A Singular Trudinger-Moser Inequality in Hyperbolic Space

ZHU Xiaobao*

Department of Mathematics, School of Information, Renmin University of China, Beijing 100872, China.

Received 5 November 2014; Accepted 26 January 2014

Abstract

In this paper, we establish a singular Trudinger-Moser inequality for the whole hyperbolic space \mathbb{H}^{n} : $$
\sup _{u \in W^{1, n}\left(\mathbb{H}^{n}\right), \int_{\mathbb{H}^{n}}\left|\nabla_{\mathbb{H}^{n}} u\right|^{n} \mathrm{~d} \mu \leq 1} \int_{\mathbb{H}^{n}} \frac{e^{\alpha|u|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u|^{\frac{n k}{n-1}}}{k!}}{\rho^{\beta}} \mathrm{d} \mu<\infty \Longleftrightarrow \frac{\alpha}{\alpha_{n}}+\frac{\beta}{n} \leq 1,
$$ where $\alpha>0, \beta \in[0, n), \rho$ and $d \mu$ are the distance function and volume element of \mathbb{H}^{n} respectively.

AMS Subject Classifications: 58E35, 35B33, 35J20, 35J60
Chinese Library Classifications: O178
Key Words: Singular Trudinger-Moser inequlity; hyperbolic space.

1 Introduction

In the past forty years, Trudinger-Moser inequality has play an important role in analysis and geometry. People call it Trudinger-Moser inequality because it was first proposed by Trudinger [1] in 1967: $\exists \alpha, C>0$, s.t.

$$
\begin{equation*}
\sup _{u \in W_{0}^{1, n}(\Omega), \int_{\Omega}|\nabla u|^{n} \mathrm{~d} x \leq 1} \int_{\Omega} e^{\alpha|u|^{\frac{n}{n-1}}} \mathrm{~d} x \leq C|\Omega| \tag{1.1}
\end{equation*}
$$

where $|\Omega|$ denotes the Lebesgue measure of Ω, and then improved by Moser [2] in 1971: the best constant for α is $\alpha_{n}=n \omega_{n-1}^{\frac{1}{n-1}}, \omega_{n-1}=\left|S^{n-1}\right|$. Here the best constant means that: if

[^0]$\alpha \leq \alpha_{n}$, then inequality (1.1) holds; if $\alpha>\alpha_{n}$, then there exists a sequence $\left\{u_{k}\right\} \subset W_{0}^{1, n}(\Omega)$ with $\int_{\Omega}\left|\nabla u_{k}\right|^{n} \mathrm{~d} x \leq 1$, but $\int_{\Omega} e^{\alpha u_{k}^{2}} \mathrm{~d} x \rightarrow \infty$ as $k \rightarrow \infty$. As limit case of the Sobolev embedding theorem, there is no need to say the importance of (1.1) in analysis. One more word we want to say here it that, using a similar inequality, Moser [3] solved the prescribing Gauss curvature problem on $\mathbb{R} P^{2}$.

Roughly speaking, the classical Trudinger-Moser inequality ((1.1) with $\alpha=\alpha_{n}$) has the following four kinds of generalizations:
(1) To high order derivatives, i.e., to $W_{0}^{m, \frac{n}{m}}(\Omega)$, this work was done by Adams [4] in 1988.
(2) To compact manifolds with or without boundary, this problem was first attempted by Aubin [5] in 1970, then studied by Cherrier [6] in 1979 and solved by Fontana [7] in 1993.
(3) To the whole Euclidean spaces, this problem was first attempted by Cao [8] in 1992, then studied by Panada [9] in 1995, do Ó [10] in 1997, Ruf [11] in 2005, Li-Ruf [12] in 2008, Adimurthi-Yang [13] in 2010, and Yang-Zhu [14] in 2013.
(4) To the whole complete noncompact manifolds, this problem was first attempted by Yang [15] in 2012 for general manifolds. When manifold is \mathbb{H}^{n}, the hyperbolic space with constant sectional curvature -1 , this problem was studied by Mancini-Sandeep [16] in 2010, Adimurthi-Tintarev [17] in 2010, Battaglia [18] and Mancini [19] in 2011, WangYe [20] in 2012, Tintarev [21] and Mancini-Sandeep-Tintarev [22] in 2013, and Yang-Zhu [23] in 2014.

In this paper, we will establish a singular Trudinger-Moser inequality on the whole hyperbolic space \mathbb{H}^{n}. Before stating the main result, let us review some relevant results in the past few years. In 2007, Aimurthi-Sandeep [24] first derived a singular TrudingerMoser inequality on a bounded domain in \mathbb{R}^{n} containing the origin, they proved

$$
\begin{equation*}
\int_{\Omega} \frac{e^{\alpha|u|^{\frac{n}{n-1}}}}{|x|^{\beta}} \mathrm{d} x<\infty \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{u \in W_{0}^{1, n}(\Omega), \int_{\Omega}|\nabla u|^{n} \mathrm{~d} x \leq 1} \int_{\Omega} \frac{e^{\alpha|u|^{\frac{n}{n-1}}}}{|x|^{\beta}} \mathrm{d} x<\infty \Longleftrightarrow \frac{\alpha}{\alpha_{n}}+\frac{\beta}{n} \leq 1, \tag{1.3}
\end{equation*}
$$

where $\alpha>0, \beta \in[0, n)$. In 2010, Adimurthi-Yang [13] generalized (1.3) to the whole Euclidean space \mathbb{R}^{n}, they obtained

$$
\begin{equation*}
\sup _{\|u\|_{1, \tau} \leq 1} \int_{\mathbb{R}^{n}} \frac{e^{\alpha|u|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u| \frac{n k}{n-1}}{k!}}{|x|^{\beta}} \mathrm{d} x<\infty \Longleftrightarrow \frac{\alpha}{\alpha_{n}}+\frac{\beta}{n} \leq 1, \tag{1.4}
\end{equation*}
$$

where $\|u\|_{1, \tau}=\left(\int_{\mathbb{R}^{n}}\left(|\nabla u|^{n}+\tau|u|^{n}\right) \mathrm{d} x\right)^{\frac{1}{n}}, \alpha>0$ and $\beta \in[0, n)$. Then in 2012, with the help of (1.4), Yang [25] obtained some existence results of positive solutions to quasi-linear
elliptic equations with exponential growth in \mathbb{R}^{n}. Recently, Yang [26] generalized (1.4) to the entire Heisenberg group.

In this paper, we will establish the corresponding inequalities of (1.3) and (1.4) in \mathbb{H}^{n}. In fact, we obtain

Theorem 1.1. $\forall \alpha>0, \beta \in[0, n)$, we have

$$
\int_{\mathbb{H}^{n}} \frac{e^{\alpha \alpha|u|^{\frac{n}{n-1}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u|^{\frac{n k}{n-1}}}{k!}}}{\rho^{\beta}} \mathrm{d} \mu<\infty .
$$

Moreover,

$$
\sup _{u \in W^{1, n}\left(\mathbb{H}^{n}\right), \int_{\mathbb{H}^{n}}\left|\nabla_{\mathbb{H}^{n}} u\right|^{n} d \mu \leq 1} \int_{\mathbb{H}^{n}} \frac{e^{\alpha|u|^{\frac{n}{n-1}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u| \frac{n k}{n-1}}{k!}}}{\rho^{\beta}} \mathrm{d} \mu<\infty \Longleftrightarrow \frac{\alpha}{\alpha_{n}}+\frac{\beta}{n} \leq 1,
$$

where ρ and $d \mu$ are the distance function and volume element of \mathbb{H}^{n} respectively.
This paper is organized as follows: In Section 2, we will state some preliminaries, including the Poincare ball model of the hyperbolic space \mathbb{H}^{n}, the symmetric decreasing rearrangements of functions in $W^{1, n}\left(\mathbb{H}^{n}\right)$, and an important radial lemma; In Section 3, we will complete the proof of Theorem 1.1.

2 Preliminaries

In this section, we will recall the Poincaré ball model of the hyperbolic space \mathbb{H}^{n} and state an important radial lemma which will be used in the next section.

2.1 Poincaré ball

Denote $B_{1} \subset \mathbb{R}^{n}$ the unit ball centered at the origin, equipped B_{1} with

$$
d s^{2}=\frac{4 \sum_{i=1}^{n} d x_{i}^{2}}{\left(1-r^{2}\right)^{2}}
$$

where $r=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$ is the Euclidean distance from the origin to $x \in B_{1}$. Using $d \mu$ to denote the volume element with respect to $d s^{2}$, i.e.,

$$
d \mu=\frac{2^{n}}{\left(1-r^{2}\right)^{n}} d x
$$

Direct calculation tells us,

$$
\int_{\mathbb{H}^{n}}\left|\nabla_{\mathbb{H}^{n}} u\right|^{n} \mathrm{~d} \mu=\int_{B_{1}}|\nabla u|^{n} \mathrm{~d} x .
$$

So

$$
W^{1, n}\left(\mathbb{H}^{n}\right)=\left\{\left.u\left|\int_{\mathbb{H}^{n}}\right| \nabla_{\mathbb{H}^{n}} u\right|^{n} \mathrm{~d} \mu<\infty\right\}
$$

can be identified with $W_{0}^{1, n}\left(B_{1}\right)$.
Denote $W_{0, r}^{1, n}\left(B_{1}\right)$ the subspace of radially symmetric functions of $W_{0}^{1, n}\left(B_{1}\right)$.
We will use symmetric decreasing rearrangements of functions in $W^{1, n}\left(\mathbb{H}^{n}\right)$. Let $u \in$ $W^{1, n}\left(\mathbb{H}^{n}\right)$, denote u^{*} its symmetric decreasing rearrangement function. It is well known that

$$
\int_{\mathbb{H}^{n}}\left|u^{*}\right|^{n} \mathrm{~d} \mu=\int_{\mathbb{H}^{n}}|u|^{n} \mathrm{~d} \mu, \quad \text { and } \quad \int_{\mathbb{H}^{n}}\left|\nabla_{\mathbb{H}^{n}} u^{*}\right|^{n} \mathrm{~d} \mu \leq \int_{\mathbb{H}^{n}}\left|\nabla_{\mathbb{H}^{n}} u\right|^{n} \mathrm{~d} \mu .
$$

For more details about symmetric decreasing rearrangements of functions in $W^{1, n}\left(\mathbb{H}^{n}\right)$, we refer the reader to $[27,28]$.

2.2 Radial lemma

Lemma 2.1. ([22, Lemma 2.2]) Let $u \in W_{0, r}^{1, n}\left(B_{1}\right)$, then

$$
|u(r)| \leq \frac{\ln ^{\frac{n-1}{n}}\left(\frac{1}{r}\right)}{\omega_{n-1}^{\frac{1}{n}}}\|\nabla u\|_{n}, \quad r \in(0,1) .
$$

3 Proof of Theorem 1.1

The proof of Theorem 1.1 mainly depends on Lemma 2.1 and the singular TrudingerMoser inequality (1.3) of Adimurth and Sandeep .

By the standard rearrangement argument $[27,28]$ applied on \mathbb{H}^{n}, it suffices to consider the inequality only for radial functions on the Poincaré ball. Let $u \in W_{0, r}^{1, n}\left(B_{1}\right)$ be an arbitrary function satisfying $\int_{B_{1}}|\nabla u|^{n} \mathrm{~d} x \leq 1$. We divide the integral into two parts: (i) $0<r<\frac{1}{2}$ and (ii) $r \geq \frac{1}{2}$.

$$
\begin{aligned}
& \int_{\mathbb{H}^{n}} \frac{1}{\rho^{\beta}}\left(e^{\alpha|u|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u|^{\frac{n k}{n-1}}}{k!}\right) \mathrm{d} \mu=\int_{B_{1}} \frac{1}{\left(\ln \frac{1+r}{1-r}\right)^{\beta}}\left(e^{\alpha|u|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u|^{\frac{n k}{n-1}}}{k!}\right) \frac{2^{n}}{\left(1-r^{2}\right)^{n}} \mathrm{~d} x
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{B_{1} \backslash B_{\frac{1}{2}}} \frac{1}{r^{\beta}}\left(e^{\alpha|u|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u|^{\frac{n k}{n-1}}}{k!}\right) \frac{2^{n}}{\left(1-r^{2}\right)^{n}} \mathrm{~d} x \\
& \leq C \int_{B_{\frac{1}{2}}} \frac{1}{r}\left(e^{\alpha|u|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u|^{\frac{n k}{n-1}}}{k!}\right) \mathrm{d} x
\end{aligned}
$$

$$
\begin{equation*}
+C \int_{B_{1} \backslash B_{\frac{1}{2}}}\left(e^{\alpha|u|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u|^{\frac{n k}{n-1}}}{k!}\right) \frac{2^{n}}{\left(1-r^{2}\right)^{n}} \mathrm{~d} x \tag{3.1}
\end{equation*}
$$

For the first integral in (3.1), by (1.2) we have

When $\alpha / \alpha_{n}+\beta / n \leq 1$, by (1.3) we have

$$
\begin{align*}
& \int_{B_{\frac{1}{2}}} \frac{1}{r^{\beta}}\left(e^{\alpha|u|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u|^{\frac{n k}{n-1}}}{k!}\right) \mathrm{d} x \leq \int_{B_{1}} \frac{e^{\alpha|u|^{\frac{n}{n-1}}}}{r^{\beta}} \mathrm{d} x \\
\leq & \sup _{v \in W_{0}^{1, n}\left(B_{1}\right), \int_{B_{1}}|\nabla v|^{n} d x \leq 1} \int_{B_{1}} \frac{e^{\alpha|v|^{\frac{n}{n-1}}}}{r^{\beta}} \mathrm{d} x<\infty . \tag{3.2}
\end{align*}
$$

For the second integral in (3.1), first noticing

$$
\begin{equation*}
e^{t}-\sum_{k=0}^{n-2} \frac{t^{k}}{k!} \leq C t^{n-1} e^{t}, \quad(t \geq 0) \tag{3.3}
\end{equation*}
$$

From Lemma 2.1 we know that

$$
\begin{equation*}
e^{\alpha|u|^{\frac{n}{n-1}}} \leq C, \quad r \in\left[\frac{1}{2}, 1\right] \tag{3.4}
\end{equation*}
$$

By (3.3) and (3.4) we have

$$
\begin{align*}
& \quad \int_{B_{1} \backslash B_{\frac{1}{2}}}\left(e^{\left.\alpha|u|^{\frac{n}{n-1}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u|^{\frac{n k}{n-1}}}{k!}\right) \frac{2^{n}}{\left(1-r^{2}\right)^{n}} \mathrm{~d} x \leq C \int_{B_{1} \backslash B_{\frac{1}{2}}}|u|^{n} e^{\alpha|u| n^{n-1}} \frac{2^{n}}{\left(1-r^{2}\right)^{n}} \mathrm{~d} x}\right. \\
& \leq C \int_{\mathbb{H}^{n}}|u|^{n} \mathrm{~d} \mu \leq C \int_{\mathbb{H}^{n}}\left|\nabla_{\mathbb{H}^{n}} u\right|^{n} \mathrm{~d} \mu \leq C, \tag{3.5}
\end{align*}
$$

where the third inequality is due to the Poincaré-Sobolev inequality (c.f. in [22, Lemma 2.1]).

By combining (3.2) and (3.5), we have obtained

$$
\begin{equation*}
\sup _{u \in W^{1, n}\left(\mathbb{H}^{n}\right), \int_{\mathbb{H}^{n}}\left|\nabla_{\mathbb{H}^{n}} u\right|^{n} \mathrm{~d} \mu \leq 1} \int_{\mathbb{H}^{n}} \frac{e^{\alpha|u|^{\frac{n}{n-1}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u|^{\frac{n k}{n-1}}}{k!}}}{\rho^{\beta}} \mathrm{d} \mu<\infty, \quad \text { when } \frac{\alpha}{\alpha_{n}}+\frac{\beta}{n} \leq 1 \tag{3.6}
\end{equation*}
$$

Next, we use the Moser function to show that (3.6) does not hold if $\alpha / \alpha_{n}+\beta / n>1$. For $0<l<1 / 2$, let u_{l} be the Moser function

$$
u_{l}(x)=\frac{1}{\omega_{n-1}^{\frac{1}{n}}} \begin{cases}\left(\ln \frac{1}{2 l}\right)^{\frac{n-1}{n}}, & 0 \leqslant|x| \leqslant l \\ \frac{\ln \frac{1}{2|x|}}{\left(\ln \frac{1}{2 l}\right)^{\frac{1}{n}}}, & l \leqslant|x| \leqslant \frac{1}{2} \\ 0, & |x|>\frac{1}{2}\end{cases}
$$

Then,

$$
\int_{\mathbb{H}^{n}}\left|\nabla_{\mathbb{H}^{n}} u_{l}\right|^{n} \mathrm{~d} \mu=\int_{B_{1}}\left|\nabla u_{l}\right|^{n} \mathrm{~d} x=1
$$

and

$$
\begin{aligned}
& \int_{\mathbb{H}^{n}} \frac{e^{\alpha|u| \frac{n}{n-1}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u| \frac{n k}{n-1}}{k!}}{\rho^{\beta}} \mathrm{d} \mu=\int_{B_{1}} \frac{e^{\alpha|u|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u| \frac{n k}{n-1}}{k!}}{\left(\ln \frac{1+r}{1-r}\right)^{\beta}} \frac{2^{n}}{\left(1-r^{2}\right)^{n}} \mathrm{~d} x \\
& \geqslant \int_{B_{l}} \frac{e^{\alpha|u|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k} \left\lvert\, u u^{\frac{n k}{n-1}}\right.}{k!}}{\left(\ln \frac{1+r}{1-r}\right)^{\beta}} \frac{2^{n}}{\left(1-r^{2}\right)^{n}} \mathrm{~d} x \geqslant \int_{B_{l}} \frac{e^{\alpha|u|^{\frac{n}{n-1}}-\sum_{k=0}^{n-2} \frac{\alpha^{k} \left\lvert\, u u^{\frac{n k}{n-1}}\right.}{k!}}}{\left(\frac{2 r}{1-r}\right)^{\beta}} \frac{2^{n}}{\left(1-r^{2}\right)^{n}} \mathrm{~d} x \\
& \geqslant 2^{-\beta} \int_{B_{l}} \frac{1}{r \beta} \mathrm{~d} x\left(e^{\alpha \omega_{n-1}^{-\frac{1}{n-1}} \ln \frac{1}{2 l}}+O\left(\left(\ln \frac{1}{2 l}\right)^{n-2}\right)\right) \\
& =2^{-\beta} \omega_{n-1} \frac{l^{n-\beta}}{n-\beta}\left(e^{\alpha \omega_{n-1}^{-\frac{1}{n-1}} \ln \frac{1}{2 l}}+O\left(\left(\ln \frac{1}{2 l}\right)^{n-2}\right)\right) \\
& =2^{-n\left(\frac{\alpha}{\alpha_{n}}+\frac{\beta}{n}\right)} \omega_{n-1} \frac{1}{n-\beta}\left(l^{-n\left(\frac{\alpha}{\alpha_{n}}+\frac{\beta}{n}-1\right)}+o(1)\right), \quad \text { as } l \rightarrow 0+\text {. }
\end{aligned}
$$

Hence, when $\alpha / \alpha_{n}+\beta / n>1$, we have

$$
\begin{aligned}
& \quad \sup _{u \in W^{1, n}\left(\mathbb{H}^{n}\right), \int_{\mathbb{H}^{n}}\left|\nabla_{\mathbb{H}^{n}} u\right|^{n} \mathrm{~d} \mu \leq 1} \int_{\mathbb{H}^{n}} \frac{e^{\alpha|u|^{\frac{n}{n-1}}-\sum_{k=0}^{n-2} \frac{\alpha^{k}|u| \frac{n k}{n-1}}{k!}}}{\rho^{\beta}} \mathrm{d} \mu \\
& \geqslant \sup _{\int_{\mathbb{H}^{n}} \mid \nabla_{\mathbb{H}^{n} u} u^{n} \mathrm{~d} \mu=1} \int_{\mathbb{H}^{n}} \frac{e^{\alpha\left|u_{l}\right|^{\frac{n}{n-1}}}-\sum_{k=0}^{n-2} \frac{\alpha^{k} \mid u l_{l}^{n k}}{n!}}{\rho^{\beta}} \mathrm{d} \mu=\infty .
\end{aligned}
$$

This completes the proof of Theorem 1.1.

Acknowledgement

This work is supported by the NSFC 11401575, 11171347 and 41275063 . The author would like to thank Professor Jiayu Li and Professor Yunyan Yang for their encouragements, and thank the referee for his valuable comments and suggestions on this paper.

References

[1] Trudinger N. S., On embeddings into Orlicz spaces and some applications. J. Math. Mech., 17 (1967), 473-484.
[2] Moser J., A sharp form of an inequality by N.Trudinger. Ind. Univ. Math. J., 20 (1971), 10771091.
[3] Moser J., On a nonlinear problem in differential geometry. Dynamical systems, (273-280), Academic Press, New York, 1973.
[4] Adams D., A sharp inequality of J. Moser for higher order derivatives. Ann. Math., 128 (1988), 385-398.
[5] Aubin T., Sur la function exponentielle. C. R. Acad. Sci. Paris, Series A, 270 (1970), A1514A1516.
[6] Cherrier P., Une inégalité de Sobolev sur les variétés Riemanniennes. Bull. Sc. Math., 103 (1979), 353-374.
[7] Fontana L., Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comm. Math. Helv., 68 (1993), 415-454.
[8] Cao D. M., Nontrivial solution of semilinear elliptic equations with critical exponent in \mathbb{R}^{2}. Comm. Partial Differential Equations, 17 (1992), 407-435.
[9] Panda R., Nontrivial solution of a quasilinear elliptic equation with critical growth in \mathbb{R}^{n}. Proc. Indian Acad. Sci. (Math. Sci.), 105 (1995), 425-444.
[10] do Ó J. M., N-Laplacian equations in \mathbb{R}^{N} with critical growth. Abstr. Appl. Anal., 2 (1997), 301-315.
[11] Ruf B., A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{2}. J. Funct. Anal., 219 (2005), 340-367.
[12] Li Y. X., Ruf B., A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{N}. Ind. Univ. Math. J., 57 (2008), 451-480.
[13] Adimurthi and Yang Y. Y., An interpolation of Hardy inequality and Trudinger-Moser inequality in \mathbb{R}^{N} and its applications. Internat. Mathematics Research Notices, 13 (2010), 23942426.
[14] Yang Y. Y., Zhu X. B., A new proof of subcritical Trudinger-Moser inequalities on the whole Euclidean space. J. Part. Diff. Eq., 26 (4) (2013), 300-304.
[15] Yang Y. Y., Trudinger-Moser inequalities on complete noncompact Riemannian manifolds. J. Funct. Anal., 263 (2012), 1894-1938.
[16] Mancini G., Sandeep K., Moser-Trudinger inequality on conformal discs. Commun. Contemp. Math., 12 (6) (2010), 1055-1068.
[17] Adimurthi and Tintarev K., On a version of Trudinger-Moser inequality with Möbius shift invariance. Calc. Var. Partial Differential Equations, 39 (1-2) (2010), 203-212.
[18] Battaglia L., Sobolev Inequalities in the Limiting Case and Exponential Integrability. Master Thesis, University of Roma Tre, 2011.
[19] Mancini G., Trudinger-Moser Inequality and Applications to a Geometric Problem. Master Thesis, University of Roma Tre, 2011.
[20] Wang G. F., Ye D., A Hardy-Trudinger-Moser inequality. Adv. Math., 230 (2012), 294-320.
[21] Tintarev C., Trudinger-Moser inequality with remainder terms. J. Funct. Anal., 266 (2014), 55-66.
[22] Mancini G., Sandeep K. and Tintarev C., Trudinger-Moser inequality in the hyperbolic space \mathbb{H}^{N}. Adv. Nonl. Anal., 2 (3) (2013), 309-324.
[23] Yang Y. Y., Zhu X. B., Trudinger-Moser embedding on the hyperbolic space. Abstr. Appl. Anal., Volume 2014, Article ID 908216, 4 pages, http:/ / dx.doi.org/10.1155/2014/908216.
[24] Adimurthi and Sandeep K., A singular Moser-Trudinger embedding and its applications. Nonl. Diff. Equa. Appl., 13 (2007), 58-603.
[25] Yang Y. Y., Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space. J. Funct. Anal., 262 (4) (2012), 1679-1704.
[26] Yang Y. Y., Trudinger-Moser inequalities on the entire Heisenberg group. Math. Nachr., 287 (8-9) (2014), 1071-1080.
[27] Baernstein II A., A unified approach to symmetrization. Partial Differential Equations of Elliptic Type (Cortona 1992), Sympos. Math., 35 Cambridge University Press, Cambridge (1994), 47-91.
[28] Martin J., Milman M., Pointwise symmetrization inequalities for Sobolev functions and applications. Adv. Math., 225 (2010), 121-199.

[^0]: *Corresponding author. Email addresses: zhuxiaobao@ruc.edu.cn (X. B. Zhu)

