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Abstract. In this paper, the generalized thermoelasticity problem for an infinite fiber-
reinforced transversely-isotropic thick plate subjected to initial stress is solved. The
lower surface of the plate rests on a rigid foundation and temperature while the up-
per surface is thermally insulated with prescribed surface loading. The normal mode
analysis is used to obtain the analytical expressions for the displacements, stresses and
temperature distributions. The problem has been solved analytically using the gener-
alized thermoelasticity theory of dual-phase-lags. Effect of phase-lags, reinforcement
and initial stress on the field quantities is shown graphically. The results due to the
coupled thermoelasticity theory, Lord and Shulman’s theory, and Green and Nagh-
di’s theory have been derived as limiting cases. The graphs illustrated that the initial
stress, the reinforcement and phase-lags have great effects on the distributions of the
field quantities.
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1 Introduction

In modern times, attention has been given to the problems of generation and propaga-
tion of elastic waves in an anisotropic elastic solids or layers of different configurations.
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There is a different between the isotropic and anisotropic media for the propagation of
elastic waves. The information obtained from such studies is important to seismologists
and geophysicists to find the location of the earthquakes as well as their energy, mech-
anism etc. and thereby gives valuable insight into the global tectonics. Available infor-
mation suggests that the layered media, crystals and some other materials such as fiber-
reinforced materials, fluid saturated porous materials etc. exhibits anisotropy. Belfied
et al. [1] gave the idea of introducing a continuous self-reinforcement at every point of
an elastic solid. Different problems concerning the surface waves in a fibre-reinforced
anisotropic elastic media have been discussed in the literature [2–7].

The inclusion of the temperature change yields what so called the classical theory
of thermoelasticity (Nowacki [8, 9]). The next step is to present the theory of coupled
thermoelasticity. This was done by Biot [10] to overcome the first shortcoming of the
classical theory. The third step is to modify the coupled thermoelasticity theory and to
introduce a generalized thermoelasticity theory with one thermal relaxation (Lord and
Shulman [11]). An extension is made by Green and Lindsay [12] to introduce two thermal
relaxations for the generalized thermoelasticity theory. The fourth step is made by Green
and Naghdi [13] to formulate the generalized theory of thermoelasticity without energy
dissipation. The important step is made by Tzou [14–16] when he proposed the dual-
phase-lag (DPL) model. This model includes two phase-lags, one of them is the heat flux
τq and the other is the temperature gradient τθ . Many investigators have applied the DPL
heat transfer model for different structures [17–20].

The wave propagation in solids subjected to initial stresses has been investigated by
many authors for various models [4, 21]. In this article, the dual-phase-lag (DPL) gener-
alized thermoelasticity theory is applied to study the 2-D problem of a fiber-reinforced
thick plate subjected to initial stress. The problem is solved numerically using a normal
mode analysis method. Numerical results for the temperature, displacements, and stress-
es distributions are illustrated graphically. The results obtained for field quantities may
be used as benchmarks for future comparisons. They offer a significant theoretical basis
and suggestions for the design of various fiber-reinforced thermoelastic elements under
load to meet special engineering needs.

2 Basic equations

The linear governing equations of homogeneous, transversely isotropic, fiber-reinforced
solid are presented here. The solid subjected to hydrostatic initial stress and treated with-
out the inclusion of incremental body forces and heat sources. The basic equations in the
context of generalized thermoelasticity with dual-phase-lags take the following form.

The equations of motion are given by

σij,j+(ui,kσ0
kj),j

=ρ
∂2ui

∂t2
, (2.1)
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where σij are the stresses, σ0
kj denotes the initial stress tensor, ρ is the density, ui are the dis-

placements and i, j,k=1,2,3. The comma followed by an index denotes space-coordinate
differentiation with respect to this index and the repeated indices in the subscript implies
summation.

The heat conduction equation corresponding to DPL model proposed by Tzou takes
the form [14–16]

(

1+τθ
∂

∂t

)

(KijT,i),i
=
(

δ+τq
∂

∂t

)(

ρCE
∂T

∂t
+T0

∂

∂t
(βijui,j)

)

, (2.2)

where Kij = Kiδij is the thermal conductivity, CE denotes the specific heat at constant
strain, T0 is the reference temperature, assumed to be such as |(T−T0)/T|=1, βij = βiδij

denotes the thermoelastic coupling tensor, τq is the PL of the heat flux, τθ is the PL of
gradient of temperature where 0≤τθ <τq and δij is Kronecker’s delta.

The constitutive equations are given by

σij =λekkδij+2µTeij+α(bkbmekmδij+bibjekk)+2(µL−µT)(bkbiekj+bkbjeki)

+βbkbmekmbibj−βij(T−T0), (2.3)

where eij are the strains, λ and µT are elastic constants, and α, β, µL−µT are reinforce-
ment parameters. The above relations are presented for a fibre-reinforced linearly elas-
tic anisotropic medium with respect to the reinforcement direction b ≡ (b1,b2,b3), with
b2

1+b2
2+b2

3 =1.
Strain-displacement relations are given by

eij =
1

2
(ui,j+uj,i). (2.4)

3 Formulation of the problem

Let us consider an infinite thick plate with traction free surfaces at x=±L (layer of thick-
ness 2L), which consists of homogeneous, transversely isotropic thermoelastic material.
The origin of the coordinate system (x,y,z) is located on the middle surface of the layer.
The y−z plane is considered as the middle surface and x axis is normal to it along the
thickness. Then, the components of the displacement vector and temperature are inde-
pendent of z and can be given by

u=u(x,y,t), v=v(x,y,t), w=0, T=T(x,y,t). (3.1)

The constitutive relations in the present case are reduced to

σxx =λ1
∂u

∂x
+(λ+α)

∂v

∂y
−β1(T−T0), σxy=µL

( ∂v

∂x
+

∂u

∂y

)

, (3.2a)

σyy =(λ+2µT)
∂v

∂y
+(λ+α)

∂u

∂x
−β2(T−T0), (3.2b)
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where b is chosen so that its components are (1,0,0) and

λ1=λ+2α+4µL−2µT+β, (3.3a)

β1=(λ+α+λ1)α1+(λ+α)α2, (3.3b)

β2=(2λ+α)α1+(λ+2µT)α2, (3.3c)

in which α1 and α2 are the coefficients of linear thermal expansion. The equations of
motion can be summarized as follows:

(λ1+σ0)
∂2u

∂x2
+(σ0+µL)

∂2u

∂y2
+(α+λ+µL)

∂2v

∂x∂y
−β1

∂T

∂x
=ρ

∂2u

∂t2
, (3.4a)

(λ+2µT+σ0)
∂2v

∂y2
+(σ0+µL)

∂2v

∂x2
+(α+λ+µL)

∂2u

∂x∂y
−β2

∂T

∂y
=ρ

∂2v

∂t2
, (3.4b)

where σ0 is the initial pressure. Also, the heat equation can be written as

(

1+τθ
∂

∂t

)(

K1
∂2T

∂x2
+K2

∂2T

∂y2

)

=
(

δ+τq
∂

∂t

)[

ρCE
∂T

∂t
+T0

∂

∂t

(

β1
∂u

∂x
+β2

∂v

∂y

)]

. (3.5)

For simplification, the following dimensionless variables are used

{x′,y′}= c0η{x,y}, {u′,v′}= c0η{u,v}, c2
0=

λ1

ρ
, η=

ρCE

K1
, (3.6a)

θ=
β1(T−T0)

λ1
, {t′,τ′

θ,τ′
q}= c2

0η{t,τθ ,τq}, σ′
0=

σ0

λ1
, σ′

ij =
σij

ρc2
0

. (3.6b)

The governing equations, with the help of the above equations after suppressing the
primes, are given by

(1+σ0)
∂2u

∂x2
+(σ0+B4)

∂2u

∂y2
+(B1+B4)

∂2v

∂x∂y
− ∂θ

∂x
=

∂2u

∂t2
, (3.7a)

(B2+σ0)
∂2v

∂y2
+(σ0+B4)

∂2v

∂x2
+(B1+B4)

∂2u

∂x∂y
−B3

∂θ

∂y
=

∂2v

∂t2
, (3.7b)

(

1+τθ
∂

∂t

)( ∂2θ

∂x2
+ε1

∂2θ

∂y2

)

=
(

δ+τq
∂

∂t

)[∂θ

∂t
+

∂

∂t

(

ε2
∂u

∂x
+ε3

∂v

∂y

)]

, (3.7c)

σxx =
∂u

∂x
+B1

∂v

∂y
−θ, σyy =B1

∂u

∂x
+B2

∂v

∂y
−B3θ, σxy=B4

(∂u

∂y
+

∂v

∂x

)

, (3.7d)

where

B1=
α+µ

λ1
, B2=

λ+2µT

λ1
, B3=

β2

β1
, B4=

µL

λ1
, (3.8a)

ε1=
K2

K1
, ε2=

β2
1T0

ρCEλ1
, ε3=

β1β2T0

ρCEλ1
. (3.8b)
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4 Initial and boundary conditions

The initial and boundary conditions for the present problem are given, respectively, by







u(x,y,0)=v(x,y,0)= θ(x,y,0)=0,

∂u

∂t

∣

∣

∣

t=0
=

∂v

∂t

∣

∣

∣

t=0
=

∂θ

∂t

∣

∣

∣

t=0
=0,

(4.1)

and






σxx(L,y,t)=−P, σxy(L,y,t)=0,
∂θ

∂x

∣

∣

∣

x=L
=0,

u(−L,y,t)=0, v(−L,y,t)=0, θ(−L,y,t)=0.
(4.2)

5 Normal mode analysis

The solution of the present problem for the field quantities is decomposed in terms of
normal modes as (see Cheng and Zhang [22])

[u,v,θ,σij](x,y,t)= [u∗ ,v∗,θ∗,σ∗
ij](x)eωt+iay, (5.1)

where ω denotes the frequency parameter, i=
√
−1, a denotes the wave number in the y

direction, and u∗(x), v∗(x), θ∗(x) and σ∗
ij(x) are the amplitudes of the field quantities.

Using Eq. (5.1), Eqs. (3.7) and (3.8) take the forms

( d2

dx2
−g1

)

u∗+g2
dv∗

dx
= g3

dθ∗

dx
, (5.2a)

( d2

dx2
−g4

)

v∗+g5
du∗

dx
= g6θ∗, (5.2b)

( d2

dx2
−g7

)

θ∗= g8
du∗

dx
+g9v∗, (5.2c)

and

σ∗
xx =

du∗

dx
+iaB1v∗−θ∗, σ∗

xy=B4

(

iau∗+
dv∗

dx

)

, σ∗
yy =B1

du∗

dx
+iaB2v∗−B3θ∗, (5.3)

where

g1=
a2(σ0+B4)+ω2

1+σ0
, g2=

ia(B1+B4)

1+σ0
, g3 =

1

1+σ0
, (5.4a)

g4=
a2(σ0+B2)+ω2

σ0+B4
, g5=

ia(B1+B4)

σ0+B4
, g6 =

iaB3

σ0+B4
, (5.4b)

g7=ω2ε1+
ω(δ+τqω)

1+τθω
, g8=

ε2ω(δ+τqω)

1+τθω
, g9 =

iaε3ω(δ+τqω)

1+τθω
. (5.4c)
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Eliminating θ∗(x) and v∗(x) in Eqs. (5.2), one obtains

(D6−AD4+BD2−C)u∗(x)=0, (5.5)

where

A=
h1h5−g3h4h6−g2h3

h6−g2g8
, B=

h2h5−h1h6−h3h4

h5−g2g8
, C=

−h2h6

h5−g2g8
, (5.6)

in which

h1 = g4+g7, h2 = g4g7−g9g6, h3= g8g4+g5g9, (5.7a)

h4 = g9g3+g2g7, h5 = g2g8−g9, h6= g1g9. (5.7b)

So, one can factorize Eq. (5.5) as

(D2−k2
1)(D2−k2

2)(D2−k2
3)u

∗(x)=0, (5.8)

where k2
n, (n=1,2,3), denote the roots of the characteristic equation

k6−Ak4+Bk2−C=0. (5.9)

The solution of Eq. (5.8) is given by

u∗(x)=
3

∑
n=1

(

M1n(a,ω)e−kn x+M2n(a,ω)ekn x
)

. (5.10)

In a similar manner, one gets

θ∗(x)=
3

∑
n=1

(

M′
1n(a,ω)e−kn x+M′

2n(a,ω)ekn x
)

, (5.11a)

v∗(x)=
3

∑
n=1

(

M′′
1n(a,ω)e−kn x+M′′

2n(a,ω)ekn x
)

, (5.11b)

where Min, M′
in and M′′

in are different parameters. Substituting Eqs. (5.10) and (5.11)
into Eqs. (5.2) and (5.3), one gets the following relations:

M′
1n(a,ω)=H1n M1n(a,ω), M′

2n(a,ω)=H2n M2n(a,ω), (5.12a)

M′′
1n(a,ω)=H3n M1n(a,ω), M′′

2n(a,ω)=H4n M2n(a,ω), n=1,2,3, (5.12b)

where

H1n =
−g8k3

n+h3kn

k4
n−h1k2

n+h2
, H3n =

1

g9
[(k2

n−g7)H1n+g8kn], (5.13a)

H2n =−H1n, H4n =
1

g9
[(k2

n−g7)H1n−g8kn]. (5.13b)
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Thus, one obtains

θ∗(x)=
3

∑
n=1

(

H1n M1n(a,ω)e−kn x+H2n M2n(a,ω)ekn x
)

, (5.14a)

v∗(x)=
3

∑
n=1

(

H3n M1n(a,ω)e−kn x+H4n M2n(a,ω)ekn x
)

. (5.14b)

Substituting Eqs. (5.10) and (5.11) into Eqs. (5.3), one obtains

σ∗
xx(x)=

3

∑
n=1

(

H5n M1n(a,ω)e−kn x+H6n M2n(a,ω)ekn x
)

, (5.15a)

σ∗
yy(x)=

3

∑
n=1

(

H7n M1n(a,ω)e−kn x+H8n M2n(a,ω)ekn x
)

, (5.15b)

σ∗
xy(x)=

3

∑
n=1

(

H9n M1n(a,ω)e−kn x+H10n M2n(a,ω)ekn x
)

, (5.15c)

where

H5n =−kn+iaB1H3n−H1n, H6n = kn+iaB1H4n−H2n, (5.16a)

H7n =−B1kn+iaB2H3n−B3H1n, H10n = iaB4+B4kn H4n, (5.16b)

H9n = iaB4−B4kn H3n, H8n =B1kn+iaB2H4n−B3H2n. (5.16c)

The boundary conditions given in Eq. (4.2), with the aid of the field quantities, are sum-
marized by

σ∗
xx

∣

∣

x=L
=

3

∑
n=1

(

H5n M1n(a,ω)e−kn L+H6n M2n(a,ω)ekn L
)

=−P∗, (5.17a)

σ∗
xy

∣

∣

x=L
=

3

∑
n=1

(

H9n M1n(a,ω)e−kn L+H10n M2n(a,ω)ekn L
)

=0, (5.17b)

∂θ∗

∂x

∣

∣

∣

x=L
=

3

∑
n=1

(

−kn H1n M1n(a,ω)e−kn L+kn H2n M2n(a,ω)ekn L
)

=0, (5.17c)

u∗|x=−L=
3

∑
n=1

(

M1n(a,ω)ekn L+M2n(a,ω)e−kn L
)

=0, (5.17d)

θ∗|x=−L=
3

∑
n=1

(

H1n M1n(a,ω)ekn L+H2n M2n(a,ω)e−kn L
)

=0, (5.17e)

v∗|x=−L=
3

∑
n=1

(

H3n M1n(a,ω)ekn L+H3n M2n(a,ω)e−kn L
)

=0. (5.17f)
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The above system of equations can be written in the matrix form. That is

[E]{M}={F}, (5.18)

where {M}= {M11,M12,M13,M21,M22,M23}p
and {F}= {−P∗,0,0,0,0,0}p

in which the
supper index ”p” denotes the transpose of its vector. The elements Eij of the coefficient
matrix [E] are given in Appendix. After applying the inverse of matrix method, one can
get the values of the six constants Mij, (i = 1,2, j = 1,2,3). Hence, on can obtained the
expressions for the temperature, the displacements, and stresses in the plate muscles.

6 Particular cases

6.1 Generalized thermoelastic isotropic medium with hydrostatic initial
stress

Substituting µL=µT=µ, K1=K2=K, β1=β2 and α=β=0, one obtains the corresponding
expressions of displacements, stresses, and temperature in this case.

6.2 Generalized thermoelastic fiber-reinforced medium

Letting σ0 → 0, the present medium reduces to the case of a fiber-reinforced generalized
thermoelastic medium.

6.3 Generalized thermoelastic isotropic medium

Substituting µL=µT =µ, K1=K2=K, β1=β2 and α=β=0, and letting σ0→0, the present
medium reduces to an isotropic generalized thermoelastic medium.

7 Special cases of thermoelasticity theory

7.1 Coupled thermoelasticity (CTE) theory

The equations of the coupled thermoelasticity theory are obtained when τθ = τq = 0 and
δ=1.

7.2 Lord-Shulman (LS) thermoelasticity theory

The Lord-Shulman theory is given by setting τθ =0, δ=1 and τq = τ0>0, where τ0 is the
first relaxation time.

7.3 Green-Naghdi (GN) theory

The equations of the Green-Naghdi generalized thermoelasticity theory without energy
dissipation are obtained when τθ =0, δ=0 and τq =1.
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7.4 Equations of the dual-phase-lag (DPL) model

For dual-phase-lag generalized thermoelasticity theory, one putts δ=1 and τq ≥τθ >0.

8 Numerical results

The numerical results depict the variations of normal displacement, normal force stress
and temperature distributions in the context of thermoelasticity theory with phase-lags.
To study the effect of reinforcement on wave propagation, we use the following physical
constants for generalized fibre-reinforced thermoelastic materials:

λ=5.65×1010N/m2, µT =2.46×1010N/m2, µL =5.66×1010N/m2,

α=−1.28×1010N/m2, β=220.9×1010N/m2, CE=0.787×103J/(kgK),

ρ=2660kg/m3, α1=0.017×10−4(1/K), α2=0.015×10−4(1/K),

K1=0.0921×103J/(msK), K2=0.0963×103J/(msK), T0=293K.

The results depict the variations of the real part of the thermal temperature θ, the dis-
placements u and v, the stresses σxx, σyy and σxy. These quantities depend not only on
space x and time t, but also on phase-lags τθ and τq. It is assumed that τ0 = 0.02, a= 1,
L=1, P=0.5, and ω=ω0+iξ in which ω0=2 and ξ=1.

Figs. 1-6 compared the results obtained for temperature, displacements and stresses
against the x direction for different values of τq and τθ at y = 1. The computations are
performed for one value of time, namely t=0.3 and various values of the parameters τq

and τθ. The graphs represent six curves predicted by LS and GN theories of thermoe-
lasticity obtained as special cases of the general DPL model. The results of LS theory
(τθ = 0, τq = 0.05, δ= 1), the GN theory (τθ = 0, τq = 0.05, δ= 0) and the generalized the-
ory of thermoelasticity proposed by Tzou (τq = 0.05≥ τθ = 0.02> 0) are all presented in

Figure 1: The temperature θ distribution for vari-
ous models with and without fiber-reinforcement.

Figure 2: The displacement u distribution for var-
ious models with and without fiber-reinforcement.
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Figure 3: The displacement v distribution for var-
ious models with and without fiber-reinforcement.

Figure 4: The stress σxx distribution for various
models with and without fiber-reinforcement.

Figure 5: The stress σyy distribution for various

models with and without fiber-reinforcement.

Figure 6: The stress σxy distribution for various

models with and without fiber-reinforcement.

Figs. 1-6. In addition, the variation of the physical quantities under two types of the in-
clusion of reinforcement and without (α= 0, β= 0 and µL−µT = 0) the reinforcement is
also illustrated.

Figs. 1-3 show that the temperature and displacements are zero at the rigid base x=
−1, which confirms the assumed boundary conditions. The upper surface of the plate,
x= 1, is assumed to be thermally insulated and the displacements are minimum which
supports the physical fact. The values of u and v due to GN model are smaller than those
for other theories in most positions through-the-thickness of the plate. Fig. 2 shows the
variations of u initially start with sharp increase in the range −1≤x≤0.2 and then follows
pattern with reference to x. Also the value of v increase slowly in the range −1≤ x≤0.4,
decrease sharply in the range 0.4≤ x≤1and as x.

Figs. 4 and 6 show that the stress components σxx and σxy satisfy the boundary con-
dition at x=1. These trends obey elastic and thermoelastic properties of the solid under
investigation. Fig. 5 shows that at x= 1, the stress σyy is maximum with the reinforced
thermoelastic material and minimum without it. The distribution in LS theory is closed
to that in DPL theory, whereas the distribution in GN theory is a little different. The
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Figure 7: The temperature θ distribution with and
without the initial stress.

Figure 8: The displacement u distribution with and
without the initial stress.

Figure 9: The displacement v distribution with and
without the initial stress.

Figure 10: The stress σxx distribution with and
without the initial stress.

temperature distribution decays along the direction of the transmitted wave propagation
for the effects of diffusion. The values of τq and τθ can judge whether the wavelike be-
havior in the DPL heat conduction is dominant or not. However, it can found from the
numerical results that the shift times τq and τθ may play a more important role in this
task. Also, it is clear that the surface waves in the fibre-reinforced medium are affected
by the reinforced parameters.

Figs. 7-12 show the sensitivity of the inclusion of the initial stress σ0. The figures
exhibit the variation of the temperature θ, displacement components u, v, and the stress
components σxx, σyy and σxy with distance x under the DPL theory at y = 1 for three
different values of initial stress (σ0 = 0,1,3). The field quantities depend not only on the
state and space variables t, x, and y, but also on the variation of initial stress σ0. It has been
observed that the initial stress σ0 plays a vital role on the development of temperature,
displacement, and stress fields. It is clear from these figures that the surface waves in the
fibre-reinforced medium are very sensitive to the inclusion of the initial stress σ0.
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Figure 11: The stress σyy distribution with and

without the initial stress.

Figure 12: The stress σxy distribution with and

without the initial stress.

9 Conclusions

Analytical solutions have been developed and utilized. The stress distributions and the
temperature are evaluated as functions of the distance based on the normal mode anal-
ysis for the generalized thermoelastic problem in solids. The effects of reinforcement,
hydrostatic initial stress and phase-lags are studied on all quantities. The computations
have revealed that:

• The presence of phase-lags parameters plays a significant role in all the physical
quantities. In addition, the presence of initial stress in the current model is highly
significant.

• The fibre-reinforcement is significant to the behavior of the distributions of the field
quantities.

• The method used in the present article is applicable to a wide range of problems in
thermodynamics and thermoelasticity.

• It is observed that all theories of coupled and generalized thermoelasticity can be
obtained as limited cases from the present one.

• The variations of all quantities show appreciable effect with and without depen-
dence of initial stress.

• According to the numerical results and graphs, a conclusion about the new theo-
ry of thermoelasticity has been constructed. The result provides a motivation to
investigate conducting materials as a new class of applicable materials.

• The DPL model is near to LS model. This gives good agreement with the conclusion
of Hetnarski and Ignaczak [23] that the DPL model is an extension to the LS one.

• Results obtained in this paper may be considered as more general in the sense that
they include the combined effect of fibre-reinforcing and initial stress field.
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Appendix

The elements Eij of the coefficient matrix [E] given in Eq. (5.18) are

E11=H51e−k1 L, E12=H52e−k2L, E13=H53e−k3L, E14=H61ek1L,

E15=H62ek2 L, E16=H63ek3 L, E21=H91e−k1L, E22=H92e−k2L,

E23=H93e−k3 L, E24=H101ek1 L, E25=H102ek2 L, E26=H103ek3 L,

E31=−k1H11e−k1L, E32=−k2H12e−k2L, E33=−k3H13e−k3 L, E34= k1H21ek1 L,

E35= k2H22ek2 L, E36= k3H23ek3 L, E41= ek1 L, E42= ek2 L,

E43= ek3L, E44= e−k1L, E45= e−k2 L, E46= e−k3L,

E51=H11ek1 L, E52=H12ek2 L, E53=H13ek3 L, E54=H21e−k1L,

E55=H22e−k2 L, E56=H23e−k3L, E61=H31ek1 L, E62=H32ek2L,

E63=H33ek3 L, E64=H41e−k1L, E65=H42e−k2L, E66=H43e−k3L.
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