critical case sc = 1. Since the local existence interval does not depend
only on ‖u0‖H1 , an iteration of the local well-posedness theory fails to prove global
well-posedness. But using new ideas of Bourgain in [11] (see also [16]) (which
treated the radial case in dimension 3) and a new interaction Morawetz inequal-
ity [13], the energy critical case of (1.6) is now completely resolved [17–19]. Fi-
nite energy initial data u0 evolve into global solution u with finite space-time size
‖u‖

L
[2(2+d)]/(d−2)
t,x

<∞ and scatter.

(c) The energy supercritical case sc > 1. Global well-posedness for the defocusing en-
ergy supercritical NLSp(Rd) is an outstanding open problem (see [5, 7, 9] for some
partial results).

3. The two space dimensions case. The initial value problem NLSp(R2) is energy
subcritical for all p > 1. So it is natural to consider problems with exponential non-
linearities, which have several applications, as for example the self trapped beams in
plasma [20]. Cazenave considered in [21] the Schrödinger equation with decreasing
exponential nonlinearity and showed global well-posedness and scattering. With in-
creasing exponentials the situation is more complicated because there’s no a priori L∞

control of the nonlinear term. Moreover, the two dimensional case is interesting be-
cause of its relation to the critical Moser-Trudinger inequalities (see [22, 23]). The two
dimensional Schrödinger problems with exponential growth nonlinearities was studied,
for small Cauchy data, by Nakamura and Ozawa in [24]. They proved global well-
posedness and scattering. Later on, Colliander-Ibrahim-Majdoub-Masmoudi considered
the Schrödinger Cau-chy problem (1.1)–(1.2).

Definition 1.1. The Cauchy problem (1.1)–(1.2) is said to be subcritical if

H(u0)<1.

It is critical if H(u0)=1 and supercritical if H(u0)>1.

They obtained [1] global well-posedness in the energy space for both subcritical and
critical cases. In the supercritical case, they obtained an instability result (similar results
was proved for the wave equation [25, 26]). Recently, subtracting the cubic term of the
nonlinearity (1.3), Ibrahim-Majdoub-Masmoudi-Nakanishi proved in [27] scattering for

i∂tu+∆xu=u(e4π|u|2−1−4π|u|2), on Rt×R
2
x (1.7)
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in the subcritical case (H(u0) < 1). They used a new interaction Morawetz estimate
proved independently by Colliander et al. and Planchon-Vega [28, 29]. The critical case
(H(u0) = 1) is an open problem (similar results was proved for the wave equation [30,
31]).

In the light of [1, 27], we consider the Schrödinger equation (1.1), in both subcritical
and critical cases (H(u0)≤1) and we show decay of solution in Lr(R2) norm for 2<r<∞.

Remark 1.2. We mention that

1. In order to prove scattering, the authors in [27] have subtracted the cubic part from
the nonlinearity to avoid the critical exponent p∗.

2. For p∗=1+4/d, a complete scattering theory is available in the conformal space of
functions f ∈H1(Rd) such that

∫

|x|2| f (x)|2dx<∞ (see [32–34]).

3. The scattering result proved in [27] implies that, for any r>2, we have the following
decay result

lim
t→∞

‖u(t)‖Lr(R2)=0, (1.8)

where u∈C(R,H1(R2)) is the solution to (1.7)–(1.2).

4. In [27], scattering was established only in the subcritical case (H(u0)< 1) and for
Eq. (1.7).

5. Using the same estimates as in this paper, it is easier to prove the same decay result
in the case of (1.7).

6. Recently, extending previous results obtained in [4,15], Viscigilia [35] proved a simi-
lar result of decay for the solution to the Cauchy problem associated to a Schrödinger
equation with a monomial type nonlinearity.

1.1 Main result

Our main result can be stated as follows.

Theorem 1.3. Let u0 ∈ H1(R2) such that H(u0)≤ 1 and u∈C(R,H1(R2)) be the solution to
(1.1)–(1.2). Thus

1. If limsupt→∞‖∇u(t)‖L2(R2)<1, then

lim
t→∞

‖u(t)‖Lr(R2)=0, for every 2< r<∞.

2. If limsupt→∞‖∇u(t)‖L2(R2)=1, then

liminf
t→∞

‖u(t)‖Lr(R2)=0, for every 2< r<∞.

Moreover for any sequence of positive real numbers (tn) tending to infinity, there exist a
subsequence denoted (sn) and a sequence of positive real numbers (rn), such that

lim
n→∞

rn =0 and lim
n→∞

‖u(sn+rn)‖Lr(R2)=0.
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Remark 1.4. Consequently, if H(u0)<1, then

lim
t→∞

‖u(t)‖Lr(R2)=0, for every 2< r<∞.

1.2 Tools

In what follows, we collect some estimates needed in the sequel. We say that a couple
(q,r) is Schrödinger admissible (for short S-admissible), if

2≤q,r≤∞, (q,r) 6=(2,∞) and
1

q
+

1

r
=

1

2
.

In order to control the solution of (1.1), we will use the following Strichartz estimate [36].

Proposition 1.5. (Strichartz estimate) Let I ⊂R be a time slab, t0 ∈ I and (q,r), (α,β) two
S-admissimble pairs. Then, a constant C exists such that, for any u∈C(I,H1(R2)), we have

‖u‖Lq(I,W1,r(R2))≤C
(

‖u(t0,.)‖H1(R2)+‖i∂tu+∆xu‖
Lα

′
(I,W1,β

′
(R2))

)

. (1.9)

In particular we have the following energy estimate.

Proposition 1.6. (Energy estimate) With the same hypothesis we have

sup
t∈I

‖u(t,.)‖H1(R2)≤C
(

‖u(t0,.)‖H1(R2)+‖i∂tu+∆xu‖L1(I,H1(R2))

)

. (1.10)

In order to control the nonlinear part of the energy in L1
t (H1

x), we will use the follow-
ing Moser-Trudinder inequality [22, 37, 38].

Proposition 1.7. (Moser-Trudinger inequality) Let α∈(0,4π), a constant Cα exists such that
for all u∈H1(R2) satisfying ‖∇u‖L2(R2)≤1, we have

∫

R2

(

eα|u(x)|2−1
)

dx≤Cα‖u‖2
L2(R2). (1.11)

Moreover, (1.11) is false if α≥4π.

Remark 1.8. α=4π becomes admissible if we take ‖u‖H1(R2)≤1 rather than ‖∇u‖L2(R2)≤
1. In this case

K := sup
‖u‖

H1(R2)
≤1

∫

R2

(

e4π|u(x)|2−1
)

dx<∞, (1.12)

and this is false for α>4π. See [23] for more details.

Thanks to the following L∞ logarithmic estimate, coupled with the previous inequal-

ities, we will be able to control ‖e4π|u|2−1‖L1
T L2 .
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Proposition 1.9. (Log estimate) Let β∈]0,1[. For any λ>
1

2πβ and any 0<µ≤1, a constant

Cλ exists such that, for any function u∈H1(R2)∩Cβ(R2), we have

‖u‖2
L∞(R2)≤λ‖u‖2

µ log

(

Cλ+
8β‖u‖Cβ(R2)

µβ‖u‖µ

)

, (1.13)

where

‖u‖2
µ :=‖∇u‖2

L2(R2)+µ2‖u‖2
L2(R2). (1.14)

Recall that Cβ(R2) denotes the space of β-Hölder continuous functions endowed with
the norm

‖u‖Cβ(R2) :=‖u‖L∞(R2)+sup
x 6=y

|u(x)−u(y)|
|x−y|β .

We refer to [40] for the proof of this Proposition and for more details. We just point out
that the condition λ>1/(2πβ) in (1.13) is optimal.

Finally, we recall the following abstract result.

Lemma 1.10. (Bootstrap Lemma) Let T>0 and X∈C([0,T],R+) such that

X≤ a+bXθ , on [0,T],

where a, b>0, θ>1, a< (1−1/θ)(θb)−1/θ and X(0)≤ (θb)−1/(θ−1). Then

X≤ θ

θ−1
a, on [0,T].

We mention that C denotes an absolute positive constant which may vary from line
to line. If A and B are nonnegative real numbers, A.B means that A≤CB. Moreover,
we denote for 1≤ r≤∞ and 1≤ s,T<∞,

‖u‖Ls
T Lr :=

(

∫ T

0
‖u(t)‖s

Lr(R2)dt
)

1
s
, ‖u‖Ls Lr :=

(

∫ +∞

0
‖u(t)‖s

Lr(R2)dt
)

1
s
.

This paper is organized as follows. The next section is devoted to give some technical
results. In the last section we prove our main result.

2 Preliminary results

In this section, we give some technical Lemmas needed to prove our main result about
decay of solution to the Shrödinger equation (1.1).
For any time slab I⊂R and any ϕ∈H1(R2), we denote

‖u‖S1(I) :=‖u‖L∞(I,H1(R2))+‖u‖L4(I,W1,4(R2)),



Decay of Solutions to a 2D Schrödinger Equation with Exponential Growth 43

and the Hamiltonian

H(ϕ) :=‖∇ϕ‖2
L2(R2)+

1

4π
‖e4π|ϕ|2 −1−4π|ϕ|2‖L1(R2).

For small time, we have the following uniforme estimate.

Lemma 2.1. Let 0 < η < 1, (ϕn) a sequence of H1(R2) satisfying supn‖ϕn‖H1(R2) < ∞ and

H(ϕn)≤1. We denote by un the solution in C(R,H1(R2)) to (1.1) with data ϕn. Assume that
for some T1>0,

sup
n

‖∇un(t)‖L2(R2)≤η, ∀t∈ [0,T1].

Then there exist T>0 and a constant C(η) such that

sup
n

(

‖un‖S1(0,T)

)

≤C(η).

Proof. Using Strichartz estimate (1.9) we have

‖un‖S1(0,T)≤C
(

‖ϕn‖H1(R2)+‖ f (un)‖L1
T(H1(R2))

)

.1+‖ f (un)‖L1
T(H1(R2))

.1+‖ f (un)‖L1
T(L2(R2))+‖∇ f (un)‖L1

T(L2(R2)). (2.1)

Let ε>0, there exists a positive real number Cε such that

‖ f (un)‖L1
T L2 ≤Cε

∥

∥

∥
un

(

e4π(1+ε)|un|2−1
)∥

∥

∥

L1
T L2

≤Cε‖un‖L4
T L4

∥

∥

∥
e4π(1+ε)|un|2 −1

∥

∥

∥

L
4
3
T L4

≤Cε‖un‖S1(0,T)

∥

∥

∥
e4π(1+ε)|un|2−1

∥

∥

∥

L
4
3
T L4

. (2.2)

For ε small enough and T≤T1,

∥

∥

∥
e4π(1+ε)|un|2−1

∥

∥

∥

L
4
3
T L4

≤
∥

∥

∥

∥

∥

∥

∥
e16π(1+ε)|un|2−1

∥

∥

∥

1
4

L1

∥

∥

∥

∥

L
4
3
T

≤
∥

∥

∥
e4π(1+ε)|un|2−1

∥

∥

∥

1
4

L∞
T L1

∥

∥

∥
e3π(1+ε)‖un‖2

L∞

∥

∥

∥

L
4
3
T

.
∥

∥

∥
e3π(1+ε)‖un‖2

L∞

∥

∥

∥

L
4
3
T

. (2.3)

In fact, using Moser-Trudinger inequality (1.11) for (1+ε)η2
<1 and t≤T, we obtain

‖e4π(1+ε)|un(t)|2−1‖L1(R2)=

∥

∥

∥

∥

e
4π(1+ε)η2( |un(t)|

η )
2

−1

∥

∥

∥

∥

L1(R2)

.‖un(t)‖2
L2(R2).‖ϕn‖2

L2(R2).1.
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For any λ>
1
π and µ∈]0,1], by the logarithmic inequality (1.13), we have

e
3(1+ε)π‖un‖2

L∞
x ≤
(

C+2

√

2

µ

‖un‖
C

1
2

‖un‖µ

)3(1+ε)λπ‖un‖2
µ

≤
(

C+2

√

2

µ(η2+Mµ2)
‖un‖

C
1
2

)3(1+ε)(η2+Mµ2)λπ

.
(

1+‖un‖
C

1
2

)3(1+ε)(η2+Mµ2)λπ
, (2.4)

where M :=supn‖ϕn‖2
L2 . Taking ε,µ close to zero, λ close to 1/π and choosing suitably η,

there exists a nonnegative real r such that

4(1+ε)(η2+Mµ2)λπ≤ r<4. (2.5)

Then, using (2.4), for some real number a satisfying 1/r=1/4+1/a, we have

‖e
3(1+ε)π‖un‖2

L∞
x ‖

L
4
3
T

.‖1+‖un‖
C

1
2
‖

3r
4

Lr
T

.
(

T
1
r +T

1
a ‖un‖

L4
TC

1
2

)
3r
4

.T
3
4 +T

3r
4a ‖un‖

3r
4

S1(0,T)
. (2.6)

Plugging the estimates (2.2)-(2.3)-(2.6) together, we obtain for small T,

‖ f (un)‖L1
T L2 .

(

T
3
4 +T

3r
4a ‖un‖

3r
4

S1(0,T)

)

‖un‖S1(0,T). (2.7)

In what follows, we control ‖ f (un)‖L1
T Ḣ1 . For any ε>0, we have

‖∇ f (un)‖L1
T L2 .

∥

∥

∥
∇un

(

e4π(1+ε)|un|2−1
)
∥

∥

∥

L1
T L2

.‖∇un‖L4
T L4‖e4π(1+ε)|un|2−1‖

L
4
3
T L4

.‖un‖S1(0,T)‖e4π(1+ε)|un|2 −1‖
L

4
3
T L4

.

Arguing as previously, we obtain

‖∇ f (un)‖L1
T L2 .

(

T
3
4 +T

3r
4a ‖un‖

3r
4

S1(0,T)

)

‖un‖S1(0,T).

Thus, by (2.1),

‖un‖S1(0,T).1+
(

T
3
4 +T

3r
4a ‖un‖

3r
4

S1(0,T)

)

‖un‖S1(0,T).
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Let Xn(T) :=‖un‖S1(0,T)+1. For small T, we have

Xn(T).1+
(

T
3
4 +T

3r
4a ‖un‖

3r
4

S1(0,T)

)

Xn(T)

.1+T
3r
4a

(

1+‖un‖S1(0,T)

)
3r
4

Xn(T)

.1+T
3r
4a Xn(T)

1+ 3r
4 .

Taking account of Lemma 1.10, the previous inequality and (2.5), we obtain, for small
time T,

sup
n

(

‖un‖S1(0,T)

)

.C(η).

The proof of Lemma 2.1 is achieved.

Our next preliminary result is the following

Lemma 2.2. Let (ϕn) a sequence of H1(R2) such that supn‖ϕn‖H1(R2)<∞, H(ϕn)≤1 and ϕn

converging weakly to ϕ in H1(R2). Then,

H(ϕ)≤1.

Proof. We denote by

F(x) := e4πx2 −4πx2−1,

bn :=
1

4π

∫

R2
F(ϕn(x))dx, b :=

1

4π

∫

R2
F(ϕ(x))dx,

an :=‖∇ϕn‖2
L2(R2), a :=‖∇ϕ‖2

L2(R2).

It follows that

H(ϕn)= an+bn and H(ϕ)= a+b.

Since ϕn converges weakly to ϕ in H1, then, up to subsequence extraction, ϕn converges
to ϕ in L2

loc. Hence, ϕn converges almost everywhere to ϕ. Then, with Fatou Lemma, we
have

b≤ liminf
n→∞

bn.

Thanks to the previous inequality with the fact that an+bn =H(ϕn)≤1, we have

limsup
n→∞

an ≤1−liminf
n→∞

bn ≤1−b.

Let ψ∈L2(R2) such that ‖ψ‖L2(R2)=1. By duality argument

|〈∇ϕn,ψ〉L2(R2) |≤
√

an.
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Taking the limit as n tends to infinity, we obtain

|〈∇ϕ,ψ〉L2(R2) |2≤ limsup
n→∞

an,

which implies that

a= sup
‖φ‖L2(R2)=1

∣

∣〈∇ϕ,φ〉L2(R2)

∣

∣

2≤ limsup
n→∞

an.

Thus H(ϕ)≤1. The proof of Lemma 2.2 is achieved.

Using Lemmas 2.1–2.2, we obtain the following result.

Lemma 2.3. Let χ∈C∞
0 (R2) to be a cut-off function, 0<η<1 and (ϕn) a sequence in H1(R2)

satisfying supn‖ϕn‖H1(R2)<∞, H(ϕn)≤1 and ϕn ⇀ ϕ in H1(R2). Let un (respectively u) to

be the solution in C(R,H1) to (1.1) with initial data ϕn (respectively ϕ). Assume that for some
T>0, supn‖∇un(t)‖L2(R2)≤η, ∀t∈ [0,T]. Then, for every ε>0, there exist Tε>0 and nε∈N

such that
‖χ(un−u)‖L∞

Tε
L2 < ε, ∀n>nε.

Remark 2.4. Note that the existence of u ∈ C(R,H1) in Lemma 2.3 is guaranteed by
Lemma 2.2.

Proof of Lemma 2.3. Let vn :=χun and v :=χu. We compute

i∂tvn+∆vn =∆χun+2∇χ∇un+χ f (un), vn(0)=χϕn,

and
i∂tv+∆v=∆χu+2∇χ∇u+χ f (u), v(0)=χϕ.

With the integral formula, we obtain

vn(t,x)= eit∆χϕn+i
∫ t

0
ei(t−s)∆

(

∆χun+2∇χ∇un+χ f (un)
)

ds,

and

v(t,x)= eit∆χϕ+i
∫ t

0
ei(t−s)∆

(

∆χu+2∇χ∇u+χ f (u)
)

ds.

We denote wn :=vn−v, zn :=un−u. By Strichartz estimate

‖wn‖L∞
T L2 .‖χ(ϕn−ϕ)‖L2(R2)+‖∆χzn‖L1

T L2

+2‖∇χ∇zn‖L1
T L2+‖χ( f (un)− f (u))‖L1

T L2 . (2.8)

Thanks to Rellich Theorem, up to subsequence extraction, we have

lim
n→∞

‖χ(ϕn−ϕ)‖L2(R2)=0. (2.9)
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Moreover, by Hölder inequality

‖∆χzn‖L1
T L2+2‖∇χ∇zn‖L1

T L2 ≤N
(

‖∆χ‖L1
T L4+2‖∇χ‖L1

T L4

)

≤NT
(

‖∆χ‖L4(R2)+2‖∇χ‖L4(R2)

)

.T, (2.10)

where N :=‖u‖L∞ H1+supn‖un‖L∞ H1 .

Using a convexity argument, for any ε>0, there exists Cε>0 such that

| f (z1)− f (z2)|≤Cε|z1−z2| ∑
i=1,2

(

e4π(1+ε)|zi|2−1
)

.

Since ‖wn‖L4
T L4 ≤NT1/4, we have for any ε>0,

‖χ( f (un)− f (u))‖L1
T L2 .‖wn‖L4

T L4

(

‖e4π(1+ε)|u|2−1‖
L

4
3
T L4

+‖e4π(1+ε)|un|2−1‖
L

4
3
T L4

)

.T
1
4

(

‖e4π(1+ε)|u|2−1‖
L

4
3
T L4

+‖e4π(1+ε)|un|2−1‖
L

4
3
T L4

)

. (2.11)

Arguing as previously and using (2.6) with Lemma 2.1, there exist some positive real
numbers a,r,α>0 satisfying 1/r=1/4+1/a and

‖e4π(1+ε)|un|2−1‖
L

4
3
T L4

.T
3
4 +T

3r
4a ‖un‖

3r
4

S1(0,T)
.Tα. (2.12)

Moreover, using a continuity argument with the fact that

‖∇u(0)‖L2(R2)≤ liminf
n→∞

‖∇un(0)‖L2(R2)≤η,

there exist a positive time denoted also T > 0 and a real number 0 < η1 < 1 such that
sup
[0,T]

‖∇u(t)‖L2(R2)≤η1. So, arguing as previously, there exists a real number, denoted also

α>0, such that

‖e4π(1+ε)|u|2−1‖
L

4
3
T L4

.T
3
4 +T

3r
4a ‖u‖

3r
4

S1(0,T)
.Tα. (2.13)

As a consequence of (2.11)-(2.12)-(2.13),

‖χ( f (un)− f (u))‖L1
T L2 .Tα, α>0. (2.14)

The proof of Lemma 2.3 is achieved thanks to (2.8)-(2.9)-(2.10)-(2.14).

We conclude this section with the following result.
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Lemma 2.5. Let u0 ∈ H1 such that H(u0)≤ 1 and u∈C(R,H1) be the solution to (1.1) with
initial data u0. Take (tn) a sequence of positive real numbers tending to infinity. Then, there are
two possible cases:

1. There exist two real numbers T>0 and 0<η<1, such that

sup
n

‖∇u(tn+t)‖L2(R2)≤η, ∀t∈ [0,T]. (2.15)

2. There exist a subsequence denoted by (sn) and sequence of positive real numbers (rn) such
that

lim
n→∞

rn =0 and lim
n→∞

‖∇u(sn+rn)‖L2(R2)=1. (2.16)

Proof. We proceed by contradiction. Assume that (2.15) is false. Then, there exists a
sequence (rn) of positive real numbers such that

0< rp ≤
1

p
and 1− 1

2p
<sup

n
‖∇u(tn+rp)‖L2(R2)≤1, ∀p≥1.

If there exist infinitely many p such that

sup
n

‖∇u(tn+rp)‖L2(R2)=‖∇u(tn(p)+rp)‖L2(R2),

then
lim

p
‖∇u(tn(p)+rp)‖L2(R2)=1. (2.17)

Now, if |{n(p),p≥1}|<∞, we have

sup
p

‖∇u(tn(p)+rp)‖L2(R2)≤ sup
[0,1+maxtn(p)]

‖∇u(t)‖L2(R2)<1.

This contradicts (2.17). So, up to subsequence extraction, we have

1− 1

2p
<‖∇u(sp+rp)‖L2(R2)≤1, ∀p≥1.

In particular, we have (2.16).
Now, assume that there exist infinitely many p such that supn‖∇u(tn+rp)‖L2(R2) is

not atteigned. So, up to extraction of (rp), for any p there exist infinitely many n such that

∣

∣

∣

∣

sup
m

‖∇u(tm+rp)‖L2(R2)−‖∇u(tn+rp)‖L2(R2)

∣

∣

∣

∣

≤ 1

2p
.

Thus, for any p there exist infinity many n such that

1− 1

p
≤‖∇u(tn+rp)‖L2(R2)≤1.
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So, there exists an increasing integer function ϕp such that

1− 1

p
≤‖∇u(tϕp(n)+rp)‖L2(R2)≤1, ∀p≥1,∀n∈N.

Then

1− 1

p
≤‖∇u(tϕp(p)+rp)‖L2(R2)≤1, ∀p≥1.

Finally, for some subsequence of (tn) denoted by (sn), we have

lim
n→∞

‖∇u(sn+rn)‖L2(R2)=1.

The proof of Lemma 2.5 is finished.

Now, we are ready to prove of the main result of this paper.

3 Proof of Theorem 1.3

By an interpolation argument it is sufficiant to prove Theorem 1.3 for r=3. We recall the
following Gagliardo-Nirenberg inequality

‖u(t)‖3
L3(R2)≤C‖u(t)‖2

H1(R2)

(

sup
x

‖u(t)‖L2(Q1(x))

)

, (3.1)

where Qa(x) denotes the square centered at x whose edge has length a.

First case: limsup
t→∞

‖∇u(t)‖L2(R2)<1.

We proceed by contradiction. Assume that there exist a sequence (tn) of positive real
numbers and ε>0 such that limn→∞ tn =∞ and

‖u(tn)‖L3(R2)> ε, ∀n∈N. (3.2)

By (3.2) and (3.1), there exist a sequence (xn) in R2 and a positive real number denoted
also by ε>0 such that

‖u(tn)‖L2(Q1(xn))≥ ε, ∀n∈N. (3.3)

Let ϕn(x) :=u(tn,x+xn). Using the conservation laws, we obtain supn‖ϕn‖H1 <∞. Then,
up to a subsequence extraction, there exists ϕ∈H1 such that ϕn converges weakly to ϕ in
H1. By Rellich Theorem, up to a subsequence extraction, we have

lim
n→∞

‖ϕn−ϕ‖L2(Q1(0))=0. (3.4)

Now, (3.3) implies that, ‖ϕn‖L2(Q1(0))≥ ε. So, using (3.4), there exists a positive real num-
ber denoted also ε>0 such that

‖ϕ‖L2(Q1(0))≥ ε. (3.5)
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We denote by ū∈C(R,H1) the solution of (1.1) with data ϕ. Take a cut-off functin χ∈
C∞

0 (R2) satisfying 0 ≤ χ ≤ 1, χ = 1 on Q1(0) and supp(χ)⊂ Q2(0). Using (3.5) with a
continuity argument, there exists T>0 such that

inf
t∈[0,T]

‖χū(t)‖L2(R2)≥
ε

2
. (3.6)

Since H(ϕn)= H(u)≤ 1, there exists a unique un ∈C(R,H1), solution to (1.1) with data
ϕn. Moreover,

un(t,x)=u(t+tn,x+xn).

Using Lemma 2.5, there exist two real numbers 0<η<1 and T>0, such that

sup
n

‖∇un(t)‖L2(R2)≤η, ∀t∈ [0,T]. (3.7)

Now, by Lemma 2.3 and (3.7), there is a positive time denoted also T and nε∈N such that

‖χ(un−ū)‖L∞
T L2

x
≤ ε

4
, ∀n≥nε. (3.8)

Hence, for all t∈ [0,T] and n≥nε,

‖χun(t)‖L2(R2)≥‖χū(t)‖L2(R2)−‖χ(un−ū)(t)‖L2(R2)≥
ε

4
. (3.9)

By the proprieties of χ and the last inequality, for all t∈ [0,T] and n≥nε,

‖u(t+tn)‖L2(Q2(xn))=‖un(t)‖L2(Q2(0))≥
ε

4
. (3.10)

This implies that

‖u(t)‖L2(Q2(xn))≥
ε

4
, ∀t∈ [tn,tn+T], ∀n≥nε. (3.11)

Since, by Hölder inequality, we have

‖u(t)‖L2(Q2(xn)).‖u(t)‖L8(Q2(xn)),

then, there exists a real number α>0 such that

‖u(t)‖L8(Q2(xn))≥α, ∀t∈ [tn ,tn+T], ∀n≥nε. (3.12)

Moreover, as limn→∞ tn =∞, we can suppose that tn+1−tn >T for n≥nε. Therefore

‖u‖4
L4 L8 =

∫ ∞

0
‖u(t)‖4

L8 dt≥ ∑
n≥nε

∫ tn+T

tn

‖u(t)‖4
L8 dt

≥ ∑
n≥nε

∫ tn+T

tn

‖u(t)‖4
L8(Q2(xn))

dt≥ ∑
n≥nε

α4T=∞. (3.13)
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This obviously contradicts the fact that u belongs to L4
t L8

x. Hence

lim
n→∞

‖u(tn)‖L3(R2)=0. (3.14)

Second case: limsup
t→∞

‖∇u(t)‖L2(R2)=1.

Let (tn) be a sequence of real numbers such that limn→∞ tn=∞. If we are in the case (2.15),
the same arguments can be applied.

Assume that we are in the case (2.16). Recall that by Lemma 2.5 there exist (sn) a
susequence of (tn) and a sequence of positive real numbers (rn) such that

lim
n→∞

rn =0 and lim
n→∞

‖∇u(sn+rn)‖L2(R2)=1.

We denote yn := sn+rn. We shall prove, by contradiction, that

lim
n→∞

‖u(yn)‖L3(R2)=0.

Assume that there exists a positive real number ε>0 and a subsequence such that

‖u(yn)‖L3(R2)> ε, ∀n∈N. (3.15)

By (3.1), there exist a sequence (xn) in R2 and a positive real number denoted also by
ε>0, such that

‖u(yn)‖L2(Q1(xn))≥ ε, ∀n∈N.

Take ϕn(x) :=u(yn,x+xn). Then

‖ϕn‖L2(Q1(0))≥ ε, ∀n∈N. (3.16)

A staight forward computation leads to

H(ϕn)=H(u)=1, lim
n→∞

‖∇ϕn‖L2(R2)=1, (3.17)

where

H(ϕn)=‖∇ϕn‖2
L2(R2)+

1

4π
‖F(ϕn)‖L1(R2)

=‖∇ϕn‖2
L2(R2)+

1

4π

∫

R2

(

e4π|ϕn|2 −1−4π|ϕn|2
)

dx.

It follows that
lim
n→∞

‖F(ϕn)‖L1(R2)=0.

Using the inequality x4.F(x), we obtain

lim
n→∞

‖ϕn‖L4 =0. (3.18)
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This implies that
lim
n→∞

‖ϕn‖L2(Q1(0))=0,

which contradicts (3.16). Finally

lim
n→∞

‖u(sn)‖L3(R2)=0.

This completes the proof of Theorem 1.3. �
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