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Abstract. This work is devoted to the existence and multiplicity properties of the
ground state solutions of the semilinear boundary value problem −∆u=λa(x)u|u|q−2+

b(x)u|u|2
∗−2 in a bounded domain coupled with Dirichlet boundary condition. Here

2∗ is the critical Sobolev exponent, and the term ground state refers to minimizers of
the corresponding energy within the set of nontrivial positive solutions. Using the Ne-
hari manifold method we prove that one can find an interval Λ such that there exist at
least two positive solutions of the problem for λ∈Λ.
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1 Introduction

We consider the following semilinear elliptic equation:

{

−∆u=λa(x)u|u|q−2+b(x)u|u|2
∗−2, x∈Ω,

u=0, x∈∂Ω,
(1.1)

where Ω ⊂ R
N(N≥3) is a smooth bounded domain, λ>0, 1≤q<2, and 2∗=2N/(N−2)

is the critical Sobolev exponent and the weight functions a,b are satisfying the following
conditions:

(A) a+ = max{a,0} 6≡ 0 and a ∈ Lrq(Ω) where rq =
r

r−q for some r ∈ (q,2∗−1), with in

addition a(x)≥0 a.e in Ω in case q=1;
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(B) b+=max{b,0} 6≡0 and b∈C(Ω).

Tsung-fang Wu [1]has investigated the following equation:







−∆u=λa(x)uq+b(x)up, x∈Ω,
u≥0, u 6≡0, x∈Ω,
u=0, x∈∂Ω,

(1.2)

where Ω is a bounded domain in R
N , 0≤ q< 1< p< 2∗−1 (2∗= 2N

N−2 if N ≥ 3, 2∗=∞ if
N=2), λ>0 and the weight functions a,b satisfy the following conditions:

(A′) a+=max{a,0} 6≡0 and a∈ Lrq(Ω) where rq =
r

r−(q+1)
for some r∈ (q+1,2∗), with in

addition a(x)≥0 a.e in Ω in case q=0;

(B′) b+=max{b,0} 6≡0 and b∈Lsp(Ω) where sp=
s

s−(p+1)
for some s∈ (p+1,2∗).

If the weight functions a≡b≡1, Ambrosetti-Brezis-Cerami [2] studied Eq. (1.2). They
established that there exists λ0>0 such that Eq. (1.2) attains at least two positive solutions
for λ∈(0,λ0), has a positive solution for λ=λ0 and no positive solution exists for λ>λ0.
Wu [3] found that if the weight functions a changes sign in Ω, b≡1 and λ is sufficiently
small in Eq. (1.2), then Eq. (1.2) has at least two positive solutions.

Throughout this paper we denote H1
0(Ω) the completion of C∞

0 (Ω) with respect to the
norm

‖u‖=‖u‖H1
0 (Ω)=

(

∫

Ω

|∇u|2dx

)1/2

.

The function u∈H1
0(Ω) is said to be a weak solution of the Eq. (1.1), if u satisfies

∫

Ω

(

∇u∇v−|u|2
∗−2uv−λ|u|q−2uv

)

dx=0, ∀v∈H1
0(Ω).

The energy functional corresponding to Eq. (1.1) is defined as follows:

Jλ(u) :=
1

2

∫

Ω

|∇u|2dx−
1

2∗

∫

Ω

b(x)|u|2
∗
dx−

λ

q

∫

Ω

a(x)|u|qdx,

and then Jλ is well defined on H1
0(Ω). It is well-known that the solutions of Eq. (1.1) are

the critical points of the functional Jλ.
We denote by Sl the best Sobolev constant for the embedding of H1

0(Ω) in Ll(Ω),
where 1≤ l≤2∗ . We define the Palais-Smale (or (PS)-) sequences, (PS)-values, and (PS)-
conditions in H1

0(Ω) for Jλ as follows:

Definition 1.1. (i) For c∈R, a sequence un is a (PS)c-sequence in H1
0(Ω) for Jλ if Jλ(un)=

c+on(1) and J′λ(un)= on(1) strongly in H−1(Ω) as n→∞.

(ii) c∈R is a (PS)-value in H1
0(Ω) for Jλ if there exists a (PS)c-sequence in H1

0(Ω) for Jλ.

(iii) Jλ satisfies the (PS)c-condition in H1
0(Ω) if any (PS)c-sequence un in H1

0(Ω) for Jλ contains
a convergent subsequence.
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We define the following constants:

S := inf
u∈H1

0(Ω)\{0}

∫

Ω

|∇u|2dx

(

∫

Ω

b(x) |u |2
∗
dx
)

2
2∗

, (1.3)

λ0 :=
q

2

( 2−q

2∗−q

)

2−q
2∗−2
(2∗−2

2∗−q

)

S
2∗ (2−q)
2(2∗−2) ‖ a‖−1

Lrq S
−q
r . (1.4)

Our main result is the following.

Theorem 1.1. Assume that the conditions (A) and (B) hold; then there exists an interval Λ such
that for λ∈Λ, Eq. (1.1) has at least two positive solutions.

We omit dx in the integration for convenience. This paper is organized as follows. In
Section 2, we give some properties of the Nehari manifold. In Sections 3 and 4 we prove
Theorem 1.1.

2 The Nehari manifold

As the energy functional Jλ is not bounded below on H1
0(Ω), considering the functional

on the Nehari manifold

M≥={u ∈ H1
0(Ω)\{0} : 〈J′λ(u),u〉=0}

is of interest. So, u∈M≥ if and only if

〈J′λ(u),u〉=‖u‖2 −
∫

Ω

b(x) |u |2
∗
−λ

∫

Ω

a(x) |u |q =0. (2.1)

It has to be considered that M≥ contains every nonzero solution of Eq. (1.1). Further-
more, we have the following result.

Lemma 2.1. The energy functional Jλ is coercive and bounded below on M≥.

Proof. If u∈M≥, then by (1.3),(2.1) and the Hölder and Young inequalities, we have

Jλ(u)=
2∗−2

22∗
‖u‖2−λ

(

2∗−q

2∗q

)

∫

Ω

a(x) |u |q

≥
1

N
‖u‖2−λ

(

2∗−q

2∗q

)

‖u‖q‖ a‖Lrq S
−q
r . (2.2)

Thus, Jλ is coercive and bounded below on Mλ.
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The Nehari manifold is closely associated with the behavior of the function of the
form ϕu : t→ Jλ(tu) for t>0. Such maps are known as fibering maps and were suggested
by Brown and Zhang [4]. For u∈H1

0(Ω), we have

ϕu(t)=
t2

2
‖u‖2 −

t2∗

2∗

∫

Ω

b(x) |u |2
∗
−λ

tq

q

∫

Ω

a(x) |u |q ;

ϕ′
u(t)= t‖u‖2 −t2∗−1

∫

Ω

b(x) |u |2
∗
−λtq−1

∫

Ω

a(x) |u |q ;

ϕ′′
u(t)=‖u‖2−(2∗−1)t2∗−2

∫

Ω

b(x) |u |2
∗
−λ(q−1)tq−2

∫

Ω

a(x) |u |q.

It is easy to see that for u ∈ H1
0(Ω)\{0} and t > 0, ϕ′

u(t) = 0 if and only if tu ∈Mλ, in
other words, the critical points of ϕu correspond to the points on the Nehari manifold.
Particularly, ϕ′

u(1) = 0 if and only if u ∈Mλ. Therefore, we are allow to divide Mλ

into three parts corresponding to local minima, local maxima and points of inflection.
Therefore, we define

M+
≥={u∈M≥ : ϕ′′

u(1)>0}; M0
λ={u∈M≥ : ϕ′′

u(1)=0};

M−
≥={u∈M≥ : ϕ′′

u(1)<0},

and note that if u∈M≥, that is ϕ′
u(1)=0, then

ϕ′′
u(1)=(2−q)‖u‖2 −(2∗−q)

∫

Ω

b(x) |u |2
∗

=(2−2∗)‖u‖2 −λ(q−2∗)
∫

Ω

a(x) |u |q . (2.3)

Now we conclude some basic properties of M+
≥, M0

λ and M−
≥.

Lemma 2.2. Assume that u0 is a local minimizer for Jλ on M≥ and u0 6∈M0
λ. Then J′λ(u0)=0

in H−1(Ω) (the dual space of H1
0(Ω)).

Proof. See [2, Theorem 2.3].

Let Λ=(0,λ0) where λ0 is the same as in (1.4), then we have the following result.

Lemma 2.3. If λ∈Λ, then M0
λ=∅.

Proof. Suppose the contrary. Then there exists λ∈Λ such that M0
λ 6=∅. Then for u∈M0

λ
by (1.3) and (2.3), we have

2−q

2∗−q
‖u‖2=

∫

Ω

b(x) |u |2
∗
≤S− 2∗

2 ‖u‖2∗ ,

and so

‖u‖≥

(

2−q

2∗−q

)
1

2∗−2

S
2∗

2(2∗−2) .
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Similarly, using (1.3), (2.3), and the Hölder and Young inequalities, we have

‖u‖2=λ
2∗−q

2∗−2

∫

Ω

a(x) |u |q ≤λ
2∗−q

2∗−2
‖u‖q‖ a‖Lrq S

q
r .

Hence

λ≥

(

2−q

2∗−q

)

2−q
2∗−2
(

2∗−2

2∗−q

)

S
2∗ (2−q)
2(2∗−2) ‖ a‖−1

Lrq S
−q
r >λ0,

which is a contradiction. This completes the proof.

We consider the function ψu :R+→R defined by

ψu(t)= t1−q ϕ′
u(t)+λ

∫

Ω

a(x) |u |q , for t>0.

The following result explains the behavior of the graph of ψu.

Lemma 2.4. For sufficiently small λ, ψu is strictly increasing on (0,tmax(u)) and strictly de-
creasing on (tmax(u),∞) with limt→∞ ψu(t)=−∞, where

tmax(u)=

(

(2−q)‖u‖2

(2∗−q)
∫

Ω

b(x) |u |2
∗

)

1
2∗−2

>0.

Proof. Clearly tu∈Mλ if and only if

ψu(t)=λ
∫

Ω

a(x) |u |q .

Moreover,

ψ′
u(t)=(2−q)t1−q ‖u‖2 −(2∗−q)t2∗−q−1

∫

Ω

b(x) |u |2
∗
, for t>0, (2.4)

and so it is easy to see that, if tu∈Mλ, then

tq−1ψ′
u(t)= ϕ′′

u(t).

Hence, tu∈M+
λ (or tu∈M−

λ ) if and only if ψ′
u(t)>0 (ψ′

u(t)<0).

For u ∈ H1
0(Ω)\{0}, by (2.4), ψu has a unique critical point at t = tmax(u); which is

mentioned above. Clearly ψu is strictly increasing on (0,tmax(u)) and strictly decreasing
on (tmax(u),∞) with limt→∞ ψu(t)=−∞.
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Remark 2.1. Note that if λ∈Λ, then

ψu(tmax(u))=

[

( 2−q

2∗−q

)

2−q
2∗−2

−
( 2−q

2∗−q

)

2∗−q
2∗−2

]

‖u‖
2(2∗−q)

2∗−2

(

∫

Ω

b(x) |u |2
∗
)

2−q
2∗−2

=‖u‖q
(2∗−2

2∗−q

)( 2−q

2∗−q

)

2−q
2∗−2

(

‖u‖2∗

∫

Ω

b(x) |u |2
∗

)

2−q
2∗−2

≥‖u‖q
(2∗−2

2∗−q

)( 2−q

2∗−q

)

2−q
2∗−2

S
2∗(2−q)
2(2∗−2)

>
2

q
λ‖u‖q‖ a‖Lrq S

+q
r ≥

2

q
λ
∫

Ω

a(x) |u |q .

Moreover, we have the following lemma.

Lemma 2.5. Let λ∈Λ. For each u∈H1
0(Ω)\{0}, we have the following.

(i) There exist unique 0< t+= t+(u)< tmax(u)< t−= t−(u) such that t+u∈M+
λ , t−u∈M−

λ ,
ϕu is decreasing on (0,t+), increasing on (t+,t−) and decreasing on (t−,∞), and

Jλ(t
+u)= inf

0≤t≤tmax(u)
Jλ(tu); Jλ(t

−u)=sup
t≥t+

Jλ(tu).

(ii) M−
λ =

{

u∈H1
0(Ω)\{0} : 1

‖u‖
t−( u

‖u‖
)=1

}

.

(iii) There exist a continuous bijection between U = {u∈ H1
0(Ω)\{0} : ‖ u ‖= 1} and M−

λ . In
particular, t− is a continuous function for u∈H1

0(Ω)\{0}.

Proof. See [5, Lemma 2.6].

3 The existence of a ground state

By Lemma 2.3, we can write
M≥=M+

≥∪M
−
≥,

for all λ∈Λ. Furthermore, by Lemma 2.5 it follows that M+
λ and M−

λ are non-empty and
by Lemma 2.1 we may define

αλ= inf
u∈M≥

Jλ(u); α+
λ = inf

u∈M+
≥

Jλ(u); α−
λ = inf

u∈M−
≥

Jλ(u).

Then we have the following result.

Theorem 3.1. If λ∈Λ then

(i) α+
λ <0;

(ii) α−
λ >d0, for some d0>0.

In particular, we have αλ=α+
λ .
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Proof. (i) Let u∈M+
λ . By (2.4),

2−q

2∗−q
‖u‖2

>

∫

Ω

b(x) |u |2
∗
,

and so

Jλ(u)=

(

1

2
−

1

q

)

‖u‖2+

(

1

q
−

1

2∗

)

∫

Ω

b(x) |u |2
∗

<

[

(

1

2
−

1

q

)

+

(

1

q
−

1

2∗

)(

2−q

2∗−q

)

]

‖u‖2

=−
(2∗−2)(2−q)

22∗q
‖u‖2

<0.

Therefore, α+
λ <0.

(ii) Let u∈M−
λ . By (2.3),

2−q

2∗−q
‖u‖2

<

∫

Ω

b(x) |u |2
∗
.

Moreover, by (1.3) we have
∫

Ω

b(x) |u |2
∗
≤S− 2∗

2 ‖u‖2∗ .

This implies

‖u‖>

(

2−q

2∗−q

)
1

2∗−2

S
N
4 , for u∈M−

≥. (3.1)

By (2.3) and (3.1), we have

Jλ(u)≥‖u‖q

[

1

N
‖u‖2−q −λ

(

2∗−q

2∗q

)

‖ a‖Lrq S
q
r

]

>

(

2−q

2∗−q

)

q
2∗−2

S
qN
4

[

1

N

(

2−q

2∗−q

)

2−q
2∗−2

S
(2−q)N

4 −λ

(

2∗−q

2∗q

)

‖ a‖Lrq S
q
r

]

.

Thus, if λ∈Λ, then Jλ(u)>d0 for all u∈M−
≥, for some positive constant d0.

Remark 3.1. (i) If λ∈Λ, then by (1.3), (2.3), and the Hölder and Young inequalities, for
each u∈M+

≥ we have

‖u‖2
<λ

2∗−q

2∗−2

∫

Ω

a(x) |u |q ≤λ
2∗−q

2∗−2
‖u‖q‖ a‖Lrq S

q
r

≤λ0
2∗−q

2∗−2
‖u‖q‖ a‖Lrq S

q
r , (3.2)
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and so

‖u‖<

(

λ0
2∗−q

2∗−2
‖ a‖Lrq S

q
r

)

1
2−q

, for all u∈M+
≥.

(ii) If λ∈Λ, then by Lemma 2.5(i) and Theorem 3.1(ii), for each u∈M−
≥ we have

Jλ(u)=sup
t≥0

Jλ(tu).

Then we have the following results.

Proposition 3.1. If λ∈Λ, then

(i) there exists a (PS)αλ
-sequence un ⊂Mλ in H1

0(Ω) for Jλ;

(ii) there exists a (PS)α−
λ

-sequence un⊂M−
λ in H1

0(Ω) for Jλ.

Proof. See [6, Proposition 9].

Now, we establish the existence of local minimum for Jλ on M+
λ .

Theorem 3.2. If λ∈Λ, then Jλ has a minimizer uλ in M+
λ and it satisfies the following.

(i) Jλ(uλ)=αλ =α+
λ .

(ii) uλ is a positive solution of Eq. (1.1).

(iii) ‖uλ ‖→0 as λ→0+.

Proof. By Proposition 3.1(i), there is a minimizing sequence un for Jλ on Mλ such that

Jλ(un)=αλ+on(1) and J′λ(un)= on(1) in H−1(Ω). (3.3)

Since Jλ is coercive on Mλ (see Lemma 2.1), we get that un is bounded in H1
0(Ω). Going

if necessary to a subsequence, we can assume that there exists uλ∈H1
0(Ω) such that







un ⇀uλ weakly in H1
0(Ω),

un →uλ almost everywhere in Ω,
un →uλ strongly in Ls(Ω) for all 1≤ s<2∗.

(3.4)

Thus, we have

λ
∫

Ω

a(x) |un |
q =λ

∫

Ω

a(x) |uλ |
q+on(1) as n→∞. (3.5)

First, we claim that uλ is a nonzero solution of Eq. (1.1). By (3.3) and (3.4), it is easy to see
that uλ is a solution of Eq. (1.1). From uλ∈Mλ and (2.2), we deduce that

λ
∫

Ω

a(x) |un |
q =

q(2∗−2)

2(2∗−q)
‖un ‖

2−
2∗q

2∗−q
Jλ(un). (3.6)

Let n→∞ in (3.6), by (3.3), (3.5) and αλ <0, we get

λ
∫

Ω

a(x) |uλ |
q ≥−

2∗q

2∗−q
αλ>0.
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Thus, uλ ∈Mλ is a nonzero solution of Eq. (1.1). Now we prove that un →uλ strongly in
H1

0(Ω) and Jλ(uλ)=αλ. By (3.6), if u∈Mλ, then

Jλ(u)=
1

N
‖u‖2 −λ

2∗−q

2∗q

∫

Ω

a(x) |u |q . (3.7)

First we show that Jλ(uλ)= αλ. It suffices to recall that un,uλ ∈Mλ; by (3.7) and using
weakly lower semi continuity of Jλ we get

αλ ≤Jλ(uλ)=
1

N
‖uλ ‖

2−λ
2∗−q

2∗q

∫

Ω

a(x) |uλ |
q

≤liminf
n→∞

(

1

N
‖un ‖

2−λ
2∗−q

2∗q

∫

Ω

a(x) |un |
q

)

≤liminf
n→∞

Jλ(un)=αλ.

This implies that Jλ(uλ)=αλ and lim
n→∞

‖un‖
2=‖uλ‖

2. Let νn=un−uλ; then by Brézis-Lieb

lemma [7] we have

‖νn ‖
2=‖un ‖

2−‖uλ ‖
2+on(1).

Thus un → uλ strongly in H1
0(Ω). Moreover, we have uλ ∈M+

λ . If, on the contrary, uλ ∈
M−

λ , then by Lemma 2.5, there are unique t+0 and t−0 such that t+0 uλ∈M
+
λ and t−0 uλ∈M

−
λ .

In particular, we have t+0 < t−0 =1. Since

d

dt
Jλ(t

+
0 uλ)=0 and

d2

dt2
Jλ(t

+
0 uλ)>0,

there exists t+0 < t−≤ t−0 such that Jλ(t
+
0 uλ)< Jλ(t

−uλ). By Lemma 2.5(i),

Jλ(t
+
0 uλ)< Jλ(t

−uλ)≤ Jλ(t
−
0 uλ)= Jλ(uλ),

which is a contradiction. Since Jλ(uλ)= Jλ(|uλ |) and |uλ |∈M+
λ , by Lemma 2.2, we may

assume that uλ is a nonzero nonnegative solution of Eq. (1.1). By the Harnack inequality
[8] we deduce that uλ>0 in Ω. Finally, by (3.2), we have

‖uλ ‖
2−q

<λ
2∗−q

2∗−2
‖ a‖Lrq S

q
r ,

and so ‖uλ ‖→0 as λ→0+.

4 Proof of Theorem 1.1

In this section, we establish the existence of a local minimum for Jλ on M−
λ (Ω).



Ground State Solutions for a Semilinear Elliptic Equation Involving Concave-Convex Nonlinearities 23

Theorem 4.1. Let λ0>0 as in (1.4), then for λ∈(0,λ0), Jλ has a minimizer Uλ in M−
λ (Ω) and

it satisfies

(i) Jλ(Uλ)=α−
λ (Ω);

(ii) Uλ is a solution of Eq. (1.1).

Proof. By proposition 3.1(ii), there exists a minimizing sequence un for Jλ on M−
λ (Ω) such

that
Jλ(un)=α−

λ (Ω)+on(1), J′λ(un)= on(1), in H−1(Ω).

Since Jλ is coercive on Mλ (see Lemma 2.1), we get that un is bounded in M−
λ (Ω). From

this and by compact embedding Theorem, there exists a subsequence of un and Uλ∈M−
λ

such that






un ⇀Uλ weakly in H1
0(Ω),

un →Uλ strongly in Lr(Ω) for all 1≤ r<2∗,

un ⇀Uλ weakly in L2∗(Ω).

Since
on(1)= 〈J′λ(un),η〉= 〈J′λ(Uλ),η〉+on(1), for all η∈H1

0(Ω),

and

0>ϕ′′
un
(1)=(2−q)‖un ‖

2−(2∗−q)
∫

Ω

b(x) |un |
2∗

≥(2−q)‖Uλ ‖
2−(2∗−q)

∫

Ω

b(x) |Uλ |
2∗ ,

thus we get Uλ ∈M−
λ (Ω) is a nonzero solution of Eq. (1.1). We now prove that un →Uλ

strongly in H1
0(Ω). Suppose otherwise; then ‖Uλ ‖< liminf

n→∞
‖Un ‖ and so

〈J′λ(Uλ),Uλ〉=‖Uλ ‖
2−λ

∫

Ω

a(x) |Uλ |
q−
∫

Ω

b(x) |Uλ |
2∗

<liminf
n→∞

(

‖Un ‖
2−λ

∫

Ω

a(x) |un |
q−
∫

Ω

b(x) |un |
2∗
)

=liminf
n→∞

〈J′λ(un),un〉=0.

This contradicts Uλ∈M−
λ (Ω). Hence un →Uλ strongly in H1

0(Ω). This implies

Jλ(un)→ Jλ(Uλ)=α−
λ (Ω), as n→∞.

Since Jλ(Uλ) = Jλ(|Uλ |) and |Uλ |∈M−
λ (Ω) by Lemma 2.2 we may assume that Uλ is

a nonzero nonnegative solution of Eq. (1.1). Finally, by the Harnack inequality [8], we
deduce that Uλ>0 in Ω.

Now, we complete the proof of Theorem 1.1: By Theorems 3.2, 4.1, Eq. (1.1) has two
solutions uλ,Uλ such that uλ ∈M+

λ (Ω), Uλ ∈M−
λ (Ω). Since M+

λ (Ω)∩M−
λ (Ω)=∅, this

implies that uλ and Uλ are different.
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