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Abstract. Semi-linear n×n systems of the form A∂u/∂x+B∂u/∂y=f can generally be
solved, at least locally, provided data are imposed on non-characteristic curves. There
are at most n characteristic curves and they are determined by the coefficient matri-
ces on the left-hand sides of the equations. We consider cases where such problems
become degenerate as a result of ambiguity associated with the definition of character-
istic curves. In such cases, the existence of solutions requires restrictions on the data
and solutions might not be unique.
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1 Introduction

It is well known that the Cauchy-Kowalevski Theorem tells us that a problem of the form

A
∂u

∂x
+B

∂u

∂y
= f, (1.1)

where u is an n-dimensional vector and A and B are n×n constant matrices, has an an-

alytic solution, at least locally, provided we have analytic data on a non-characteristic

analytic curve. The unique solution can be determined, locally, by solving n scalar equa-

tions given by (1.1), in conjunction with the n found by differentiating the Cauchy data

u=U0(t) on x=x0(t) (1.2)
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along the curve (x,y) = x = x0(t) = (x0(t),y0(t)), to find the 2n first partial derivatives

∂u/∂x and ∂u/∂y. An entirely equivalent way of thinking about characteristics is to

regard them as curves across which u can have discontinuous first derivatives.

The Cauchy-Kowalevski argument fails when the curve is characteristic so that

λ=
dx

dt
, µ=

dy

dt
(not both zero) (1.3)

are such that (1.1) together with the equations got from differentiating (1.2), in vector

form

λ
∂u

∂x
+µ

∂u

∂y
=U′

0, (1.4)

fail to have a unique solution. This of course happens with λ, µ such that
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where I is the n×n identity matrix. Equivalently,
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= |µA−λB|=0. (1.6)

For “most” problems, with no sort of degeneracy associated with the left-hand side of

(1.1), the condition (1.5) would make the curve direction (λ,µ) that of the characteristic.

In the present paper we consider problems such that (1.5) holds for all λ, µ, so that,

whatever direction is used, the system (1.1) fails to have a unique solution. We anticipate

that, since the coefficient matrix of the combined system

(

A B

λI µI

)(

∂u/∂x

∂u/∂y

)

=

(

f

U′
0

)

(1.7)

is singular, whatever data curve is chosen, at least one compatibility condition relating f

and u0 has to be satisfied if the problem (1.1), (1.2) is to have a solution; moreover, that if

this condition holds, the problem can have multiple solutions. It is clear that degeneracy

is associated with the rank of µA−λB being identically less than n.
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We remark that the above comments and conditions apply both when we seek curves

across which ∂u/∂x and ∂u/∂y have jump discontinuities while u remains continuous,

and when we consider weak solutions for systems in which u itself has a jump disconti-

nuity. Indeed, this observation is one of the motivations for the present paper.

Although situations in which (1.6) holds for all λ and µ are not usually discussed in

partial differential equations texts, either from the analytical or numerical viewpoints,

they can readily occur in practice. For example, consider a simple normalised model for

longitudinal elastic waves where t is the time, x the displacement, u the velocity, σ the

stress and X the Lagrangian coordinate relative to the unstressed state:




1 0 0

0 1 0

0 0 0





∂

∂t





x

u

σ



+





0 0 0

0 0 −1

1 0 0





∂

∂X





x

u

σ



=





u

0

σ



. (1.8)

In this case the matrix analogous to that in (1.6) has rank 2. We note that while trivial

manipulations reveal that any one of the dependent variables satisfies the scalar wave

equation with wave velocities ±1, (1.6) tells us nothing about the wave speeds. Of even

more concern is the fact that if the last scalar equation is generalised to the visco-elastic

law ∂x/∂X−σ= ǫ∂σ/∂t, then (1.6) gives ǫλ3 =0, suggesting that jump discontinuities in

the derivatives only occur on t= constant lines for ǫ→0.

Another common situation concerns the derivation of Charpit’s equations for scalar

non-quasi-linear first-order equations of the form

F

(

x,y,u,
∂u

∂x
,
∂u

∂y

)

=0. (1.9)

As in [1], for example, five different quasi-linear equations can easily be written down

for the vector (u,p,q), where p=∂u/∂x, q=∂u/∂y, and most subsets of three of these five

equations satisfy (1.6) identically.

An easily understood example with three independent variables is curl(u,v,w)⊤=0.

Then
(

A1
∂

∂x
+A2

∂

∂y
+A3

∂

∂z

)





u

v

w



=0, (1.10)

where the generalisation of (1.6), namely

3

∑
1

ξiAi=





0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0



,

has rank 2. (This result gives no hint that (u,v,w)⊤ is a gradient.)

Denoting the number of scalar equations by n1, the number of scalar dependent vari-

ables by n2 and the number of independent variables by n3, other n1×n2×n3 examples

are:
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(i) Elastic waves in plane strain and in three dimensions.

Here there are three stress components, two displacements, all functions of (x,y,t)
and we have a 7×7×3 system in which, in the notation of (1.10), the 7×7 matrix

∑
3
1ξiAi has rank 4.

The analogous 12×12 matrix for general three-dimensional waves described by a

12×12×4 system has rank 6.

(ii) Maxwell’s equations.

Considering the 8×6×4 system

curlH=ǫ
∂E

∂t
, curlE=−µ

∂H

∂t
, divE=0, divH=0, (1.11)

we find that the four 8×6 matrices Ai are such that ∑
4
1ξAi has rank 6. However,

choosing just six equations to get a 6×6×4 system with four 6×6 matrices Ai, the

rank can be either 5 or 6, depending on which two equations are dropped; with a

“wrong” selection the system is degenerate. The full 8×6×4 is non-degenerate, but

over-determined. (See [2] for a discussion of over-determined systems.)

(iii) The reduction of general elliptic systems to first-order systems.

When the elliptic equation ∂2u
∂x2 +

∂2u
∂y2 =0 is replaced by

∂u1

∂x
+

∂u2

∂y
=0,

∂u

∂x
−u1=0,

∂u

∂y
−u2=0, (1.12)

we obtain a degenerate system for u=(u,u1,u2)⊤ in which

A=





0 1 0

1 0 0

0 0 0



 , B=





0 0 1

0 0 0

1 0 0



 .

Such systems have been treated in [3], [4] by allocating “weights” to both differen-

tiated and undifferentiated terms, and this always results in determinantal criteria

that do not degenerate. In the above example, the weights for the undifferentiated

terms −u1 and −u2 are equal to the coefficients of u1 and u2, in this case both equal

to −1 and the matrix µA−λB is replaced by





0 µ −λ

µ −1 0

−λ 0 −1



 ,

whose determinant does not vanish for real λ, µ. Indeed, in [4] it is proved that, if

the original higher-order system is elliptic, then, when suitable weights are intro-

duced, the resulting generalised determinant never vanishes for real parameters λ,

µ. We shall return to this result on pages 50 and 63.
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For linear systems with constant coefficients, the method of weights is equivalent to

that of seeking explicit exponential solutions, which is the approach we will adopt

for most of this paper. This will enable us to see, by elementary means, not only

how to classify given degenerate first-order systems, but also to identify the types

of singularities they can support and appropriate boundary conditions.

We also note that partial-differential-algebraic systems are inevitably degenerate when

thought of as quasi-linear systems of partial differential equations and the classification

of such systems has been discussed in [5]. While it is tempting to conjecture that degen-

erate systems are, generally, differential-algebraic, we shall soon find that this is not the

case.

General approach

In the following sections we shall only consider linear and semi-linear problems, with, for

simplicity, the coefficient matrices A and B being constant, although some of the results

could be generalised to allow them to vary with x and y. We take two points of view:

• We first ask whether or not the solutions can have discontinuous first derivatives

across any real curves. For simplicity here, we only consider constant-coefficient

homogeneous equations of the form

A
∂u

∂x
+B

∂u

∂y
=Cu,

where the matrix C is also constant. We then consider the result of seeking a solu-

tion with gradient discontinuities, of the form

u(x,y)=eαy−βx(H1(λy−µx)u0+H2(λy−µx)u1+···), (1.13)

where H1(·) is the integral if the Heaviside function H(·), H′
2 =H1 and so on, and

where α, β and u0, u1 etc. are constant. However, as we shall see, α and β may often

be ignored in a local analysis. More precisely, it is only in cases where we need

to consider several terms in (1.13) simultaneously that the exponential dependence

needs to be taken into account for the purposes of studying singularity propagation.

We shall often refer to u0 as an eigenvector. Note that, as we are only considering

two dimensions, we are free to take αλ+βµ=0, and that not all components of u1

will be determined.

• More generally, we then broaden the discussion to the case of semi-linear equations

with A, B still constant, from the point of view of the existence of solutions and

appropriateness of boundary data.

We start by considering 2×2 systems in Section 2, and then look at 3×3 systems in

Sections 3 - 4. Although our discussion will make use of trivial linear algebra and partial

differentiation, the combination of these ideas turns out to reveal some surprising results.
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2 Two equations with two dependent variables

With two dependent variables, with f=( f ,g)⊤ , the system of PDEs is now just

a11
∂u

∂x
+a12

∂v

∂x
+b11

∂u

∂y
+b12

∂v

∂y
= f (= c11u+c12v in the linear homogeneous case),

a21
∂u

∂x
+a22

∂v

∂x
+b21

∂u

∂y
+b22

∂v

∂y
= g (= c21u+c22v),

with the coefficients aij, bij, cij all constant. For the system not to be completely trivial

(that is, for it not simply to be the pair of algebraic equations ( f =0, g=0), at least one of

the coefficients on the left-hand side must be non-zero; we can thus take a11 =1 without

loss of generality.

The degeneracy condition (1.6) holding for all λ and µ here becomes

|µA−λB|=µ2|A|+λµ(−a11b22+a21b12+a12b21−a22b11)+λ2|B|=0. (2.1)

Hence both A and B are singular,

|A|=0, |B|=0, (2.2)

and, additionally,

a11b22+a22b11= a12b21+a21b12. (2.3)

Note that with a11 =1 6=0, we are free to change our dependent variables, if necessary, to

make a12=0 and add a multiple of the first equation to the second (if necessary) to make

a21=0. The first part of (2.2) reduces to a22=0 while (2.3) leads to b22=0.

The coefficient matrices are now

A=

(

1 0

0 0

)

, B=

(

b11 b12

b21 0

)

. (2.4)

A change of independent variables, replacing (x,y) by (x̂,ŷ) such that x= x̂, y= ŷ+b11x̂,

i.e. x̂= x, ŷ=y−b11x, gives

∂u

∂x̂
=

∂u

∂x
+b11

∂u

∂y
,

∂u

∂ŷ
=

∂u

∂y
,

(

∂u

∂x
=

∂u

∂x̂
−b11

∂u

∂ŷ
,

∂u

∂y
=

∂u

∂ŷ

)

,

and this can be employed to ensure that b11 vanishes, in which case the second of (2.2)

gives b12b21=0.

Scaling (if needed) gives three canonical problems, for each of which rank(µA−λB)=
1. We discuss each in turn, first as a homogeneous constant-coefficient linear system, then

as a semi-linear system, discussing all possible degeneracies.
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Type 2.1. b12=b21=0.

∂u

∂x
= f , 0= g, µA−λB=

(

µ 0

0 0

)

. (2.5)

Linear: Substituting the expansion (1.13) and equating coefficients of the most singular

term, namely H′
1(λy−µx) (which is, of course, equal to H(λy−µx)), shows that, in the

generic case of c22 6=0, u0 =(u0,v0)⊤ can only be non-zero when µ=0 (and hence α=0).

Thus there is a single family of ‘characteristics’ y= constant. When we consider the next

term in the expansion (1.13), we find that u0 vanishes unless

|C+βA|=

∣

∣

∣

∣

c11+β c12

c21 c22

∣

∣

∣

∣

=0,

so that C determines both the x-dependence of u, via β, and its direction, i.e. the eigen-

vector (u0,v0).
However, for c22 = 0, various special cases can occur. In particular, if c12 = c22 = 0, v

can take any values, with singularities along any curves; with c21 =0= c12 = c22, u again

satisfies a first-order PDE with a µ= 0 characteristic, while for c21 6= 0= c12 = c22, u≡ 0.

Next, for c22=0, c21 6=0, c12 6=0, u≡v≡0 and, finally, with c22= c21=0, c12 6=0, both u and

v are indeterminate although they are related through the first PDE.

Semi-linear: If g depends on v, the second of (2.5) is solved to get

v=V(x,y,u) (2.6)

and this is then substituted into the first of (2.5): ∂u/∂x = f , which can be solved as a

family of ODEs given initial data on a curve y=Y(x); v is then determined from (2.6). It

is clear that for us to have a solution, any initial data prescribed for v must satisfy (2.6).

If g is independent of v but varies with u, the second of (2.5) is solved to get u=U(x,y).
Any data prescribed must be consistent with this. Then the first of (2.5) fixes v, provided

that f depends on v; specified data must be consistent. For f independent of v, the first

equation is either an identity or cannot hold.

If g depends upon neither u nor v, the second equation is either impossible to satisfy

or an identity. In the latter case, at least v is then indeterminate.

Type 2.2. b12=1, b21=0.

∂u

∂x
+

∂v

∂y
= f , 0= g, µA−λB=

(

µ −λ

0 0

)

. (2.7)

Linear: We now need µc22+λc21 = 0 so that the single family of characteristics is now

C-dependent, with a single eigenvector satisfying c21u0+c22v0 = 0, as long as c21 and
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c22 do not both vanish. In this case, C determines both the direction of propagation of

singularities and the mode of propagation, i.e. the eigenvector u0. In the extra-degenerate

case of c21 = c22 =0, u and v are indeterminate, and we can have any sort of singularities

on any line, as long as they are compatible with ∂u/∂x+∂v/∂y= c11u+c12v.

Semi-linear: With g depending on v, the second equation can be solved and the result

used in the first, to get a single, generally quasi-linear, PDE for u. Alternatively, u depen-

dence of g can be used to eliminate u and get a single PDE for v. In either case, any initial

data must be consistent with g=0 for there to be a solution. Should g not vary with either

of u or v, the second of (2.7) either (i) holds trivially, with the first not giving a unique

solution for u, v, or (ii) fails to be satisfied so the problem has no solution.

Type 2.3. b12=0, b21=1.

∂u

∂x
= f ,

∂u

∂y
= g, µA−λB=

(

µ 0

−λ 0

)

. (2.8)

Linear: We now have to consider the first two terms in (1.13). Taking u1=(u1,v1)
⊤, this

reveals that u0 = 0 and −µu1 = c12v0, λu1 = c22v0. Now it is only when c12 and c22 do

not both vanish that there is a single family of C-dependent characteristics c22y+c12x=
constant, with a single eigenvector (0,v0)⊤. In this case, C again determines the direction

and mode of singularity propagation. Again, with c12 = c22 = 0, singularities in v can be

arbitrary.

Semi-linear: If neither f nor g has dependence on v, (2.8) requires a compatibility condi-

tion,

d

dy
f =

∂ f

∂y
+g

∂ f

∂u
=

d

dx
g=

∂g

∂x
+ f

∂g

∂u
,

to get u; v is then indeterminate. If one, but not both, of f and g depends on v, the

corresponding equation can be used to find v in terms of u, with the other equation being

an ODE for u; initial data for v must be consistent. Should both f and g vary with v,

v can (in principle) be eliminated to get a (generally fully non-linear) PDE for u. This

determines u and then v can be got from either part of (2.8); specified data has to be

consistent.

It is clear that, in the forms written, Type 2.1 and Type 2.2 are algebraic-differential

systems, while only differential equations make up Type 2.3.

It is easily checked that introducing extra independent variables does not change

these types of degenerate system.
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3 Three equations with three dependent variables

We now turn to non-trivial problems for u=(u,v,w)⊤, with A and B both constant 3×3

matrices. The right-hand side is now ( f ,g,h)⊤ , and in the homogeneous linear case




f

g

h



=Cu=





c11u+c12v+c13w

c21u+c22v+c23w

c31u+c32v+c33w



.

We can again take a11 = 1, then redefine the dependent variables and take linear combi-

nations of the equations, if necessary, to make a12= a13 = a21 = a31=0.

There are now two main cases, since we still need |A|= |B|=0 so both matrices have

rank less than three:

Case 1. Rank(A)=1, so

A=





1 0 0

0 0 0

0 0 0



;

Case 2. Rank(A) = 2, so after another change of dependent variables and another new

combination of equations if needed,

A=





1 0 0

0 1 0

0 0 0



.

We sub-divide Case 1 into sub-cases 1(i) and 1(ii) according to:

Case 1(i). b22=b23=b32=b33=0;

Case 1(ii). At least one of b22, b23, b32, b33 is non-zero. From 0= |µA−λB|=λ2µ(b22b33−
b23b32)−λ3|B|, we see that b22b33 = b23b32, and further manipulation of the second

and third rows and columns can be used to get b22=1, b23=b32=b33=0.

For Case 2, the coefficient of λµ2 in the expansion of |µA−λB| is −b33 so (1.6) gives

b33=0 and then

|µA−λB|=

∣

∣

∣

∣

∣

∣

µ−λb11 −λb12 −λb13

−λb21 µ−λb22 −λb23

−λb31 −λb32 0

∣

∣

∣

∣

∣

∣

=−λ3|B|−λ2µ(b13b31+b23b32)=0, (3.1)

with corresponding PDEs

∂u

∂x
+b11

∂u

∂y
+b12

∂v

∂y
+b13

∂w

∂y
= f ,

vx+b21
∂u

∂y
+b22

∂v

∂y
+b23

∂w

∂y
= g, b31

∂u

∂y
+b32

∂v

∂y
=h. (3.2)
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If b13 6= 0, b23 6= 0, we can take a linear combination of the first and second of (3.2)

to get rid of the ∂w/∂y in the first equation. If b13 6= 0= b23, we can swap the first two

equations, and u with v. Hence we can always assume that b13 =0, while with a change

of independent variables we may take b11=0:

|B|=

∣

∣

∣

∣

∣

∣

0 b12 0

b21 b22 b23

b31 b32 0

∣

∣

∣

∣

∣

∣

=b12b23b31=0 and b23b32=0 (3.3)

from (3.1). We can consider the following sub-cases:

Case 2(i). b31=0, b32 6=0;

Case 2(ii). b31=0, b32=0;

Case 2(iii). b31 6=0, b32 6=0;

Case 2(iv). b31 6=0, b32=0.

In the remainder of this section, we catalogue the canonical types, based on consid-

eration of the left-hand sides of the equations. For each type we will only consider the

basic degeneracies that can occur for the linear problem in which the right-hand side is

Cu. Hence each type will not be covered in detail as in Section 2, where we discussed

all the higher-order degeneracies. Discussion of the resulting semi-linear problems is left

until Section 4.

We remark that the method of weights, as described in the Introduction, would im-

mediately tell us that Type 3.1 - Type 3.3 below are in general equivalent to first-order

scalar equations, while Type 3.4 - Type 3.13 are equivalent to second-order scalar equa-

tions. This already gives general clues about the types of singularity the systems can

support and the boundary conditions they can satisfy. However, we shall find that there

are many special cases to consider.

3.1 Case 1(i)

Combining the last two equations and the last two dependent variables as necessary, the

system can be written as

∂u

∂x
+b11

∂u

∂y
+b12

∂v

∂y
= f , b21

∂u

∂y
= g, 0=h, (3.4)

where f , g and h are (potentially) functions of both the independent variables x and y

and the unknowns u, v and w. Again making a change of variable x= x̂, y= ŷ+b11 x̂ if

needed, the system may be supposed to be of the simpler form

∂u

∂x
+b12

∂v

∂y
= f , b21

∂u

∂y
= g, 0=h. (3.5)
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Depending on whether or not b12 or b21 vanishes, there are then four possibilities, after

further rescaling if needed:

Type 3.1. b12=b21=0.

∂u

∂x
= f , 0= g, 0=h, µA−λB=





µ 0 0

0 0 0

0 0 0



. (3.6)

With u0=(u0,v0,w0)⊤ in (1.13), we have µu0=0 and there appear to be two possibili-

ties. However, for u0=0, we require

(

c22 c23

c32 c33

)

(3.7)

to be singular; we do not consider this special degeneracy further.

We are left with µ=0, as in Type 2.1, but now needing c22c33 6=c23c32. Again, α=0 and

β is determined from C, now by the condition that

|C+βA|=

∣

∣

∣

∣

∣

∣

c11+β c12 c13

c21 c22 c23

c31 c32 c33

∣

∣

∣

∣

∣

∣

=0,

which also determines the mode of propagation (u0,v0,w0) along the characteristics y=
constant.

Type 3.2. b12=1, b21=0.

∂u

∂x
+

∂v

∂y
= f , 0= g, 0=h, µA−λB=





µ −λ 0

0 0 0

0 0 0



. (3.8)

For the generic case, in which

∣

∣

∣

∣

c21 c23

c31 c33

∣

∣

∣

∣

and

∣

∣

∣

∣

c22 c23

c32 c33

∣

∣

∣

∣

are not both zero, we have −µu0+λv0 = 0, so that the characteristics are determined in

terms of C by
∣

∣

∣

∣

∣

∣

−µ λ 0

c21 c22 c23

c31 c32 c33

∣

∣

∣

∣

∣

∣

=0,
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with u0 being an eigenvector of this matrix.

Type 3.3. b12=0, b21=1.

∂u

∂x
= f ,

∂u

∂y
= g, 0=h, µA−λB=





µ 0 0

−λ 0 0

0 0 0



. (3.9)

For the generic case, in which

∣

∣

∣

∣

c12 c13

c32 c33

∣

∣

∣

∣

and

∣

∣

∣

∣

c22 c23

c32 c33

∣

∣

∣

∣

are not both zero, we have u0=0 as in Type 2.3, and, since

−µu1= c12v0+c13w0, (3.10)

λu1= c22v0+c23w0, (3.11)

0= c32v0+c33w0, (3.12)

singularities can propagate in the C-dependent direction given by

∣

∣

∣

∣

∣

∣

−µ c12 c13

λ c22 c23

0 c32 c33

∣

∣

∣

∣

∣

∣

=0,

with associated eigenvector (0,v0,w0)⊤.

Type 3.4. b12=b21=1.

∂u

∂x
+

∂v

∂y
= f ,

∂u

∂y
= g, 0=h, µA−λB=





µ −λ 0

−λ 0 0

0 0 0



. (3.13)

We note that for the generic case of c33 6= 0, w can be eliminated to obtain a non-

degenerate, but special, 2×2 system with a unique characteristic direction: λ = 0 is a

double root of the characteristic equation and the reduced problem for u, v is of parabolic

type.

For each of the above four types of system, whether linear or semi-linear, the solutions

depend sensitively upon the right-hand sides of the equations, as in Type 2.1 - Type 2.3.



Partial Differential Equations that are Hard to Classify 53

3.2 Case 1(ii)

Here (1.6) gives

0= |µA−λB|=

∣

∣

∣

∣

∣

∣

µ−λb11 −λb12 −λb13

−λb21 −λ 0

−λb31 0 0

∣

∣

∣

∣

∣

∣

=λ3b13b31

so at least one of b13 and b31 vanishes. There are then three possibilities which can be

written as follows:

For b13=b31=0,

∂u

∂x
+b11

∂u

∂y
+b12

∂v

∂y
= f , b21

∂u

∂y
+

∂v

∂y
= g, 0=h.

Taking v̂=v+b21u if b21 6=0 and with another change of independent variables if need be,

the system becomes
∂u

∂x
+b12

∂v

∂y
= f ,

∂v

∂y
= g, 0=h.

Then adding a multiple of the second equation to the first gives

Type 3.5. b13=0, b31=0.

∂u

∂x
= f ,

∂v

∂y
= g, 0=h, µA−λB=





µ 0 0

0 −λ 0

0 0 0



. (3.14)

For the generic case in which c33 6=0, u0 and v0 cannot both vanish. The problem then

has two characteristic directions, with (λ,µ) parallel to (0,1) or (1,0). We have the two

possibilities:

(a) λ=0, u0=0, which requires that
∣

∣

∣

∣

c22−α c23

c32 c33

∣

∣

∣

∣

=0,

and (0,v0,w0)⊤ is a corresponding eigenvector. As in Type 3.1(b), C determines the

mode of propagation and its x-dependence along the characteristics.

(b) µ=0, v0=0, which requires that
∣

∣

∣

∣

c11+β c13

c31 c33

∣

∣

∣

∣

=0,

and (u0,0,w0)⊤ is a corresponding eigenvector; this situation is analogous to (a)

above.



54 S. D. Howison, A. A. Lacey and J. R. Ockendon / J. Partial Diff. Eq., 25 (2012), pp. 41-65

For b13=0, b31=1,

∂u

∂x
+b11

∂u

∂y
+b12

∂v

∂y
= f , b21

∂u

∂y
+

∂v

∂y
= g,

∂u

∂y
=h,

which, proceeding much as for Type 3.5, can be written as

Type 3.6. b13=0, b31=1.

∂u

∂x
= f ,

∂v

∂y
= g,

∂u

∂y
=h, µA−λB=





µ 0 0

0 −λ 0

−λ 0 0



. (3.15)

We have µu0 =−λv0 =−λu0 = 0, with the following cases for the generic situation,

c33 6=0:

(a) λ=0, u0=0, which leads to the same situation as Type 3.5(a) above.

(b) u0=v0 =0 and

−µu1= c13w0, λv1 = c23w0, λu1= c33w0

so that (λ,µ) = (c33,−c13) and singularities can occur across c13x+c33y = constant

with eigenvector (0,0,w0)⊤.

For b13=1, b31=0,

∂u

∂x
+b11

∂u

∂y
+b12

∂v

∂y
+

∂w

∂y
= f , b21

∂u

∂y
+

∂v

∂y
= g, 0=h,

which, on replacing v by v̂=v+b21u and w by ŵ=w+b11u+b12v is then

Type 3.7. b13=1, b31=0.

∂u

∂x
+

∂w

∂y
= f ,

∂v

∂y
= g, 0=h, µA−λB=





µ 0 −λ

0 −λ 0

0 0 0



. (3.16)

Similar to Type 3.5 and Type 3.6, for the generic case in which c33 6= 0 there are the

following possibilities:

(a) λ = 0, u0 = 0; we retrieve Type 3.5(a), in which singularities can occur across x =
constant.

(b) v0=0; we now find that −µu0+λw0=0 and c31u0+c33w0=0, so that C defines both

the eigenvectors and the characteristic directions.
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3.3 Case 2(i)

Now b31=0 6=b32 so, because of (3.1), b23=0, and the third equation may be scaled:

∂u

∂x
= f ,

∂v

∂x
+b21

∂u

∂y
= g,

∂v

∂y
=h.

If b21=0, this is equivalent to Type 3.6, and otherwise the system can be rewritten as

Type 3.8. b31=0 6=b32, b23=0.

∂u

∂x
= f ,

∂v

∂x
+

∂u

∂y
= g,

∂v

∂y
=h, µA−λB=





µ 0 0

−λ µ 0

0 −λ 0



. (3.17)

To lowest order, −µu0=λu0−µv0=λv0 =0. Hence u0=v0=0 and, since

−µu1= c13w0,

λu1−µv1 = c23w0,

λv1= c33w0,

λ and µ must satisfy
∣

∣

∣

∣

∣

∣

µ 0 c13

−λ µ c23

0 −λ c33

∣

∣

∣

∣

∣

∣

=0, (3.18)

giving

c33µ2+c23λµ+c13λ2=0. (3.19)

For the generic case in which not all of c13, c23 and c33 vanish, we have the possibility

of two characteristics, which may be real or, for the first time, complex, according to the

sign of c2
23−4c13c33. However, only one eigenvector, namely (0,0,w0)⊤, can propagate

singularities, so the situation is far from that of conventional hyperbolicity, where two

Riemann invariants are associated with two real characteristics.

3.4 Case 2(ii)

With b31=0=b32, w may be redefined to give us

∂u

∂x
+b12

∂v

∂y
= f ,

∂v

∂x
+

∂w

∂y
= g, 0=h.

First suppose that b23 6=0.

If b12=0 we get a system like Type 3.7, while for b12 6=0 some rescaling leads to
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Type 3.9. b31=0=b32, b12 6=0.

∂u

∂x
+

∂v

∂y
= f ,

∂v

∂x
+

∂w

∂y
= g, 0=h, µA−λB=





µ −λ 0

0 µ −λ

0 0 0



. (3.20)

Since, to lowest order, µu0−λv0 =µv0−λw0=0, the eigenvector u0 is determined by

the propagation direction. But since





µu1−λv1

µv1−λw1

0



=−





c11+β c12−α c13

c21 c22+β c23−α

c31 c32 c33









u0

v0

w0



,

we require that c31u0+c32v0+c33w0 =0. Hence, for the generic case in which c32 6=0, the

propagation direction satisfies the quadratic equation c31λ2+c32λµ+c33µ2=0. However,

in contrast to Type 3.8, there will generally be a different eigenvector for each propagation

direction.

Returning to the general discussion, now take b23=0 so the system is

∂u

∂x
+b12

∂v

∂y
= f ,

∂v

∂x
+b21

∂u

∂y
+b22

∂v

∂y
= g, 0=h. (3.21)

With b12 6=0, b21 6=0, appropriate scaling of v and y provides

Type 3.10. b12 6=0, b21 6=0, b22 6=0.

∂u

∂x
±

∂v

∂y
= f ,

∂v

∂x
+

∂u

∂y
+b22

∂v

∂y
= g, 0=h, µA−λB=





µ ∓λ 0

−λ µ−λb22 0

0 0 0



. (3.22)

The sign for the second term in the first equation is that of b12b21. It is not possible to

rescale again to remove the constant b22.

Now, through b22, B plays an additional role because

−µu0±λv0=0, λu0+(λb22−µ)v0=0,

so that µ2−(b22µ±λ)λ=0. Note that, through w0, C still plays a role in determining the

eigenvectors, and can also be responsible for higher degeneracy of non-generic cases.

Returning again to the general discussion, with b12=0 6=b21, scaling gives

∂u

∂x
= f ,

∂v

∂x
+

∂u

∂y
+b22

∂v

∂y
= g, 0=h.
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If b22=0 this is equivalent to Type 3.4. However, for b22 6=0, scaling to make b22=1, adding

the first equation to the second, replacing v by v̂= u+v, and changing the independent

variables leads to
∂u

∂x
= f ,

∂v

∂y
= g, 0=h,

which is the same as Type 3.5.

Next, for b12 6=0=b21, the system is, after some scaling,

∂u

∂x
+

∂v

∂y
= f ,

∂v

∂x
+b22

∂v

∂y
= g, 0=h.

With b22=0 this is equivalent to Type 3.4. For b22 6=0, we have, with a possible change of

y,
∂u

∂x
+

∂v

∂y
= f ,

∂v

∂x
+

∂v

∂y
= g, 0=h.

Subtracting the second equation from the first, replacing u by û=u−v, and a change of

independent variables leads to

∂u

∂x
= f ,

∂v

∂y
= g, 0=h,

which is again the same as Type 3.5.

Finally for this sub-case, b12=0=b21 and

∂u

∂x
= f ,

∂v

∂x
+b22

∂v

∂y
= g, 0=h.

For b22 6=0, a change of independent variable makes the system identical to Type 3.5

once again. However, if b22=0, we have a new type:

Type 3.11. B=0.

∂u

∂x
= f ,

∂v

∂x
= g, 0=h, µA−λB=





µ 0 0

0 µ 0

0 0 0



. (3.23)

Since µu0 =µv0 =0, we have µ=0 and the characteristics are y= constant. However,

we now require that

(C+βA)u0=





c11+β c12 c13

c21 c22+β c23

c31 c32 c33



u0=0,

so that, for the generic case of c33 6=0, C again determines the eigenvector and the expo-

nential variation of the solution along the characteristic.
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3.5 Case 2(iii)

Now b31 6=0, b32 6=0 and so b23=0 from (3.3):

∂u

∂x
+b12

∂v

∂y
= f ,

∂v

∂x
+b21

∂u

∂y
+b22

∂v

∂y
= g,

∂u

∂y
+

∂v

∂y
=h,

with appropriate scaling. Subtracting a multiple of the third equation from the second

yields
∂u

∂x
+b12

∂v

∂y
= f ,

∂v

∂x
+b21

∂u

∂y
= g,

∂u

∂y
+

∂v

∂y
=h.

Taking b12=b21=0, replacing v by v̂=u+v, and adding the first equation to the second

gives a problem equivalent to Type 3.6.

If b12 6=0=b21, with suitable scaling, the system is

∂u

∂x
+

∂v

∂y
= f ,

∂v

∂x
= g,

∂u

∂y
+

∂v

∂y
=h.

Replacing u by û=u+v and adding the second equation to the first shows that this system

is equivalent to Type 3.8.

For b12=0 6=b21, with suitable scaling, the system is

∂u

∂x
= f ,

∂v

∂x
+

∂u

∂y
= g,

∂u

∂y
+

∂v

∂y
=h.

Manipulations as immediately above indicate that this is also equivalent to Type 3.8.

With b12 6=0, b21 6=0, we can write the system as

∂u

∂x
+

∂v

∂y
= f ,

∂v

∂x
+b21

∂u

∂y
= g,

∂u

∂y
+

∂v

∂y
=h.

A change of independent variables and the subtraction of the third equation from the

first produce
∂u

∂x
−(1+b21)

∂u

∂y
= f ,

∂v

∂x
= g,

∂u

∂y
+

∂v

∂y
=h.

Taking b21=−1, replacing v by v̂=u+v, and adding the first equation to the second gives

a system equivalent to (3.16). Trying b21 6=−1, the problem scales to

∂u

∂x
+

∂u

∂y
= f ,

∂v

∂x
= g,

∂u

∂y
+

∂v

∂y
=h.

Replacing u by û=u+v, adding the second equation to the first and subtracting the third

from the first leads to a problem like Type 3.8.
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3.6 Case 2(iv)

Here b31 6=0=b32 and, because b31 6=0, (3.3) gives b12=0 and/or b23=0 in

∂u

∂x
+b12

∂v

∂y
= f ,

∂v

∂x
+b22

∂v

∂y
+b23

∂w

∂y
= g,

∂u

∂y
=h,

where the third equation has been used to simplify the second.

For b12 = b23 = 0, adding a multiple of the third equation to the second puts it in the

form
∂u

∂x
= f ,

∂v

∂x
+b22

∂v

∂y
= g,

∂u

∂y
=h.

For b22=0 this is equivalent to Type 3.6, while for b22 6=0, the problem scales to

Type 3.12. b22 6=0, b23=0, b31 6=0.

∂u

∂x
= f ,

∂v

∂x
+

∂v

∂y
= g,

∂u

∂y
=h, µA−λB=





µ 0 0

0 µ−λ 0

−λ 0 0



. (3.24)

To lowest order, −µu0=(−µ+λ)v0=λu0=0 and thus we generically have u0=v0=0,

which implies that

−µu1= c13w0, (−µ+λ)v1 = c23w0, λu1= c33w0.

Hence
∣

∣

∣

∣

∣

∣

−µ 0 −c13

0 −µ+λ −c23

λ 0 −c33

∣

∣

∣

∣

∣

∣

=0,

giving (λ−µ)(c33µ+c13λ)= 0. Clearly, for the generic case of c13, c33 not both zero, we

have another case of two real characteristics; they are coincident if c13=−c33.

Returning for the last time to the general discussion, taking b23=0 6=b12 leads to

∂u

∂x
+b12

∂v

∂y
= f ,

∂v

∂x
+b22

∂v

∂y
= g,

∂u

∂y
=h.

A change of independent variable, addition of a multiple of the third equation to the first

and a scaling give a problem equivalent to Type 3.8.

For b23 6=0=b12, a redefinition of w puts the system into the form

Type 3.13. b22=0, b23 6=0, b31 6=0.

∂u

∂x
= f ,

∂v

∂x
+

∂w

∂y
= g,

∂u

∂y
=h, µA−λB=





µ 0 0

0 µ −λ

−λ 0 0



. (3.25)
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In this situation, −µu0 =−µv0+λw0 =λu0 =0, giving u0 =0, λw0 =µv0. Generically

this implies that

−µu1= c12v0+c13w0, −µv1+λw1−βu0+αw0= c22v0+c23w0, λu1= c32v0+c33w0.

Hence singularities can propagate as long as (c12v0+c13w0)λ =−(c32v0+c33w0)µ, and

we see that there are two families of characteristics, determined in terms of C by c33µ2+
(c13+c32)λµ+c12λ2 =0; the respective eigenvectors depend correspondingly on C. This

generic case demands that at least one of c33, c13+c32 and c12 be non-zero, along with

c12c33 6= c13c32, see Section 4.2.

This system has such a wide variety of higher-order degeneracies that we will discuss

it in further detail in Section 4.

We note that the system (1.8) is of this type.

3.7 Summary

Concerning singularity propagation, the most striking feature of the above catalogue are

the roles played by

(i) the degeneracy of the matrix µA−λB in determining the propagation directions,

and

(ii) the matrix C which usually decides the propagation directions and always decides

the propagating eigenmodes.

Concerning the directions of propagation, we can classify the generic degeneracies

according to :

1. Type 3.1 - Type 3.3 have a single characteristic, generalising the cases of Type 2.1 -

Type 2.3.

2. Type 3.4 and Type 3.11 have one double characteristic.

3. Type 3.5 - Type 3.7, Type 3.10 and Type 3.12 have two real characteristics.

4. Type 3.8, Type 3.9 and Type 3.13 have two, possibly complex, characteristics.

4 Summary of three-by-three system types

We now briefly generalise our discussion of the systems listed above to situations where

they are semi-linear.

4.1 Semi-linear degenerate systems

We first note some obvious facts regarding Type 3.1 - Type 3.7.

• Type 3.1 is generically equivalent to Type 2.1, needing two constraints on the data.
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• Type 3.2 is generically equivalent to Type 2.2, needing two constraints on the data.

• Type 3.3 is generically equivalent to Type 2.3, needing two constraints on the data.

• Type 3.4 is generically equivalent to a 2×2 system, needing one constraint on the

Cauchy data.

• Type 3.5 is generically equivalent to a 2×2 system, needing one constraint on the

Cauchy data.

• Type 3.6 is rather like Type 2.3 for 2×2 systems; unless w appears nowhere in the

right-hand sides of (3.15); w can be eliminated to get a generally fully non-linear

2×2 system, needing one constraint on the Cauchy data. If w is completely absent

from the system, a compatibility condition must be satisfied by the equations.

• Type 3.7, for the generic case of h depending upon w, is again equivalent to a (quasi-

linear) 2×2 system, needing one constraint on the Cauchy data.

The different cases can be further categorised as follows:

Type 3.1 - Type 3.3 The first three canonical forms are differential-algebraic equations

and doubly degenerate, turning out to be generically equivalent to 2×2 degenerate prob-

lems: Provided that h depends upon w, w can be found from the third equation and

substituted into the first two to get a degenerate pair of PDEs for u and v.

Should h be independent of w, unless h is identically constant, u or v can then be

got from the third equation and eliminated from the first two, to get a pair of equations

involving derivatives of the remaining unknown, v or u respectively. With w appearing in

neither f nor g, this reduced problem is as for the corresponding 2×2 case. With w in one

but not the other, there is one semi-linear equation which can be solved for the surviving

unknown, and the other two unknowns are got from the other two equations. With w in

both f and g, it is eliminated to get a (generally quasi-linear) PDE for the survivor of u

and v; the other and w are then determined explicitly.

For these problems, only one set of Cauchy data can be imposed.

Type 3.4, Type 3.5, Type 3.10 and Type 3.11 The last equation is again algebraic and no

derivatives of w appear. It is easily checked that the first two PDEs form a non-degenerate

system, regarded as a problem for u and v alone. This means that as long as h depends on

w, w can be eliminated and we have a 2×2 system. Two sets of Cauchy data are required.

If h does not depend on w then, excluding the trivial possibility of it being a function

of x and y only, it must depend on one of the remaining dependent variables, say u.

Using the last equation to eliminate u from the first two equations gives two equations

involving v and its derivatives. For Type 3.10 it is possible that this pair of equations has

extra degeneracy, with the two left-hand sides being proportional. If precisely one of f

and g depends on w, we have one equation for v alone; this gives v and the other two

equations then determine u and w. If both f and g depend on w, w is eliminated to give

a single (possibly fully non-linear) PDE for v; the solution of this can again be used in

the other equations to provide u and w. In both these cases with h independent of w, we

should only impose one set of Cauchy data.
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If none of f , g and h depends upon w, for there to be a solution the equations must be

consistent. For example, with the left-hand sides of the first two equations proportional,

the same constant of proportionality must clearly relate the right-hand sides. The data

for u and v must be consistent and w is indeterminate.

Type 3.7 and Type 3.9 These are also differential-algebraic equations, with their third

equation being algebraic, but, in contrast to those just considered, they contain a deriva-

tive of w in their first two equations. For h dependent on at least one of the dependent

variables, say w, w may be found from the last equation and substituted into the first two

equations to get a (generally quasi-linear) 2 × 2 system. The other unknowns are found

from this system and they then fix w. Clearly only two sets of Cauchy data are needed. If

h=0 gives w as a linear combination of u and v, this elimination procedure could produce

a degenerate 2 × 2 system, as in Section 2.

Type 3.6, Type 3.8 and Type 3.12 These have derivatives in all three equations, and so

are purely differential equations, but no derivative of w appears. Should precisely one

of f , g and h depend on w, the corresponding equation can fix w, with the other two

PDEs forming a 2 × 2 system for u and v. For Type 3.6 and Type 3.12, if it is g which

depends on w so that the first and last equation make up the 2 × 2 system, this will then

be degenerate, as in Section 2. Otherwise the 2 × 2 system is non-degenerate and two

sets of Cauchy data are required.

With at least two of f , g and h depending upon w, w is eliminated to give a (generally

fully non-linear) problem for u and v; two sets of conditions are imposed. Should the

2×2 system be linear or semi-linear, it is possible that this is degenerate, as in Section 2.

If none of f , g and h varies with w, some consistency condition is needed between the

PDEs and w is indeterminate.

Type 3.13 We are left with this as the only case with both:

• all three equations containing derivatives;

• derivatives of all dependent variables in the system.

It is clearly another purely partial differential-equation system. Its special status moti-

vates the more detailed consideration in Section 4.2 below.

4.2 Problems of Type 3.13

The problem has the general form

∂u

∂x
= f , (4.1)

∂v

∂x
+

∂w

∂y
= g, (4.2)

∂u

∂y
=h. (4.3)
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The generic case has f and h dependent on v and w so that (4.1) and (4.3) can be

solved to get v and w in terms of u and its derivatives. Substitution into (4.2) gives a

second-order (usually quasi-linear) PDE for u. Depending on the nature of this equa-

tion, we would normally expect to impose either two initial conditions or one boundary

condition.

A more special case is when (4.1) and (4.3) themselves add a further level of degener-

acy, so that (4.1) and (4.3) provide a first-order PDE for u, and an equation relating v and

w (and u, ∂u/∂x and/or ∂u/∂y). This PDE is solved and substitution for v (or w) in (4.2)

gives another PDE for w (or v). Two sets of Cauchy data are needed.

The most degenerate case has both f and h independent of v and w. A compatibility

condition for f and h has to hold. Assuming that it does, u can be found (applying one

initial condition) but v and w are indeterminate.

To see more clearly what might happen, we look at cases which are linear and, for

simplicity, autonomous, so that

f=Cu,

with C constant. As before, u=(u,v,w)⊤ and f=( f ,g,h)⊤ .

The generic case has c12c33 6= c13c32 so that the subsidiary matrix

Cs =

(

c12 c13

c32 c33

)

(4.4)

has rank 2, and (4.1) and (4.3) can be solved to get

v=

[(

c33
∂u

∂x
−c13

∂u

∂y

)

+(c13c31−c11c33)u

]/

(c12c33−c13c32)

and

w=

[(

c12
∂u

∂y
−c32

∂u

∂x

)

+(c11c32−c12c31)u

]/

(c12c33−c13c32).

Substitution into (4.2) gives a PDE

c33
∂2u

∂x2
−(c32+c13)

∂2u

∂x∂y
+c12

∂2u

∂y2
=d1u+d2

∂u

∂x
+d3

∂u

∂y
(4.5)

where the di are constant. This equation is clearly

• elliptic if 4c12c33> (c13+c32)2,

• hyperbolic if 4c12c33< (c13+c32)2,

• either parabolic or a second-order ODE if 4c12c33=(c13+c32)2.

(Note that, for the generic case, at least one of c12, c13, c32 and c33 is non-zero.)

We remark that, had we used the method of weights described in the Introduction,

we would have been immediately led to the differential operator on the left-hand side of

(4.5), and hence identified that (1.12) is elliptic.
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The last case admits the the extra-degenerate possibility of c12 = c33 = 0 with c13 =
−c32 6=0. Here v and w can be eliminated to get the first-order hyperbolic equation for u:

(c23−c31)
∂u

∂x
+(c11−c22)

∂u

∂y
=(c23c11−c22c31+c32c21)u.

The characteristic direction is (λ,µ)=((c23−c31),(c11−c22)).
For c12c33= c13c32 with at least one of c12, c13, c32, c33 non-zero, say c12, so that Cs now

has rank 1, we have

c32
∂u

∂x
−c12

∂u

∂y
=(c11c32−c12c31)u (4.6)

with

v=

(

∂u

∂x
−c11u−c13w

)/

c12. (4.7)

The PDE (4.6) is solved for u, then (4.7) is substituted into (4.2) to give

∂w

∂y
−

c13

c12

∂w

∂x
+

(

c13c22

c12
−c23

)

w=

(

c21−
c22c11

c12

)

u+

(

c22

c12
+

c11

c12

)

∂u

∂x
−

1

c12

∂2u

∂x2
.

This may be solved to find w and hence v. (The appearance of the second derivative of u

in the PDE for w might indicate that care should be taken in a numerical method based

on this way of solving the system.)

The most special case is when Cs =0 so that

∂u

∂x
= c11u,

∂u

∂y
= c31u.

In this case v and w cannot be determined. (Note that if the problem were to be gener-

alised by including constant terms on the right-hand sides of (4.1), (4.3), a solution might

not exist. Supposing now that ∂u/∂x=c11u+c10 and ∂u/∂y=c31u+c30, the compatibility

condition c11c30= c31c10 has to be satisfied to get a solution.)

We conclude this sub-section with a few specific examples.

4.2.1
∂u

∂x
=0,

∂u

∂y
=w,

∂v

∂x
+

∂w

∂y
=0.

Solving directly gives u=U(y), w=U′(y), v=V(y)−U′′(y)x, with U and V being fixed

by two boundary conditions.

In this case c12c33= c13c32=0 6= c33 so the system has one extra level of degeneracy.

4.2.2
∂u

∂x
=w,

∂u

∂y
=v,

∂v

∂x
+

∂w

∂y
=0.

The system has general solution v=V(y), w=W(x), u=
∫ x

W(ξ)dξ+
∫ y

V(η)dη and is

clearly hyperbolic.
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4.2.3
∂u

∂x
=±v,

∂u

∂y
=w,

∂v

∂x
+

∂w

∂y
=u.

Here
∂2u

∂y2
±

∂2u

∂x2
=u,

which illustrates how easily degenerate systems can conceal ellipticity and hyperbolicity.

Acknowledgments

The authors would like to thank the referees for their comments, particularly for drawing

their attention to the method of weights in [4].

References

[1] Ockendon J., Howison S., Lacey A., and Movchan A., Applied Partial Differential Equations,
Oxford University Press, revised edition, 2003.

[2] Chester C. R., Techniques in Partial Differential Equations, McGraw-Hill, 1971.
[3] Agmon S., Douglis A., and Nirenberg L., Estimates near the boundary for solutions of ellip-

tic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl.
Math., 12 (1959), 623-727.

[4] Agmon S., Douglis A., and Nirenberg L., Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions II, Comm. Pure Appl.
Math., 17 (1964), 35-92.

[5] Martinson W. S. and Barton P. I., A differentiation index for partial differential-algebraic equa-
tions, SIAM Jl. Sci. Comp., 21 (6) (2000), 2295-2315.


