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Andrije Kačića-Miošića 26, 10000 Zagre, Country

Abstract

Nonwoven geotextiles manufactured by mechanical carding process and bonding by needling process
are investigated in this paper. Part of the samples was additionally bonded by thermal calendaring
process. Sampling was conducted according to the standard for geotextile with certain modifications.
The samples were tested for water permeability perpendicular to the plane of samples using loads of 2,
20 and 200 kPa. Characteristic opening size of geotextiles was tested using sieving method. Research
shows that different applied pressures significantly change structure and properties i.e. thickness and
water permeability normal to the plain under load of geotextile.
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1 Introduction

Nonwoven textile is a fabric composed of individual fibres mutually bonded by a certain process.
For nonwoven productions different types of fibres are used. The choice of fibre depends on
the desired properties of the nonwovens and the cost of of the chosen fibres [1, 2]. Artificial
fibres are the raw materials for the production of nonwovens, and it dominates the world market,
representing about 90% of the total fibre consumption. World consumption of synthetic fibres for
nonwoven production is about 63% of polypropylene fibres, 23% of polyester fibres, 8% of viscose
fibre, 2% of polyacrylic fibres, 1.5% of polyamide fibres and 3% of other special fibres [2]. From
the above, it is evident that in the nonwoven industry, the three most processed types of fibres
are polypropylene, polyester and viscose. Regarding to the previously mentioned samples, those
made of polypropylene and polyester were chosen for this study.

Geotextile as drainage and filtration materials is used in earthworks for last 30 years. The func-
tions provided by nonwovens in geotechnical applications include drainage, filtration, separations
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and soil protection, particularly in its stability and erosion control [3]. Nonwoven geotextiles are
very permeable and are compressible materials. When under stress, as the thickness of the geotex-
tile reduces, so does its coefficient of permeability and pore dimensions [4]. Where the filtration
function of geotextile is of paramount importance, water permeability perpendicular to the plane
is relevant, and the in-plane water permeability of geotextiles may be of greater significance, in
the application of drainage function [5-7]. Therefore water permeability of geotextiles normal to
the plane is one of the main parameters that can be used to characterize and compare geotextiles
[8]. For separation, filtration and drainage-in-the-plane, the pore sizes, pore geometry and per-
centage open area of the geotextiles in the direction of flow are critical. Mentioned functions of
geotextiles are dominated by their pore space characteristics, as these control the size of particles
and the amount of water that may be transmitted through them [8-12].

Their usage is mostly successful, since design is based on an empirical criterion which some-
times differ from the real ones. Such practices can lead to erroneous predictions of the design.
The biggest problem in practice is caused by force impact on the geotextile and the influence of
external conditions during installation [13]. The issue of actual conditions and their impact on
the geotextile has not been studied much [14, 15]. This paper studies the influence of pressures
on the thickness (or porosity, which is associated with the structure of geotextiles), water per-
meability under pressures and characteristic opening size of geotextiles. The goal of this paper
is to investigate performance of polypropylene and polyester needle punched and polypropylene
calendered geotextile in use.

2 Experimental

The samples investigated in this paper are nonwoven geotextiles manufactured by mechanical
carding process, bonded by needling process. Part of the samples was additionally bonded by
thermal calendaring process. Two groups of samples were made from polypropylene and polyester
fibres and bonded by needling. The third group of samples were polypropylene fibres bonded
with needling and also additionally bonded with calendaring. Mass per unit area for all groups
of samples is in the range between 200 and 500 g/m2. The total numbers of tested samples were
12.

The sampling was conducted according to the standard for geotextile sampling HRN EN ISO
9862: 2005 with certain modifications [16]. The standard where modified, where detailed sampling
plan has been made as well as number of measurements per sample was increased. For the
sampling, a metal plate sizing of 60.3 cm x 60.8 cm with holes has been used for all specimens of
the planned testing. The metal plate was moved according to 5-end satin weave with step of 3, in
order to avoid repetition of sampling in longitudinal and transverse direction for the same type
of testing. According to the standard for sampling, 10% of the sample width has to be avoided
from the edges (40 cm). The sampling is presented in Fig. 1.

The thickness was tested according to the standard for geosynthetic consisting of single layers
HRN EN ISO 9863-1: 2005 at specified pressures of 2, 20 and 200 kPa [17]. Density of geotextiles
was calculated from mass per unit area and thickness values, using following equation:

ρgeo. =
M

t
(1)

where ρ is the density [g/cm3], M is the mass per unit area [g/cm2] and t is the thickness [cm]. For
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calculating density of nonwoven geotextiles, values of thickness measured by specified pressures
of 2, 20 and 200 kPa was used. Porosity of geotextiles were calculated from the ratio of geotextile
density and fibre density and expressed in percentage.

P = 1− ρgeo.

ρfib.

(2)

where P is the porosity of geotextiles [%], ρgeo. is the density of geotextile [g/cm3] and ρfib. is
the density of fibre [g/cm3], whereas polypropylene fibre density is 0.91 g/cm3. The investigated
nonwoven geotextile samples and their properties are given in Table 1.
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Fig. 1: Sampling of the geotextile samples

2.1 Water Permeability Normal to the Plain under Load

Water permeability through the medium (geotextile) is the amount of water that flows through
it per unit time. Nonwoven geotextiles were tested for water permeability perpendicular to the
plane of samples using loads of 2, 20 and 200 kPa, according to E DIN 60500-4: 1997 [18].
Measurements were carried out in laminar flow (hydraulic gradient=1) to examine water flow
through the sample (Q, cm3/s) or the volume of water that passed through the sample at a
given time. Sample area was 19.635 cm2 and water flow was measured through the thickness
of the “package sample”. “Package sample” is composed of a number of samples whose total
thickness should be approximately 4 cm [19-21]. Since the viscosity of the liquid effects the flow,
during measurement the temperature of the water should be kept at 20 ± 2◦C. For this reason,
during measurement water temperature is recorded and based on that registered temperature
the correction of calculated hydraulic gradient was made. Permittivity (ψ) is determined by the
following equation:

ψ =
kv,const.

t
(3)
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Table 1: The investigated properties of the geotextiles

Samples Mark
Mass per unit
area [g/m2]

Tested and calculated properties

Polypropylene needle
punched geotextile

PP 200 199

Thickness was tested according to the
standard for geosynthetic consisting of single
layers HRN EN ISO 9863-1: 2005 at specified
pressures of 2, 20 and 200 kPa
Water permeability perpendicular to the plane
using loads of 2, 20 and 200 kPa was tested
according to E DIN 60500-4: 1997
Characteristic opening size of geotextiles was
tested according to HRN EN ISO 12956: 2001
Density of geotextiles was calculated
Porosity of geotextile was calculated

PP 250 234
PP 300 276
PP 450 417

Polypropylene needle
punched geotextile
additionally bonded

with calendaring

PP-C 200 218
PP-C 250 275
PP-C 300 309
PP-C 450 465

Polyester needle
punched geotextile

PET 200 210
PET 250 251
PET 300 299
PET 450 490

where kv,const. is the hydraulic conductivity [m/s], v is the flow velocity [m/s] and i is the hydraulic
gradient. Hydraulic gradient and laminar flow are defined by the following expression:

i =
h

tn
= 1 (4)

where and i is the hydraulic gradient, h is the pressure difference of the sample [cm] and tn is the
thickness of the “sample package” [cm] where thickness of the “package specimen” is determined
by expression of tn:

tn = n · t (5)

where tn - thickness of “sample package” in cm [≈ 4 cm], n is the number of samples in “package
sample” and t is the thickness of each sample in “package sample” [cm]. Hydraulic conductivity
defined by following equation:

kv,const. =
Qtn
Ah

· RT

129
(6)

where kv,const. is the water flow rate in 10−3 [m/s], Q is the water flow [cm3/s], tn is the thickness
of sample package [cm], A is the testing sample area that was 19, 635 [cm2], h is the pressure
difference in Pa, and RT is the correction factor for the hydraulic conductivity of water at a
temperature of T=20◦C. Correction factor of hydraulic conductivity (RT ) is determined by the
following equation:

RT =
ηT

ηR

(7)

where ηR is the water dynamic viscosity at a reference temperature (T=20◦C) [mPas] and ηT

is the water dynamic viscosity at the measured temperature T [mPa]. ηT is calculated by the
following expression:

ηT =
1, 779

1 + 0, 03368T + 0, 00022099T 2
(8)

where T is the measured water temperature [◦C].
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2.2 Characteristic Opening Size – AOS

Characteristic opening size of geotextiles was tested according to HRN EN ISO 12956: 2001 [22].
The principle of the method is based on the particles size distribution of different grades of granular
material (usually glass pellet or sand) after sieving through a geotextile without applying the load.
The characteristic opening pore size corresponds to the specific size of granular material passed
through the sample after sowing. This method gives the approximate values of the maximum
diameter of the samples pore through which soil particles can pass [23]. Value O90 is the size
of the opening that allows particle sizes d90 to pass through the geotextile or geotextile similar
product. The d90 is a particle size, where 90% of the particle mass pass through a sieve meshes.
The cumulative percentage of sieving material is in function with sieve sizes, and it presents
graphically the sieving curve of the determinate O90. Fig. 2 shows the distribution curves of the
pore sizes of needle punched polypropylene with 450 g/m2 tested in this paper. Fig. 2 presents
individual curves of the three tested needle punched polypropylene geotextiles of 450 g/m2. The
individual curves present cumulative percentage of sieving material in function of sieve sizes.
From the three individual curves, the mean curve was calculated. From the mean curve O90 was
determined. Where the horizontal line of 90% of passage of grain through a sieve and the vertical
line of sieve size meets on mean curve characteristic opening size of geotextiles is reading [22, 24].

100

90

80

70

60

50

40

30

20

10

0

P
as

sa
ge

 o
f 
gr

ai
n
 t

h
ro

u
gh

 a
 s

ie
v
e 

(%
)

10 100 1000
Sieve size (µm)

Fig. 2: Distribution curve of the characteristic opening size of needle punched polypropylene sample
with 450 g/m2

3 Results and Discussion

The results of the mass per unit area, thickness of geotextile measured under pressures of 2,
20 and 200 kPa, and the calculated porosity are given in Table 1. Porosity was calculated using
Equation 2. The largest thickness has a needle punched polypropylene, followed by needle punched
polyester and calendered polypropylene geotextiles at all applied pressures (Table 2, Fig. 3). The
standard error bars shows that there are no significant deviations from the empirical regression
values of thickness. The calendering process which uses pressure and heat for bonding causes
length decrease and diameter increase of fibres within geotextiles. The result for the fibre changes
within geotextiles are shown in the increase of mass per unit area.
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Fig. 3: Change of thickness on nonwoven geotextiles caused by applied pressures in dependence of mass
per unit area with associated standard error bars

The increase of mass per unit area caused by calendering process ranges from 8.7 to 14.9%. After
calendaring process, the thickness of the polypropylene geotextiles decreased (Table 2, Fig. 3).

The thickness of needle punched polyester geotextiles are lower than needle punched polypropy-
lene geotextiles; even the mass per unit area is higher for polyester geotextiles.

The decrease of thickness caused by applied pressures (between 2 and 20 kPa) is the highest
for needle punched polypropylene, followed by polyester and finally polypropylene geotextiles
additionally bonded with calendaring (Table 2, Fig. 3 and 4). The percentage of the geotex-
tile thickness decrease ranges as follows: the needle punched polypropylene amounts from to
50.8 to 66.8 %; the needle punched polyester amounts from 45.7 to 65.1 % and the calendered
polypropylene amounts from 30.3 to 36.5% (Fig. 3).

All groups of geotextiles at all applied loads show differences in thickness. Based on the obtained
results it can be concluded that the change in the average thickness at all pressures are greater
for the needle punched polypropylene geotextiles than for calendared polypropylene geotextiles.

The calendering process uses temperature and pressure for the additional bonding of geotex-
tiles where certain compression of material occurs. The calendaring process results to a more
compact structure of calendered geotextiles. That is the reason for the less thickness decrease
under applied pressures of the calendered polypropylene geotextiles. It can be concluded that
calendered geotextiles have controlled and predictable compressibility, i.e. structure which will
not significantly change in the practical application. Decrease of the needle punched polyester
geotextile thickness (55.6%) caused by pressures (between 2 and 200 kPa) is smaller than for
needle punched polypropylene geotextiles (60.1%). Less change of the needle punched polyester
geotextiles thickness can be explained with their smaller porosity, i.e. geometry and properties
of polyester fibres (Table 2, Fig. 3 and 4).

Dependence of nonwoven geotextiles thickness and applied pressures are in the form of an
exponential regression line with high exponential coefficient of regression (Fig. 3). The standard
error bars showing there are no significant deviations from the empirical regression values.

Dependence of characteristic opening size of nonwoven geotextiles and mass per unit area with
associated standard error bars is shown on Fig. 8. The standard error bars shows that there
are no significant deviations from the empirical regression values of characteristic opening size of
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nonwoven geotextiles. The largest characteristic opening size has needle punched polypropylene
geotextiles, followed by needle punched polyester and polypropylene calendered geotextiles with
smallest characteristic opening size (Table 3).
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Fig. 4: Change of nonwoven geotextiles thickness under applied pressures
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Fig. 5: Dependence of characteristic opening size of nonwoven geotextiles and mass per unit area with
associated standard error bars

The influence of the different types of fibres on geotextile characteristic opening pore sizes
is apparent. The needle punched polyester geotextiles has smaller pore sizes compared with
the needle punched polypropylene geotextiles. After the calendering process, the pore size of
calendered polypropylene geotextiles decreased by 23% (Table 3).

The narrow range of porosity for calendered geotextiles compared with the needle punched
polypropylene and needle punched polyester geotextiles is shown on Fig. 6. Linear coefficient of
correlation is highest for calendered polypropylene geotextiles. The standard error bars shows that
there are no significant deviations from the empirical regression values of water permeability of
tested geotextiles, where the lowest deviation from the empirical regression values is for calendered
geotextiles.
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Table 2: Geometric properties of nonwoven geotextile

Samples
Geometric parameters

MA [g/m2] t2 [mm] t20 [mm] t200 [mm] P2 [%] P20 [%] P200 [%]

PP

200 3.19 2.18 1.06 0.9315 0.8999 0.7941

250 3.56 2.48 1.23 0.9277 0.8962 0.7905

300 3.82 2.87 1.70 0.9205 0.8942 0.8214

450 4.41 3.63 2.17 0.8962 0.8091 0.7889

x̄ 3.73 2.72 1.49 0.9190 0.8748 0.7987

CV 11.79 19.85 28.86 0.0138 0.0380 0.0132

SD 0.44 0.54 0.43 1.4971 4.3432 1.6568

SEM 0.22 0.27 0.22 0.0069 0.0190 0.0066

PP C

200 1.15 0.94 0.73 0.7918 0.7453 0.6720

250 1.42 1.20 0.92 0.7870 0.7480 0.6713

300 1.59 1.33 1.02 0.7864 0.7446 0.6670

450 2.31 2.04 1.61 0.7788 0.7495 0.6825

x̄ 1.57 1.33 1.03 0.7860 0.7468 0.6732

CV 27.39 39.1 32.04 0.0046 0.0020 0.0057

SD 0.43 0.52 0.33 0.5911 0.2645 0.8470

SEM 0.21 0.26 0.16 0.0023 0.0010 0.0029

PES

200 2.12 1.28 0.74 0.8912 0.8199 0.6886

250 2.08 1.44 0.90 0.8676 0.8088 0.6941

300 2.53 1.71 1.06 0.8702 0.8080 0.6902

450 3.00 2.34 1.63 0.8207 0.7700 0.6699

x̄ 2.43 1.69 1.08 0.8624 0.8017 0.6857

CV 15.23 23.67 31.48 2.9903 2.3552 1.3615

SD 0.37 0.40 0.34 0.0258 0.0189 0.0093

SEM 0.19 0.20 0.17 0.0129 0.0094 0.0047

Where: MA – mass per unit area [g/m2], t2 – thickness under load of 2 kPa [mm], t20 – thickness under load of
20 kPa [mm], t200 – thickness under load of 200 kPa [mm], P2 – porosity under load of 2 kPa [%], P20 – porosity
under load of 20 kPa [%], P200 – porosity under load of 200 kPa [%], x̄ - mean value of thickness [mm] and
porosity [%], CV – coefficient of variation [%]; SD – standard deviation of thickness [mm] and porosity [%], SEM
– standard error of thickness [mm] and porosity [%]

Change of water permeability under applied pressures in relation to mass per unit area is shown
in Fig. 7. The highest water permeability is visible for needle punched polypropylene, followed by
polyester needle punched geotextiles and polypropylene needle punched geotextiles as the lowest
(Fig. 7). The standard error bars shows that there are no significant deviations from the empirical
regression values of water permeability of tested geotextiles, where the lowest deviation from the
empirical regression values is for calendered geotextiles.
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Table 3: Hydraulic properties of nonwoven geotextile

Samples
Hydraulic parameters

MA[g/m2] kv2 10−3[m/s] kv20 10−3 [m/s] kv200 10−3 [m/s] O90[µm]

PP

199 6.03 3.53 1.66 163

234 5.39 3.86 1.39 135

276 3.99 3.58 1.40 135

417 3.18 2.40 0.59 126

x̄ 5.08 3.31 0.88 142

CV 22.11 16.87 43.84 9.80

SD 1.12 0.56 0.39 13.92

SEM 0.56 0.28 0.19 6.96

PP C

218 0.88 0.76 0.20 121

275 1.07 0.98 0.41 115

309 0.85 0.83 0.23 112

465 1.12 0.98 0.24 90

x̄ 0.91 0.80 0.25 110

CV 12.84 11.97 32.86 10.65

SD 0.12 0.10 0.08 11.72

SEM 0.06 0.05 0.04 5.86

PES

210 4.67 3.13 2.01 153

251 3.04 2.16 2.01 153

299 2.84 1.96 0.52 133

490 1.86 1.62 0.52 119

x̄ 3.10 2.22 1.27 139

CV 32.55 25.27 58.66 10.34

SD 1.01 0.56 0.75 14.38

SEM 0.50 0.28 0.37 7.19

Where: MA – mass per unit area [g/m2], kv2 – hydraulic conductivity under load of 2 kPa [10−3 m/s], kv20 –
hydraulic conductivity under load of 20 kPa [10−3 m/s], kv200 – hydraulic conductivity under load of 200 kPa
[10−3 m/s], O90 – characteristic opening pore size [µm], x̄ - mean value for hydraulic conductivity [10−3 m/s]
and for characteristic opening pore size [µm], CV – coefficient of variation [%], SD – standard deviation for
hydraulic conductivity [10−3 m/s] and characteristic opening pore size [µm], SEM – standard error for hydraulic
conductivity [10−3 m/s] and for characteristic opening pore size [µm]

By increasing applied pressures, water permeability decreased for all tested samples. The
greatest decrease occured between 20 and 200 kPa, since this level of pressures leads to a significant
change of geotextiles thickness and porosity (Table 2, Fig. 7 and 8).

The greatest reductions in water permeability were caused by the applied pressures from needle
punched polypropylene geotextiles followed by calendered polypropylene geotextiles (Table 3,
Fig. 8).

Water permeability of calendered polypropylene geotextiles decreased (approx. 10%). The
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interval of geotextile water permeability change was due to the applied pressure. The advantage
of the calendaring process is that water permeability of calendered polypropylene geotextiles
will decrease in the narrow interval compared to only needle punched polypropylene geotextiles,
which is important in practical use. Polyester geotextiles has the smallest reduction of water
permeability (Table 3, Fig. 8).
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The needle punched polyester geotextiles thickness under applied pressures decreased less than
the needle punched polypropylene geotextiles (60% for polypropylene and 56% for polyester),
whereas the polyester porosity decreased by almost double (13% for polypropylene and 21% for
polyester geotextiles) (Table 3, Fig. 8 and 9). This difference of changing thickness and porosity
under applied pressures between needle punched polypropylene and needle punched polyester
geotextiles is caused by the different type of fibres. It can be concluded that the type and
properties of fibres within geotextile have significant influenced the decrease of water permeability
under applied pressures.

Dependence of water permeability under applied pressures and porosity of the geotextiles are in
the form of the exponential regression line with high exponential coefficient of regression (Fig. 9).
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Fig. 8: Change of nonwoven geotextiles water permeability under applied pressures with associate ex-
ponential regression line and R-squared value
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Fig. 9: Dependence of water permeability under applied pressures and porosity of nonwoven geotextiles

4 Conclusion

The calendering process uses pressure and heat for the bonding which causes length decrease and
diameter increase of fibres within geotextiles. The result of fibres changes within geotextiles is
shown as increase of mass per unit area. The calendaring process gives a more compact structure
of calendered geotextiles which is the reason of less thickness decrease under applied pressures
of the calendered polypropylene geotextiles. It can be concluded that the calendered geotextiles
have controlled and predictable compressibility, i.e. structure which will not significantly change
in the practical application.
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The influence of the different types of fibres, namely polypropylene and polyester fibres on
thickness change is noticeable. The needle punched polyester geotextiles have less change of
thickness under applied pressures which can be explained with their smaller porosity, i.e. geometry
and properties of polyester fibres.

The calendering process decreases the characteristic opening sizes of needle punched polypropy-
lene geotextiles. It is apparent that the different type of fibres has an influence on geotextile
characteristic opening pore sizes, where the needle punched polyester geotextiles has smaller pore
sizes comparing with the needle punched polypropylene geotextiles.

By increasing applied pressures, water permeability decreased for all tested samples, where the
greatest decrease occured between 20 and 200 kPa. This level of pressures leads to a signifi-
cant change of geotextiles thickness and porosity. The advantage of the calendaring process is
that water permeability of calendered polypropylene geotextiles decreased in the narrow interval
compared to only needle punched polypropylene geotextiles, which is important in practical use.

There is a noticeable difference of behaviour polyester and polypropylene needle punched geo-
textiles under applied pressures. The type of fibres within geotextile has significant influence on
decrease of water permeability under applied pressures.

Conducted research shows that the external pressure impact significantly changes structure and
properties (thickness and water permeability perpendicular to the plane) of geotextile.
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