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A TOTAL VARIATION DISCONTINUOUS GALERKIN

APPROACH FOR IMAGE RESTORATION

BENJAMIN STAMM AND THOMAS P. WIHLER

Abstract. The focal point of this paper is to propose and analyze a P0 discontinuous Galerkin

(DG) formulation for image denoising. The scheme is based on a total variation approach which
has been applied successfully in previous papers on image processing. The main idea of the new

scheme is to model the restoration process in terms of a discrete energy minimization problem

and to derive a corresponding DG variational formulation. Furthermore, we will prove that the
method exhibits a unique solution and that a natural maximum principle holds. In addition, a

number of examples illustrate the effectiveness of the method.

Key words. Discontinuous Galerkin methods, total variation image denoising, energy minimiza-

tion methods, nonlinear elliptic filters.

1. Introduction

We consider a two dimensional display on which computer images can be vi-
sualized. Mathematically, this can be written in the form S = {K}, where S
corresponds to a screen, and {K} is a set of disjoint open squares {K} representing
the pixels. A grayscale image on S is expressed in terms of a function

f : S → R,

where R ⊂ R is a compact interval that is determined by the range of all available
grayscale values of the given visualization device.

Graphical data, as evaluated in medical applications, is typically bound to exhibit
certain forms of defects which, when visualized on a computer screen, may manifest
themselves, for example, in form of noise effects. A typical approach is to write

f = u+ η,

where f is the perturbed image, u represents the denoised data, and η signifies
some noise. A more general approach is given by f = k ∗ u + η, where k is a
convolution kernel that models certain types of blurring. In order to extract the
relevant information (such as edges) behind image deficiencies, it is necessary to
somehow restore the image f . More precisely, the improved image u is, on the one
hand, supposed to contain the essential information of the original image f , and,
on the other hand, should be cleaned from disturbing noise or blur.

The problem of image restoration has been tackled by means of several different
techniques; let us refer the reader to the overview paper [3] for details. The ap-
proach that will be pursued in the present article is based on total variation image
denoising. Such models have proved to be particularly effective in edge detection,
see, e.g., [2, 5, 6, 9, 10, 11, 12, 13, 14]. Here, as remarked earlier, the basic idea is
to take two (competing) aspects into account: First of all, the processed image u
is supposed to be close to the original data f . This is accomplished, for instance,
by controlling the difference between the two data sets with respect to a certain

Received by the editors January 1, 2014 and, in revised form, March 22, 2014.
2000 Mathematics Subject Classification. 65D18,65N30,68U10,94A08.
TW was supported by the Swiss National Science Foundation.

81



82 B. STAMM AND T. P. WIHLER

distance measure ‖.‖S on S, i.e., ‖u− f‖S . Furthermore, it is desirable that the
new image u is suitably denoised when compared to f . In variation based image
denoising, supposing for a moment that u is sufficiently smooth on S, this is usually
modeled by appropriately bounding the gradient of u, e.g., in the form∫

S
φ(|∇u|) dx.

Here,
φ : R≥0 → R≥0

is a given function that determines the smoothing process. Combining these two
issues, an image restoration formulation is now obtained by minimizing the func-
tional

(1) F(u) = ‖u− f‖S + α

∫
S
φ(|∇u|) dx,

where α ≥ 0 is a fixed constant, with respect to some appropriate function space.
Subsequently, by applying standard variational calculus techniques, the above prob-
lem can be transformed into an Euler-Lagrange partial differential equation (PDE)
formulation which, in turn, can be solved numerically.

In the present article, given the finite dimensional nature of computer images,
we propose to formulate the minimization problem (1) directly on a discrete level,
i.e., without employing the continuous PDE setting; see also, e.g., [4] for a related
approach based on finite difference schemes. Here, we will introduce an energy
functional on the discrete space P0 of all pixel-wise constant functions that features
similar properties as the continuous functional F from (1). Then, a correspond-
ing discrete variational formulation is derived. The novelty of our approach is to
apply the framework of discontinuous Galerkin methods (see, e.g. [1] and the refer-
ences therein), which constitute a natural choice in dealing with the discontinuous
nature of pixel images, particularly in the context of edge detection. Moreover,
the variational framework provides a quite handy setting for the analysis of the
well-posedness of the proposed scheme and the derivation of a maximum principle.

The article is outlined as follows: In Section 2 the discrete model is presented.
Furthermore, in Section 3 a discontinuous Galerkin formulation is derived and its
well-posedness is established. In addition, a maximum principle for the method
under consideration will be proved and a number of numerical examples illustrating
our approach will be given in Section 4. Finally, we add a few concluding remarks
in Section 5.

2. A Discrete Image Denoising Model

In the following section, we will establish a suitable mathematical setting, and
the discrete image restoration model will be introduced.

2.1. Mathematical framework. Throughout the manuscript, we will suppose
that the screen S consists of m× n (open and disjoint) pixels Ki,j ⊂ R2,

S = {Ki,j}1≤i≤m,1≤j≤n,
such that ⋃

i,j

Ki,j

is a closed rectangle. Each pixel is an open axiparallel square of length h > 0 that
is given by

Ki,j = ((i− 1)h, ih)× ((j − 1)h, jh), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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The midpoint of Ki,j is denoted by xi,j . It is reasonable to assume that the values
of an image f are constant on each pixel, i.e., f belongs to the space

P0(S) = {v : S → R : v|K = constant ∀K ∈ S}
of all piecewise constant functions on S. By vi,j we will signify the (grayscale)
value of v ∈ P0(S) on a pixel Ki,j , i.e., vi,j = v|Ki,j . Moreover, let us write ni,j
or nKi,j to denote the unit outward normal vector on ∂Ki,j , where ∂Ki,j denotes
the boundary of the pixel Ki,j . Furthermore, by Eint we define the set of all interior
pixel edges in the screen:

Eint = {e : e = ∂Ki,j ∩ ∂Ki′,j′ , Ki,j ,Ki′,j′ ∈ S}.
Then, in order to compare the values of two neighboring pixels, we introduce the
following (vector-valued) jump operator on Eint: given an image v ∈ P0(S), for an
edge e ∈ Eint that is shared by two pixels Ki,j and Ki′,j′ , we let

[[v]]|e = vi,jni,j + vi′,j′ni′,j′ .

We remark that this notation is very popular within the context of discontinuous
Galerkin approaches; see, e.g., [1].

Furthermore, ‖.‖S is an L2-type norm on P0(S) given by

‖v‖2S = (v, v)S , v ∈ P0(S),

where, for v, w ∈ P0(S),

(v, w)S =

∫
S
vw dx = h2

∑
i,j

vi,jwi,j

is the L2 product.

2.2. Discrete Functional. In order to obtain the image restoration model in
this paper, we begin with introducing a discrete version of the gradient operator
appearing in the continuous functional (1). In consequence, it is possible to define
a corresponding discrete functional. For simplicity, in this paper, we restrict our-
selves to noisy images without blur; we note however, that the proposed numerical
scheme can be extended straightforwardly to a more general situation by including
a discrete convolution kernel.

2.2.1. Discrete Gradients. The key point in image denoising is to suitably in-
corporate the smoothness of the restored image. Evidently, within the discrete
space P0(S) of piecewise constant functions, the gradient occurring in the func-
tional F from (1) makes little sense. Taking the viewpoint of difference quotients,
however, the jump of an image v ∈ P0(S) along an edge e ∈ Eint is related to a dis-
crete derivative. We make use of this observation to propose the following discrete
gradient:

∇Sv|e := h−1[[v]]|e,
for any e ∈ Eint, v ∈ P0(S).

Similarly, like in the functional F from (1), the smoothness of the image u to be
restored is controlled by means of a function φ : R≥0 → R≥0 in the form

v 7→
∫
Eint

φ(
∣∣h−1[[v]]|e

∣∣) ds,

where
∫
Eint is understood as

∑
e∈Eint

∫
e
.

Throughout the paper, the following assumptions on φ are imposed:

(a) φ ∈ C1([0,∞));



84 B. STAMM AND T. P. WIHLER

(b) φ and φ′ are both nondecreasing;
(c) there exists a constant Lφ ≥ 0 such that

(2)

∣∣∣∣φ′(s)− φ′(t)s− t

∣∣∣∣ ≤ Lφ,
for any s > t ≥ 0;

(d) the function

(3) ψ : R≥0 → R≥0, ψ(x) =

{
φ′(x)
x , x > 0

limt→0+
φ′(t)
t , x = 0

is continuous on [0,∞). In particular, φ′(0) = 0. Furthermore, by the mono-
tonicity of φ′ it follows that

(4) (sψ(s)− tψ(t))(s− t) ≥ 0,

for any s, t ≥ 0.

To give some examples of functions φ that are applicable in total variation im-
age restoration and for which the above conditions are satisfied, we mention the
approach by Rudin and Osher [11],

(5) φRO(s) =
√
s2 + β,

where β > 0 is a constant. Moreover, let us define

(6) φCL(s) =

{
− s3

3ε2 + s2

ε + ε
3 , s ≤ ε

s, s > ε,

for a parameter ε > 0; this is very closely related to an idea proposed by Chambolle
and Lions [5].

2.2.2. Minimization Problem. We propose the following discrete analog of the
functional F from (1):

(7) FDG : P0(S)→ R≥0, FDG(v) =
1

2
‖v − f‖2S +

αh

2

∫
Eint

φ(
∣∣h−1[[v]]

∣∣) ds.

For a given smoothing function φ, the intensity of the smoothing is controlled by
means of the constant α ≥ 0. Then, our image restoration model reads: Given
a noisy image f ∈ P0(S), a denoised image u ∈ P0(S) is obtained by solving the
problem

(8) u ∈ P0(S) : FDG(u) = min
v∈P0(S)

FDG(v).

Evidently, due to the finite dimension of P0(S), this problem is discrete. The well-
posedness of this formulation (which depends on the smoothing function φ) will be
discussed in Section 3.2.

3. Discontinuous Galerkin Variational Formulation

In this section we will derive and analyze the variational form of (8).



TV DG METHODS FOR IMAGE RESTORATION 85

3.1. Discontinuous Galerkin Method. Supposing that a minimizer u ∈ P0(S)
of FDG exists, there holds

d

dε
FDG(u+ εw)

∣∣∣∣
ε=0

= 0

for any w ∈ P0(S). Computing the derivative of FDG with respect to the scalar
parameter ε, this immediately implies that u satisfies the variational formulation

(9) aDG(u,w) = (f, w)S ∀w ∈ P0(S),

where

(10) aDG(u,w) = (u,w)S +
α

2h

∫
Eint

ψ(h−1|[[u]]|)[[u]] · [[w]] ds

is a (nonlinear) discontinuous Galerkin form. Notice that the choice α = 0 leads
the noisy image to be left unchanged.

In the sequel, we will deal with the image denoising model (8) by solving the
discontinuous Galerkin formulation (9).

3.2. Existence and Uniqueness of Solutions. In order to show the well-posed-
ness of the discontinuous Galerkin formulation (9), we will prove that the form aDG

is continuous and coercive. To this end, we start by deriving two technical lemmas.

Lemma 3.1. Let n ∈ N. The function ψ from (3) satisfies the bounds

(11) |ψ(|x|)x− ψ(|y|)y| ≤ Lφ |x− y| ,
and

(12) (ψ(|x|)x− ψ(|y|)y) · (x− y) ≥ 0,

for any x,y ∈ Rn. Here, Lφ is the constant from (2).

Proof. The proof follows along the lines of [7, Lemma 2.1] and will be presented for
completeness. In the scalar case, n = 1, the above estimates simply result from (2)
and from (4).

Let now n ≥ 1, and |x| ≥ |y| ≥ 0. Then, there holds

|ψ(|x|)x− ψ(|y|)y|2 = (ψ(|x|)|x| − ψ(|y|)|y|)2
+ 2ψ(|x|)ψ(|y|)(|x||y| − x · y).

Recalling the scalar case, we obtain

(ψ(|x|)|x| − ψ(|y|)|y|)2 ≤ L2
φ ||x| − |y||

2

= L2
φ

(
|x|2 − 2x · y + |y|2

)
+ 2L2

φ(x · y − |x||y|)
= L2

φ|x− y|2 + 2L2
φ(x · y − |x||y|).

Furthermore, we have that

0 ≤ ψ(|x|) ≤ |x|−1 (ψ(|x|)|x| − ψ(|0|)|0|) ≤ Lφ,
and, by the Cauchy-Schwarz inequality, that |x||y| − x · y ≥ 0. Consequently,
combining these bounds yields

|ψ(|x|)x− ψ(|y|)y|2 ≤ L2
φ|x− y|2 + 2(ψ(|x|)ψ(|y|)− L2

φ)(|x||y| − x · y)

≤ L2
φ|x− y|2.

This corresponds to (11).
Moreover, in order to prove (12), we notice that

(ψ(|x|)x− ψ(|y|)y) · (x− y) = (ψ(|x|)|x| − ψ(|y|)|y|) (|x| − |y|)
+ (ψ(|x|)|+ ψ(|y|)) (|x||y| − x · y).
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Applying once again the scalar inequality leads to

(ψ(|x|)|x| − ψ(|y|)|y|) (|x| − |y|) ≥ 0.

Finally, using the Cauchy-Schwarz inequality as before, completes the proof of the
lemma. �

The second lemma is a trace estimate on P0(S).

Lemma 3.2. There holds ∫
Eint
|[[v]]|2 ds ≤ 8h−1 ‖v‖2S

for any v ∈ P0(S).

Proof. Applying the inequality (a+ b)2 ≤ 2(a2 + b2), for any a, b ∈ R, to the jump
terms on the left-hand side of the desired bound, we have that

h

∫
Eint
|[[v]]|2 ds = h2

∑
e∈Eint

|[[v]]|e|2 ≤ 8h2
∑
i,j

v2
i,j = 8 ‖v‖2S .

This shows the asserted trace inequality. �

We are now ready to turn to the continuity and coercivity of the form aDG.

Proposition 3.3. The form aDG is continuous and coercive in the sense that

|aDG(u,w)− aDG(v, w)| ≤
(

1 +
4αLφ
h2

)
‖u− v‖S ‖w‖S ,

and

(13) aDG(u, u− v)− aDG(v, u− v) ≥ ‖u− v‖2S ,
respectively, for any u, v, w ∈ P0(S). Here, α and Lφ are the constants from (7)
and (2), respectively.

Proof. We begin with showing the first bound. There holds

|aDG(u,w)− aDG(v, w)|

≤ |(u− v, w)S |+
∣∣∣∣ α2h

∫
Eint

(
ψ(h−1|[[u]]|)[[u]]− ψ(h−1|[[v]]|)[[v]]

)
· [[w]] ds

∣∣∣∣
≤ ‖u− v‖S ‖w‖S +

α

2h

∫
Eint

∣∣ψ(h−1|[[u]]|)[[u]]− ψ(h−1|[[v]]|)[[v]]
∣∣ |[[w]]| ds.

Applying (11) as well as the Cauchy-Schwarz inequality, we obtain

|aDG(u,w)− aDG(v, w)|

≤ ‖u− v‖S ‖w‖S +
α

2

∫
Eint

∣∣ψ(h−1|[[u]]|)h−1[[u]]− ψ(h−1|[[v]]|)h−1[[v]]
∣∣ |[[w]]| ds

≤ ‖u− v‖S ‖w‖S +
αLφ
2h

∫
Eint
|[[u− v]]|| |[[w]]| ds

≤
(
‖u− v‖2S +

αLφ
2h

∫
Eint
|[[u− v]]|2 ds

) 1
2
(
‖w‖2S +

αLφ
2h

∫
Eint
|[[w]]|2 ds

) 1
2

.

Then, applying Lemma 3.2, leads to

|aDG(u,w)− aDG(v, w)| ≤
(

1 +
4αLφ
h2

)
‖u− v‖S ‖w‖S .
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This is the first bound. In order to derive the second estimate, we employ (12) to
derive

aDG(u, u− v)− aDG(v, u− v)

= ‖u− v‖2S

+
αh

2

∫
Eint

(
ψ(h−1|[[u]]|)h−1[[u]]− ψ(h−1|[[v]]|)h−1[[v]]

)
·
(
[[h−1u]]− [[h−1v]]

)
ds

≥ ‖u− v‖2S ,
which completes the proof. �

Applying [15, Theorem 2.H], for example, in combination with the above Propo-
sition 3.3, implies the well-posedness of the discontinuous Galerkin formulation (9).

Theorem 3.4. Under the previous assumptions on the function ψ, there exists a
unique solution of the total variation discontinuous Galerkin method (9) in P0(S).

Remark 3.5. Referring to [8, Proof of Theorem 3.3.23], the fixed point iteration

(un+1, w)S = (un, w)S + ε

(
(un − f, w)S +

α

2h

∫
Eint

ψ
(
h−1 |[[un]]|

)
[[un]] · [[w]] ds

)
for all w ∈ P0(S), converges to the solution of (9) for any starting image u0 ∈ P0(S)

and any 0 < ε < 2
(

1 +
4αLφ
h2

)−2

. We note, however, that the minimal reduction

factor for the error in each step, which is given by

% =

√
1−

(
1 +

4αLφ
h2

)−2

,

is typically very close to 1, and the iteration will converge at a very slow pace. In
consequence, in our numerical experiments, an alternative fixed point iteration will
be applied; see Section 4.

3.3. A Maximum Principle. The following result states that the color range of
the denoised image u from (9) will be within the grayscale range of the original
image f .

Theorem 3.6. Let f ∈ P0(S) be a (noisy) image and u its denoised version ob-
tained from (9). Then, the inequality

inf
S
f ≤ u ≤ sup

S
f

holds true on S.

Proof. We prove the first bound only. The proof of the second one is similar. Let
us suppose that there is a non-empty set V of pixels in S for which the first bound
is violated:

V = {K ∈ S : v̂|K > 0}, v̂ := max{inf
S
f − u, 0}.

Clearly, we have that

0 <

∫
V

(f − u)v̂ dx =

∫
S

(f − u)v̂ dx.

Thence, invoking (9), it follows that

(14) 0 <

∫
Eint

ψ(h−1|[[u]]|)[[u]] · [[v̂]] ds.



88 B. STAMM AND T. P. WIHLER

Let now K ∈ S be a pixel and e ∈ Eint an interior edge of K. Furthermore,
let K ′ ∈ S be the neighboring pixel of K which shares the edge e with K. In order
to proceed, we distinguish three different cases.

(i) Suppose first that K,K ′ 6∈ V. Then v̂|K∪K′ = 0 and thus, [[v̂]]|e = 0. Hence,∫
e

ψ(h−1|[[u]]|)[[u]] · [[v̂]] ds = 0.

(ii) If K,K ′ ∈ V, then [[v̂]]|e = [[infS f − u]]|e = −[[u]]|e. Thus, since ψ is nonnega-
tive, we arrive at∫

e

ψ(h−1|[[u]]|)[[u]] · [[v̂]] ds = −
∫
e

ψ(h−1|[[u]]|) |[[u]]|2 ds ≤ 0.

(iii) Lastly, let us suppose that K ∈ V and K ′ 6∈ V. In this case, we have that

[[v̂]] = v̂|KnK = (inf
S
f − u)|KnK .

Therefore,

[[u]] · [[v̂]] = (inf
S
f − u)|KnK · (u|KnK + u|K′nK′)

= (inf
S
f − u)|K (u|K − u|K′)

= (inf
S
f − u)|K

(
(u|K − inf

S
f) + (inf

S
f − u|K′)

)
.

Furthermore, with

u|K − inf
S
f < 0, inf

S
f − u|K′ ≤ 0,

we find that [[u]] · [[v̂]] < 0.

Consequently, ∫
Eint

ψ(h−1|[[u]]|)[[u]] · [[v̂]] ds ≤ 0.

which constitutes a contradiction to (14). �

4. Numerical Examples

In the sequel, we will briefly discuss some implementational aspects of the pro-
posed DG scheme. In addition, a few numerical results will be added.

4.1. Numerical Scheme. In order to solve the nonlinear system resulting from
the DG formulation (9), we propose the following iteration scheme:

(15) (un+1 − f, w)S +
α

2h

∫
Eint

ψ
(
h−1 |[[un]]|

)
[[un+1]] · [[w]] ds = 0 ∀w ∈ P0(S).

The initial guess is chosen to be the noisy image, i.e., u0 = f . This is a linear
system for un+1 ∈ P0(S). Choosing basis functions

ξi,j(x) =

{
h−2, x ∈ Ki,j

0, otherwise
, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

for P0(S), the S-product in the above equation corresponds to an identity mass
matrix I, i.e.,

(ξi,j , ξk,l)S = δ(i,j),(k,l),

where δ denotes Kronecker’s delta. Furthermore, the bilinear form

(v, w) 7→
∫
Eint

ψ
(
h−1 |[[un]]|

)
[[v]] · [[w]] ds
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(a) Using φRO with β = 0.1.
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(b) Using φRO with β = 1e-4.
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(c) Using φCL with ε = 0.1.
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(d) Using φCL with ε = 1e-4.

Figure 1. Fading test: value of u(x0) for different length scales l
for the model based on (5) (top) and (6) (bottom).

translates, for given un ∈ P0(S), into a sparse matrix J([[un]]) with a similar struc-
ture as appearing in finite difference discretizations with local stencils. In summary,
the iteration (15) can be written in terms of the following mn×mn-linear system:(

I +
α

2h
J([[un]])

)
U = f .

Here, f and U are suitably reshaped vectors representing the color values of the
image f and the solution un+1, respectively. In order to solve this linear system
efficiently, a preconditioned conjugate gradient method is applied. The stopping
criterion of the iterative loop (15) is based on the increment

‖un − un−1‖L∞(S)

‖f‖L∞(S)
.

4.2. Examples. In the following, the proposed algorithm is applied to three dif-
ferent examples.

4.2.1. Example 1: We first study the role of α as well as of the regularization
parameters β and ε in the denoising model based on (5) and (6), respectively. In
particular, we investigate how these quantities are related to fading. For this pur-
pose, we apply the proposed DG algorithm to a white image of 101 × 101 pixels,
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(a) Original image. (b) Noisy image. (c) Restored image.

(d) Original image. (e) Noisy image. (f) Restored image.

Figure 2. Original image (left), noisy image with white noise
based on 10% standard variation (center), and the restored images
(right) using φRO from (5) (top) and φCL from (6) (bottom) with
β = 1e-4 resp. ε = 1e-4, and α = 30.

with a black square of l× l pixels at its center x0, and ask the question of how the
black color around the center of the image is fading out as α is increased. Consid-
ering a grayscale range of [0, 1] (where 0 corresponds to ‘black’ and 1 corresponds
to ‘white’), we monitor the value u(x0) of the restored image at the center with
respect to different values of α and different lengths l, for both of the above denois-
ing models, with different regularization parameters. The results are illustrated in
Figure 1. They lead to the following observations:

• As α increases the fading increases also; indeed, since the jump term in the
energy functional (7) controls the smoothing process in the image, this is
perfectly sensible;
• There is a jump in the value of u(x0) of approximately one order of mag-

nitude at around α = 10 that only depends moderately on the model and
the regularization parameters used;

• As l increases the fading decreases.

Consequently, for a given noisy image, an appropriate value of α that limits fading
of pixel blocks of length l up to a given tolerance, can be determined using the
above tables. In particular, we remark that an appropriate choice of α is related to
a characteristic size of objects in the image to be restored.

4.2.2. Example 2: The next example focuses on edge detection. Let us consider
the image as illustrated in Figure 2(a) consisting of 256 × 256 pixels. The regu-
larization parameters are set to β = 1e-4 and ε = 1e-4 for the denoising models
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(a) Original image. (b) Noisy image. (c) Restored image.

(d) Original image. (e) Noisy image. (f) Restored image.

Figure 3. Original image (left), noisy image based on 10% salt
and pepper noise (center), and the restored images (right) using
φRO from (5) (top) and φCL from (6) (bottom) with β = 1e-4 resp.
ε = 1e-4, and α = 60.

based on (5) and (6), respectively. The tolerance for the stopping criterion of the
increment is set to 0.01. We add either white (Gaussian) or salt and pepper noise
in order to test the proposed algorithm.

In Figure 2, in addition to the original image, we present the noisy image with
white noise based on 10% standard variation and the denoised images using φRO

(Figure 2(c)) and φCL (Figure 2(f)), with α = 30. The algorithm (15) required 9
respectively 8 iterations to converge within the prescribed increment tolerance.

In Figure 3, we present the original image, the noisy image with salt and pepper
noise of 10%, as well as the denoised image using φRO (Figure 3(c)) and φCL (Figure
3(f)), with α = 60. Here, the sequence of images generated by (15) converged after
36 respectively 41 iterations.

4.2.3. Example 3: Finally, we apply the proposed scheme to an MRI image1

as illustrated in Figure 4(a). The images consists of 640 × 588 pixels. We add
white noise of 10% standard variation and perform the denoising computations for
different values of α = 5, 7.5, 10. The restored images, using φCL from (6), with
regularization parameter ε = 1e-4, are illustrated in Figures 4(c), 4(f) and 4(i). The
tolerance for the stopping criterion of the increment is set to 0.01 which required
8, 10 respectively 10 iterations to converge.

1http://en.wikipedia.org/wiki/File:Mrt big.jpg
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(a) Original image. (b) Noisy image. (c) Restored image.

(d) Original image. (e) Noisy image. (f) Restored image.

(g) Original image. (h) Noisy image. (i) Restored image.

Figure 4. Original image (left), noisy image based on white noise
with 10% standard variation (center) and the restored images
(right) for three different values of α = 5, 7.5, 10 (from top to
bottom), using φCL from (6) with ε = 1e-4.

5. Conclusions

In this paper, we have introduced a zero-order discontinuous Galerkin method for
image denoising based on a discrete total variation approach. The proposed scheme
is obtained by minimizing a suitable discrete energy functional. The smoothing of
noisy images is taken care of by means of a discrete gradient which is expressed in
terms of a jump operator. We note, however, that alternative possibilities, including
lifting operators (see, e.g., [1]) could be applied within the given DG framework. In
this way, our approach can be seen as a generalization of standard finite difference
stencils or finite volume schemes as applied in, e.g., [14]. Remarking the fact that
the DG scheme in this paper has a highly parallelizable character, future work will
be dedicated to the development of an efficient implementation of the proposed
method on graphical processing units (GPU).
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