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Abstract

This proposed method calculates the centroids of two registering images by applying the moments for
acquiring the original displacement parameters, and then uses modified K-means clustering to classify
the image coordinates. Before clustering, the medical image coordinates is centralized, the two-row
coordinate matrix is created to construct the 2-D sample set to be partitioned into two classes, the slope
of a straight line fitted to the two classes is computed, and the rotation angle is computed by solving the
arc tangent of the slope. The edges are detected by the edge convolution kernel and the binary images
covering the characteristic points are extracted. Experimental results from aligning experiments reveal
that, this approach has lower computation costs and a higher registration precision.
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1 Introduction

Medical image registration signifies that the space geometry transform is applied to register
several images created by various imaging devices, and makes the pixels (voxels) expressing the
identical construction be the same spatial position [1,2]. After years of development and evolution,
the methods for registering medical images have achieved rapid advance, and global experts
and scholars have proposed many practical and effective technologies. Among these methods,
characteristic-based image approaches have been extensively applied for aligning medical images
[3]. For the characteristic-based alignment method, in essence, it extracts the conjunct, distinct
and significant characteristics between the aligning the objects to explore the transform values.
It is effective and easy to implement, while its alignment precision seriously counts on whether it
can exactly extract the critical characteristic points [4–7]. In consideration of the complication
of various images, it is really an intractable issue to solve the fully-automated and accurate
abstraction and refinement of the useful characteristic points from medical images. So its poor
adaptability and robustness need to be further boosted.

⋆Project supported by the Key Scientific Research Fund of Hunan Provincial Education Department, China
(No. 13A064), the Construct Program of the Key Discipline in Hunan University of Arts and Science, and the
Doctor Scientific Research Startup Project Foundation of Hunan University of Arts and Science.

∗Corresponding author.
Email address: pmsjjj@126.com (Meisen Pan).

1940–8676 / Copyright © 2015 Binary Information Press & Textile Bioengineering and Informatics Society
March 2015



152 M. Pan et al. / Journal of Fiber Bioengineering and Informatics 8:1 (2015) 151–159

In 1980’s, the researchers made deep and systematic study about the registration of set of points.
In particular, Arun et al. [8] introduced an approach to alignment between point sets using unit
quaternion to represent rotation in 1987. A lot of aligning experiments have shown that the
registration technology is an appreciated way to confront the thorny issues of alignment. In 1992,
Besl et al. [9] pioneered the Iterative Closest Point (ICP) algorithm, to handle the problem of
registration of point sets. ICP, as a characteristic-based registration method, is a very famous
method and widely put into use in the registration of set of points. It can align the set of points
without the requirement for segmentation or other preprocessing of the images. Therefore, it is
more propitious for registering set of points [2]. So it is widely used in various alignment fields.
However, it exists some problems that need to be resolved in the implement process. First, it must
repetitive and iteratively explore the closest points, and as a result the computation costs are
extremely expensive. Second, whether ICP can exactly derive the optimal registration parameters
seriously dependent on the selection of the original rotation and displacement parameters. If the
original values are not fitted to respond to ICP, then the registering operation has to take more
time to explore the optima and even results in failure. In addition, it is troublesome to select the
pivotal characteristic points delineating the object outline automatically when aligning images.
Furthermore, it can effortlessly fall in the trap of the local optima.

In order to tackle the problems mentioned above, on the foundation of an in-depth study about
the K-means Clustering (KMC) and ICP, we present medical image registration using Modified
K-means Clustering (RMKMC).

2 Medical Image Registration Using Modified K-Means

Clustering

2.1 ICP

Assume that sets S ,F ∈ RK , S = {s i, i = 1, 2, · · · ,N} with s i = [sil · · · siK ]
T and F = {f j, j =

1, 2, · · · ,M} with f j = [fjl · · · fjK ]
T present the reference and floating sets respectively, and

Z = {z i, i = 1, 2, · · · ,M} with z i = [zil · · · ziK ]
T and z i ∈ S expresses the closest point set. In

addition, R0 and T 0 denote K×K rotation and K× 1 matrices respectively. ICP introduced by
Besl and Mckay is aimed at exploring a rigid transformation (R0,T 0) to make the mean square
sum representing the Euclidean distances between the set F mapped by (R0,T 0) and its closest
point set Z in S be minimized, i.e., the objective function

J(R0,T 0) = Min

{
1

M

M∑
i=1

∥z i − (R0 · f i +T 0)∥

}
(1)

here R0 is computed by the unit quaternion [9], and then T 0 is obtained by

T 0 = z −R0 · f

(
z =

1

M

M∑
i=1

z i, f =
1

M

M∑
i=1

f i

)
(2)

In ICP, the original rotation matrix R0
0 and the translation matrix T 0

0 are set by


1 0 0

0 1 0

0 0 1
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and [0 0 0]T respectively. Further, f 0
j representing the component of the original set F 0 is f 0

j =

R0
0·f j+T 0

0 = f j(j = 1, 2, · · · ,M), i.e., F 0 = F . In essence, ICP is the process that the iteration is
repeated until J(R0,T 0) meets a given threshold which denotes the expected alignment precision
or the iteration number exceeds a given parameter.

According to the description above, ICP has a heavily computational load, is greatly influenced
by original rotation and translation matrices, and easily traps into the local optima.

2.2 Acquisition of the Centroids

Let f(x, y) be a two-dimensional discrete image, the following equation defines its moment in
order (s+ t) can be defined by [10]

Ms,t =
M∑
x=1

N∑
y=1

xsytf(x, y) s, t = 0, 1, 2, · · · (3)

where (s+ t) expresses the order and, M and N are the sampling point numbers in image space.
And well we can define the zeroth as follows [10]

M0,0 =
M∑
x=1

N∑
y=1

f(x, y) (4)

Further, when s = 1 and t = 0, and, s = 0 and t = 1 [10],

x =
M1,0

M0,0

, y =
M0,1

M0,0

(5)

here we define(x, y) as the centroids of an object.

2.3 Calculation of the Rotation Angle Using MKMC

KMC proposed by MacQueen in 1967 divides the data into the preset classes by minimizing the
error function. The principle of KMC is simple and is easy to deal with a lot of data. In addition,
the number of classes and iterations or the convergence condition of KMC must be assigned in
advance, and the initial cluster centers also have to be designated. Based on certain similarity
metric, each sample is allocated into the nearest or the most similar clustering center to form a
class set, then the average vector of each class set is viewed as the cluster center of the class set,
therefore each sample is reallocated into the new cluster center. The above process is iterated
until the convergence condition is fulfilled or the maximum number of iterations is achieved.

2.3.1 KMC

Let S = {s1, s2, · · · , sn}, be a set containing n samples for s i = [si1, si2, · · · , sil]T (i = 1, 2, · · · , n),
P = {p1,p2, · · · ,pc} expresses a cluster center set with the element number c, the element
pj = [pj1, pj2, · · · , pjk]T (j = 1, 2, · · · , c) represents the center of the jth class including rj samples,
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and sj
k denotes the kth sample in the jth class with j = 1, 2, · · · , c and k = 1, 2, · · · , rj. Therefore,

the cluster center of each class is expressed

pj =
1

rj

rj∑
k=1

sj
k (sj

k ∈ S) (6)

Thus, the object function of clustering can be formulized as

J(S ,P) =
c∑

j=1

rj∑
k=1

d(sj
k,pj) (7)

where P is the set of the cluster centers, and d(sj
k,pj) is the distance between the sample sj

k and
its corresponding cluster center pj. The purpose of KMC is to obtain P in the case of minimizing
the above object function J(S ,P).

When performing KMC, in general, we select the Euclidean distances as the distance metric
d(s i,pj), i.e., d(s i,pj) =∥ s i − pj ∥2. Furthermore, we have to mention that the clustering
results from KMC are heavily dependent on the original cluster centers selected. Generally, if the
original cluster centers selected are a serious departure from the global optimal partition, then
KMC possibly gets into the local optimal solution. Also, the greater the number of classes is, the
more obvious the issue is. Therefore, a larger number of iterations are possibly required to obtain
the satisfactory results.

2.3.2 Selection of the Original Cluster Center Sets of MKC

According to the description of the algorithm, KMC, due to its strong sensitivity to the original
cluster center set, possibly gets a dubious result. For two medial images in Fig. 1, for example,
when a cluster center set is randomly chosen, we use KMC to handle each image by 10 operations
respectively and obtain the relationship among the original cluster center set, the derived angle
and the running time of MKC, illustrated in Fig. 2.

(a) Tilt image 1 (b) Tilt image 2

Fig. 1: Tilt medical images

In Fig. 2, the two tilt (rotation) angles obtained by MKC are swinging, varying in a certain
range and existing several local pitfalls. As the result, the uncertain tilt (rotation) angles cause
the corresponding indeterminate rotated images by the negative tilt (rotation) angles, which will
negatively and harmfully influence the successive image processing; and at the same time the
amplitude fluctuation of the running time is relatively greater. Therefore, it is very necessary to
pick out a suitable original cluster center set.
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Fig. 2: The relationship among a random initial cluster center set, the derived angle, and the running
time. (a) The derived angle in the case of the random selection of an initial cluster center set; (b) The
running time in the case of the random selection of an initial cluster center set

In this paper, we will initialize the cluster center set according to the following method: First,
for the number n of elements in the sample set S , we compute half = integer[n/2]. Then, the
sample set S is divided into two class subsets: the first half samples in S constitute one class
subset and the remainder forms another class one. Finally, the center vectors of the two class
subsets are computed respectively, namely

p1 =
1

half

half∑
i=1

s i, p2 =
1

n− half

n∑
i=half+1

s i (8)

For the two images in Fig. 1, the original cluster center sets are first derived based on Eq.
(8) and then the relationships among the original cluster center sets, the derived angle and the
running time of KMC are acquired respectively, shown in Figs. 3 (a) and 3 (b). Now we can
observe, the derived angles from the two tilt (rotation) images are jarless and accurate, which
is conductive to get the registration original values. Moreover, the amplitude fluctuation of the
running time is relatively less.
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Fig. 3: The relationship among the initial cluster center set created by Eq. (8), the derived tilt angle,
and the running time. (a) The derived angle in the case of the initial cluster center set generated by Eq.
(8); (b) The running time in the case of the initial cluster center set created by Eq. (8)

2.3.3 Calculation of the Rotation Angle

Taken together, we elaborate Acquisition of Rotation Angle Using Modified K-Means Clustering
(MKMC) as argued below.
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Step 1. The BSGO is applied to acquire the edges of the original image F and create the binary
edge image Bin .

Step 2. The bounding box of Bin including top, bottom, left, and right boundaries, is probed.

Step 3. On the basis of the bounding box of Bin , the subimage F Sub is unearthed from the
image F .

Step 4. Based on Eqs. (3) and (4), the moments M0,0, M1,0 and M0,1 of F Sub are counted
respectively.

Step 5. According to Eq. (5), the centroid coordinates (x, y) of FSub are derived.

Step 6. The image matrix Pr is built, namely, the coordinate origin is moved to the centroids of
F Sub, which means that the coordinates of F Sub are centralized. Pr denotes the two-row matrix
of the coordinates (x, y) of pixel points in the sub-image FSub, where the number of elements
(namely the number of columns) is (H ×W ), that is, Pr ∈ R2×(H×W ).{

Pr ((t− 1)×W + q, 1) = (t− x)× FSub(t, q)

Pr ((t− 1)×W + q, 2) = (q − y)× F Sub(t, q)
(9)

here t = 1, 2, · · · , H; q = 1, 2, · · · ,W .

Step 7. According to Pr with size being n = H ×W , we compute half = integer[n/2], and
then Pr , is divided into two class subsets: the first half samples in it constitute one class subset
and the remainder forms another class subset. Finally, the center vectors of the two class subsets
are computed respectively according to Eq. (8) to get the original cluster center sets of KMC.

Step 8. Pr is grouped into two classes pj = [pj,1, pj,2]
T (j = 1, 2) by KMC.

Step 9. A straight line is used to be fitted through the two classes and the corresponding slope
k is obtained

k =
p2,2 − p1,2
p2,1 − p1,1

(10)

Step 10. The tilt (rotation) angle α is computed according to k

α = arctan
(1
k

)
∗ 180

π
(11)

2.4 RMKMC

The original rotation matrix R0
0 and translation matrix T 0

0 of ICP are computed by applying
MKMC and the centroid coordinates respectively, and the reference and floating point sets are
extracted by BSGO. As mentioned previously, medical image registration using Modified k-means
clustering is described below.

Step 1. Compute the centroids (xS , yS ) and (xF , yF ), and the rotation parameters αS and αF

of the images S and F respectively based on the moments and MKMC of the images.

Step 2. Derive the original values for registration from the following expressions

∆x = (xF − xS ),∆y = (yF − yS ),∆α = (αF − αS )
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Step 3. Use ∆x, ∆y and ∆α as the original rotation and translation values for performing ICP.
That is,

R0
0 =

[
cos(∆α) − sin(∆α)

sin(∆α) cos(∆α)

]
, T 0

0 = [∆x ∆y]T

Step 4. Impose BSGO on the images S and F respectively, and generate the binary images
BinS and BinF with gray value being 0 or 1.

Step 5. Extract two point sets of coordinates on behalf of the whole pixels whose grayscale
values are 1 in BinS and BinF respectively for the reference and floating point sets in ICP.

Step 6. Perform ICP and derive the final rotation and translation matrices R0 and T 0.

3 Experiments and Results

We derive the test images from the image library of the human brain founded by RREP, attached
to Vanderbilt University, USA. RMKMC is performed in MATLAB 7.1 on a personal computer
with an Intel Dual-Core E5500 2.80 GHz and 2 GB RAM, running Windows XP. For the sake of
verifying RMKMC with a rapid performance, good alignment accuracy and a strong reliability,
we carry out RMKMC and compare the results from ICP. In the aligned images shown below,
the red and green marks express the consequences from extraction of the experimental images
by the edge detection operator Canny respectively, while the yellow ones label the corresponding
part of the aligned images. In order to assess the registration accuracy, we use error ρ in [2].

In the experiment, we use No.5 CT, MR PD rectified No.6 and PET No.3 brain images of the
training 007 to be used for the experimental objects with gray level being 256, and group them
into the subsequent four groups. In the first group, we choose CT1 for the reference image and,
MR1 for the floating image, with sizes being 256× 256, displayed in Fig. 4. In the second group,
we select MR2 for the reference image and, CT2 for the floating one, with size being 256× 256,
illustrated in Fig. 5. In the third group, we pick CT3 for the reference image and, PET1 for the
floating one, with sizes being 128 × 128, listed in Fig. 6. In the final group, we extract MR3

(b) MR1 floating image(a) CT1 reference image

Fig. 4: The first group

(b) CT2 floating image(a) MR2 reference image

Fig. 5: The second group

(b) PET1 floating image(a) CT3 reference image

Fig. 6: The third group

(b) PET2 floating image(a) MR3 reference image

Fig. 7: The fourth group
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for the reference image and, PET2 for the floating one, with sizes being 128 × 128, plotted in
Fig. 7. Moreover, we demonstrate the comparatively precious transform values in Table 1, which
are taken as ∆is in Eq. (7) in [2].

Table 1: Transform values of multi-modality floating images

Floating images
Parameters

∆xs/P ixel ∆ys/P ixel ∆αs/
◦

The first group 19.127 15.664 −12.652

The second group 23.197 −14.798 18.6136

The third group 18.0450 14.574 −14.368

The fourth group −14.422 −10.858 9.787

Just as before, ICP is first employed to align the images and then RMKMC to do the same.
The experiment consequences are illustrated in Figs. 8-11 and Table 2.

(a) ICP (b) RMKMC

Fig. 8: Result figures of the first group

(a) ICP (b) RMKMC

Fig. 9: Result figures of the second group

(a) ICP (b) RMKMC

Fig. 10: Result figures of the third group

(a) ICP (b) RMKMC

Fig. 11: Result figures of the fourth group

According to Table 2, the aligning speed of RMKMC is relatively faster than that of ICP,
particularly for the images with large size. From Figs. 8-11, ICP cannot match most of the
experimental images except for the second group of images with a relatively lower total error. As
for RMKMC, it is can succeed in aligning the whole experimental objects, which is consistent with
the errors in Table 2. And yet, in the one case aligned by RMKMC, namely the alignment of CT3
and PET1, the accuracy is slightly inferior to those of aligning the other groups of images. As
shown previously, the application of obtaining original rotation and displacement values from the
multi-modality medical images is an appropriate approach. Therefore, on the whole, RMKMC
can be applied for aligning the multi-modality medical images.

4 Conclusions

To deal with the congenital deficiencies of aligning the images using ICP, by applying MKMC
and the centroids for obtaining the original parameters, and BGSO for selecting the characteristic
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Table 2: Performance of aligning the images Figs. 9-11 applying ICP and RMKMC

Images Methods
Parameters Errors

∆x/Pixel ∆y/P ixel ∆α/◦ Time/S ρx ρy ρα ρ

The first ICP 32.427 35.240 −7.2360 23.25 69.535 124.975 42.808 237.318

group RMKMC 17.591 15.797 −12.923 8.953 8.031 0.849 2.142 11.022

The second ICP 25.235 −15.865 20.337 24.985 8.786 7.210 9.259 25.255

group RMKMC 21.548 −15.072 17.686 10.390 7.109 1.852 4.984 13.945

The third ICP 10.268 19.536 −3.528 2.235 43.098 34.047 75.445 152.590

group RMKMC 18.908 13.516 −13.532 2.204 4.783 7.260 5.819 17.862

The fourth ICP −14.379 −10.734 3.435 0.671 0.298 1.142 64.902 66.342

group RMKMC −14.563 −11.053 9.070 0.588 0.978 1.796 7.326 10.100

points, RMKMC is presented. The experiments reveal that, RMKMC is easy to implement, has
lower computation costs, higher registration precision, and a remarkable ability that avoids being
caught in the local optima. RMKMC has a better performance in registering medical images.
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