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Abstract

Impedance Cardiography (ICG) is a noninvasive technique for monitoring stroke volume, cardiac output
and other hemodynamic parameters, which is based on sensing the change of thoracic electrical impedance
caused by blood volume change in aorta during the cardiac cycle. Motion artifact and respiratory artifact
can lead to baseline drift in ICG signal, particularly during or after exercise, which can cause errors when
calculating hemodynamic parameters. This paper presents an LMS-based adaptive filtering algorithm
to suppress the respiratory artifact of ICG signal without restricting patients’ breath. Estimation of
hemodynamic parameters requires error-free automatic extraction of the characteristic points. Wavelet
transform is used for extracting characteristic points which include its peak point (Z), start point (B)
and end point (X) of left ventricular ejection time.
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1 Introduction

Impedance Cardiography (ICG) is a simple, inexpensive and noninvasive method to monitor
electrical impedance change of thorax which is caused by periodic change of blood volume in aorta.
An appropriate thorax model can be used for estimating Stroke Volume (SV), Cardiac Output
(CO) and other hemodynamic parameters [1]. A typical ICG waveform and its characteristic
points is shown in Fig. 1. Points B, Z and X are the three main characteristic of ICG trace. Point
B represents opening of the aortic valve, while point X denotes closing of the aortic valve. The
point Z corresponds to peak of the ICG waveform, while the point X is the lowest point in the
ICG waveform. The time interval between point B and point X is the Left Ventricle Ejection
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Time (LVET) [2]. SV is generally calculated using Kubicek’s equation using two hemodynamic
parameters: the LVET and the dz/dtmax of ICG [1].
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Fig. 1: A typical ICG waveform and an Electrocardiogram (ECG) waveform

The ICG signal is influenced mainly by motion artifact and respiratory artifact. Respiratory
artifact is primarily caused by changes of thoracic volume during breathing, while motion artifact
is generally caused by body movements and contraction of muscle. The frequency spectrum of
respiratory and motion artifacts partly overlap with frequency spectrum of the ICG signal, so it
is critical to remove all the artifacts. The electrical impedance change caused by blood volume
change in aorta typically accounts for 2-4% of the base impedance (usually about 20ohm), while
the electrical impedance change caused by the respiratory artifact and motion artifact may be
30% or even more [1]. Therefore the motion and respiratory artifacts may lead to a large baseline
drift in the ICG signal, subsequently resulting in errors in characteristic points extraction and
calculation of the hemodynamic parameters.

Some algorithms of removing the respiratory artifact in the ICG signal have been published.
Pandey used an LMS-based adaptive filter to suppress respiratory artifact with an airflow sensor
sensing breath [3]. Barros adopted an adaptive filter and a scaled linear Fourier combiner to
express the ICG signal as a scaled Fourier series with a period equal to the R-R interval of ECG
signal [4].

Unlike Heart Rate Variability (HRV), stroke volume variability and cardiac output variability
has not been widely applied as a medical index for diagnosing cardiovascular diseases, because
accurately estimating SV in a long period is very difficult [5]. This paper presents an LMS-
based adaptive filtering algorithm to suppress the respiratory artifact of the ICG signal without
restricting patients’ breath and applies wavelet transform to extract characteristic points (B, Z
and X).

The remaining portions of this paper are divided as follows: in Section 2 we analyzed signal
processing technique for denoising ICG. And then we adopted wavelet transform to extract char-
acteristic points of ICG in Section 3. In Section 4 we estimated hemodynamic parameters by
classic formula. Finally, we obtained our conclusions in Section 5.
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2 Signal Processing Technique

There are two major artifacts in the ICG signal: respiratory and motion artifacts. Respiratory
artifacts have very low frequency (0.04-2 Hz), and the frequency of motion artifacts is about
0.1-10 Hz. The baseline drift is due to the respiratory artifacts, while the peaks variation is due
to motion artifacts. ICG signal range is 0.8 to 20 Hz, therefore respiratory and motion artifacts
lie within the same band [6]. In this paper particularly we are looking for respiratory artifacts
suppression because these create difficulties in calculating SV and other hemodynamic indices
accurately.

ICG signal is modulated by breath which can cause its fluctuation around base impedance Z0,
thus baseline drift is inevitable during exercise. Subsequently baseline drift might cause inaccurate
calculations of hemodynamic parameters when the zero level is used to calculate dz/dtmax [7].
Therefore removing respiratory artifact from ICG signal is really important.

There are mainly five techniques of suppression of respiratory artifacts:

a) Breath holding: The easiest way to suppress these artifacts is to hold the breath. However,
holding the breath during recording ICG may change SV. Another problem is when we are
recording ICG after exercise it is difficult to hold the breath.

b) Ensemble averaging [8]: The bit to bit variability in the ICG will be removed in ensemble
averaging technique, so it blurs the important points of ICG waveform such as B and X points.
Hence it will introduce errors in calculating SV.

c) Wavelet based level dependent thresholding [8]: In wavelet based denoising selection of
wavelet basis is important task. In many denoising applications it is observed that if wavelet and
waveform has some similar shape, then those wavelets that give better separation of noise and
signal. But selection of wavelet basis is often a difficult step in wavelet based denoising.

d) Independent Component Analysis (ICA) [9]: ICA applies to the assumption of statistical
independence among different components; if the source signals do not satisfy the condition then
ICA would not be able to separate the components. We still need to prove that cardiac and
respiratory components can be viewed as uncorrelated.

e) Adaptive filtering: Adaptive filtering is always good in biosignal denoising, if we have a
reference signal. So we need to acquire signals from two channels, one of the signals can be taken
as reference input signal. Eight electrodes of the cross-shaped device are placed on the chest, as
is shown in Fig. 2, four vertical electrodes and four horizontal electrodes are simultaneously used
to acquire impedance signals. Because the aorta is a vertical blood vessel in the thorax, so the
four vertical electrodes are used to sense ICG, while the four horizontal electrodes are used to
detect respiration. Horizontal impedance can be taken as reference signal to remove respiratory
artifacts.

A schematic diagram of the respiratory artifact suppression method is illustrated in Fig. 3.
Input signal x(n) of adaptive Finite Impulse Response (FIR) filter is the vertical impedance, and
it is a mixed signal which includes ICG signal and respiratory artifact. Horizontal impedance
ro(n) which is associated with the respiratory artifact is proved to be uncorrelated with ICG
signal.

Horizontal impedance is found to be less than 1 Hz in frequencies, which seriously affects
the accurate identification of characteristic points of ICG signal. A signal associated with the
respiratory artifact can be estimated using horizontal impedance and vertical impedance together
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Fig. 3: LMS-based adaptive FIR filtering technique using respiration reference

and adopted as the reference input signal for the LMS-based adaptive FIR filter.

Least Mean Square (LMS) algorithm is used to control the FIR filter. The output of M-tap
FIR filter with coefficients ωn(k) is given as

r̂(n) =
M−1∑

k=0

ωn(k)r(n− k) (1)

The input x(n) subtract the output r̂(n) to obtain the denoised output signal

x̂(n) = x(n)− r̂(n) (2)

x̂(n) is used as the feedback e(n) by the least mean square algorithm for estimation of the
adaptive filter coefficients. An instantaneous estimate of the gradient vector is used to control
adaptive filter coefficients, using the equation

ωn+1(k) = ωn(k) + µe(n)r(n− k) (3)

The instantaneous estimate of the gradient vector is based on sample values of the tap input
vector and the feedback for dynamic adaptation. The step-size parameter µ (0 < µ < 2/M) is
selected for adjusting stability and convergence of the dynamic adaptive filter.

As is shown in Fig. 4, the effect of FIR adaptive filter based on LMS is very clear. The processed
ICG signal has no baseline drift, which means most respiratory artifacts are removed from the
ICG signal.
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Fig. 4: Vertical impedance, horizontal impedance and ICG processed by adaptive filtering

3 Extraction of Characteristic Points

Wavelet Transform (WT) is adopted to extract characteristic points of ICG signal in this paper.
Wavelet transform decomposes the ICG signal into many components at different frequency scales
using filter banks. On the other hand, wavelet transform characterizes and preserves the regular-
ities of ICG signal at different frequency scales, which can be used for extracting less prominent
characteristic points [10].

3.1 Principle of Wavelet Transform

With a given mother wavelet ψ, wavelet transform of a function f(x) is defined as

ωsf(x) = f ∗ ψs(x) =
1

s

∫ ∞

−∞
f(t)ψ

(x− t

s

)
dt (4)

where s denotes the scale factor of WT. When s = 2j (j ∈ Z, Z is integral set), and the wavelet
transform of f(x) is defined as dyadic wavelet transform. The dyadic wavelet transform can be
calculated by following two equations:

S2jf(n) =
∑

k∈Z

hkS2j−1f(n− 2j−1k) (5)

ω2jf(n) =
∑

k∈Z

gkS2j−1f(n− 2j−1k) (6)
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where Sj
2 represents the smoothing operator and ω2jf(n) is the wavelet transform of digital

function f(n). gk is the coefficient corresponding high pass filter, and hk is the coefficients
corresponding low pass filter.

The equivalent filters of the quadratic spline wavelet with compact support and one vanishing
moment are illustrated in Fig. 5. These equivalent filters are FIR filters with a generalized linear
phase. Signal can be decomposed into different scales using equivalent filters. In this paper, the
ICG signal is decomposed into seven scales at different frequency.
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Fig. 5: The equivalent filters of quadratic spline wavelet at seven scales and different frequency

3.2 Characteristic Points Detection

Point B is located at the ascending phase of the ICG trace before point Z, and it is related to
the opening of the aortic valve. Point B is generally assumed as a point occurring at the baseline
(zero-crossing). Point X is described as a lowest point of ICG signal occurring after point Z in a
cardiac cycle and reflects the closing of the aortic valve. The interval between the opening (B)
and closing (X) of the aortic valve is defined as Left Ventricular Ejection Time (LVET). Z point,
corresponding to the maximal speed of the impedance change, is located at the top position of
the ICG trace. The amplitude of point Z-dz/dtmax is the maximal amplitude of ICG signal [11].

A minimum–maximum pair exists in the decomposed signal by quadratic spline wavelet for every
uniphase wave. Therefore, some key events can be identified using these minimum–maximum pairs
with convincing results. When WT is directly applied to the ICG signal processing, compared
with WT in the ECG signal processing, the typical minimum–maximum pair is less prominent.
The difference may be caused by different frequency ranges of ECG signal and ICG signal. High
frequency components of characteristic points (eg.QRS complex) in the ECG signal are more
than high frequency components of characteristic points in the ICG signal. Additionally, low
frequency systolic component is one of the characteristics in ICG signal [12]. The point B is less
prominent than Z and X points which both are turning points and extreme points. Nevertheless,
characteristic point B in the ICG signal can be identified in the signal processed by WT.

Since point Z is the maximum point during systolic period and has low frequency component
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of ICG signal, it is the easiest to be extracted clearly for each cardiac cycle. The zero-crossing
and minimum–maximum pairs at different scales can be examined. The results of characteristic
points extraction using WT is shown in Fig. 6, the purple points are zero-crossing (B), the red
points are maximum (Z), the blue points are minimum (X).
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Fig. 6: The results of characteristic points extraction using WT

3.3 Evaluation Indices of Characteristic Points Detection

A visual examination of the results of the automatic detection of the characteristic points was
carried out using a program based on LabVIEW which marked the detected points on the wave-
form itself. For a quantitative evaluation of the technique, locations of the automatically detected
points were compared with the points visually located in accordance with definitions. Failure to
detect a true point was counted as a Failed Detection (FD), and detection of a false point was
counted as misdetection (MD). With TP as the total number of true points detected, the following
performance indices were calculated [13].

Sensitivity = TP/(TP + FD) (7)

Positivepredictivity = TP/(TP + MD) (8)

Detectionerror = (FD + MD)/(TP + FD) (9)

Table 1: Evaluation indices for detection of characteristic points

Characteristic Points
Processed ICG

Sensitivity (%) Positive predictivity (%) Detection error (%)

B 94.5 93.8 11.6

Z 99.5 98.6 1.9

X 97.1 96.4 6.4

The evaluation was carried out by applying it on a total of 378 cardiac cycles in the recordings of
a healthy subject. A quantitative visual examination of the automatically detected points showed
a very small number of errors, and most of the errors were related to errors in the detection of
the B points. A quantitative evaluation was carried out by calculating the performance indices
as given in equations (7-9). The values of the indices for the detection of points B, Z and X are
given in Table 1. For detection of the Z point, the technique showed excellent sensitivity (99.5%)
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and very low detection error (1.9%) in the processed ICG signals. Somewhat higher errors were
observed in the identification of relatively less distinct points B and X.

4 Estimation of Hemodynamic Parameters

Stroke volume is probably one of the most medically relevant hemodynamic indices obtained
using ICG. The peak value dz/dtmax is an important parameter in the estimation of SV and other
hemodynamic parameters. The equation of SV, introduced by Kubicek [12] is

SV = ρ · L2

Z2
0

· LV ET · dz/dtmax (10)

where ρ=blood resistivity (ohm*cm), L=thoracic length between two sense electrodes (cm),
Z0=base impedance (ohm), dz/dtmax=maximum value of ICG waveform (ohm/s), LVET is de-
fined as the interval between point B and point X. dz/dtmax can be determined by the amplitude
difference between point B (baseline level) and point Z (top position).

Cardiac output is the blood volume pumped by the heart during one minute period. It is a
result of SV multiplied by Heart Rate (HR). It also can be calculated as a sum of all SV values
occurring during one minute period [14]. CO is related to SV as follows:

CO = SV ·HR (11)

We can obtain dz/dtmax and LVET by extracting characteristic points of ICG waveform. It
is assumed that L=21 (cm), ρ=135 (ohm*cm), Z0=20 (ohm), hemodynamic parameters SV and
CO can also be calculated according to the equation (10-11). The hemodynamic parameters are
provided in different HR, LVET and dz/dtmax (Table 2). Normal range of SV is 60-100 (ml), and
normal range of CO is 4800-8000 (ml/min).

Table 2: Calculated hemodynamic parameters

HR (beats/min) LVET (ms) dz/dtmax (ohm/s) SV (ml) CO (ml/min)

70 313 1.88 87.6 6130.7

72 318 1.90 89.9 6474.8

65 327 1.96 95.4 6200.5

69 298 1.82 80.7 5569.9

75 314 1.92 89.7 6729.8

78 295 1.83 80.3 6267.3

74 320 1.98 94.3 6978.5

We compared CO from the cross-shaped device with CO from Mindray’s BeneView T5 which
integrates CardioDynamics’ BioZ ICG module in ten healthy people. We recorded two CO values
from cross-shaped device and BeneView T5 every 10 seconds, then we calculated the correlation
coefficient by recording continuously 200 CO values. The result is 0.83, higher than 0.8, so we can
draw a conclusion that CO from cross-shaped device is highly-correlated with CO from BeneView
T5, which implies adaptive FIR filtering based on LMS and wavelet transform is valid.
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5 Conclusions

In this paper, LMS-based adaptive filtering and wavelet transform is presented to remove respira-
tory artifact and extract characteristic points from ICG signal respectively. Advantage of adaptive
filtering is that it does not require any breath control, especially during or after exercise, when
breath and cardiac activity is rapidly varying. We apply wavelet transform to detect characteristic
points-“B”, “Z” and “X”. The WT shows significantly great performance with a high sensitivity
and a low detection error. It still needs to be further evaluated by applying it to record in a clinical
setting for estimating the stroke volume, cardiac output and other hemodynamic parameters.
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