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Abstract. This paper introduces a unified operator theory approach to the abstract
Fourier analysis over homogeneous spaces of compact groups. Let G be a compact
group and H be a closed subgroup of G. Let G/ H be the left coset space of H in G and
y be the normalized G-invariant measure on G/H associated to the Weil’s formula.
Then, we present a generalized abstract framework of Fourier analysis for the Hilbert
function space L?(G/H, ).
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1 Introduction

The abstract aspects of harmonic analysis over homogeneous spaces of compact non-
Abelian groups or precisely left coset (resp. right coset) spaces of non-normal subgroups
of compact non-Abelian groups is placed as building blocks for coherent states analy-
sis [2—4,12], theoretical and particle physics [1,9-11,13]. Over the last decades, abstract
and computational aspects of Plancherel formulas over symmetric spaces have achieved
significant popularity in geometric analysis, mathematical physics and scientific comput-
ing (computational engineering), see [6,7,13-18] and references therein.

Let G be a compact group, H be a closed subgroup of G, and p be the normalized
G-invariant measure on G/ H associated to the Weil’s formula. The left coset space G/H
is considered as a compact homogeneous space, which G acts on it via the left action.
This paper which contains 5 sections, is organized as follows. Section 2 is devoted to
fix notations and preliminaries including a brief summary on Hilbert-Schmidt operators,
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non-Abelian Fourier analysis over compact groups, and classical results on abstract har-
monic analysis over locally compact homogeneous spaces. We present some abstract
harmonic analysis aspects of the Hilbert function space L?>(G/H,u), in Section 3. Then

we define the abstract notion of dual space G/H for the homogeneous space G/H and
we will show that this definition is precisely the standard dual space for the compact
quotient group G/H, when H is a closed normal subgroup of G. We then introduce the
definition of abstract operator-valued Fourier transform over the Banach function space
L'(G/H,u) and also generalized version of the abstract Plancherel (trace) formula for
the Hilbert function space L?(G/H, ). The paper closes by a presentation of Peter-Weyl
Theorem for the Hilbert function space L2(G/H,u).

2 Preliminaries and notations

Let H be a separable Hilbert space. An operator T € B(H) is called a Hilbert-Schmidt
operator if for one, hence for any orthonormal basis {e;} of H we have Y || Tex||? < co.
The set of all Hilbert-Schmidt operators on 3 is denoted by HS(H) and for T € HS(H)
the Hilbert-Schmidt norm of T is ||T||%g = Yx||Tex||>. The set HS(H) is a self adjoint
two sided ideal in B(H) and if K is finite-dimensional we have HS(H) = B(H). An
operator T € B(H) is trace-class, whenever || T||¢ = tr[| T|] < oo, if tr[T] = Y (Tex,ex) and
IT| = (TT*)V/2 [20].

Let G be a compact group with the probability Haar measure dx. Then each irre-
ducible representation of G is finite dimensional and every unitary representation of G is
a direct sum of irreducible representations, see [1,10]. The set of of all unitary equivalence
classes of irreducible unitary representations of G is denoted by G. This definition of G is
in essential agreement with the classical definition when G is Abelian, since each charac-
ter of an Abelian group is a one dimensional representation of G. If 77 is any unitary repre-
sentation of G, for {,¢ € H; the functions 717 #(x) = (71(x),¢) are called matrix elements of
. If {e]-} is an orthonormal basis for H, then 77;; means Tte; e;- The notation € ; is used for
the linear span of the matrix elements of 7t and the notation € is used for the linear span
of Ujrjegn Then Peter-Weyl Theorem [1,10] guarantees that if G is a compact group, €

is uniformly dense in €(G), L?(G) =@yccén and {d;12m:0,j=1,- ,dr,[7] € G}isan

orthonormal basis for L2(G). For f € L1(G) and [r] € G, the Fourier transform of f at 7t is
defined in the weak sense as an operator in B(H ) by

Fm = [_fm(x) dx. 2.1)

If 77(x) is represented by the matrix (77;j(x)) € C%*=. Then f(n) € C%*dx is the matrix
with entries given by f( m)ij=d ;1c]7-f- (f) which satisfies

dr dn ~

Y. B (f)mi(x)=dn Y F(r)jimm(x) =dnte[f () (x)],

ij=1 ij=1
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where % (f)=dn(f,7ij)12(G)- Then as a consequence of Peter-Weyl Theorem we get [19,
21,23]
1l = X dxllf(0)ls: (22)

[n)eG

Let H be a closed subgroup of G with the probability Haar measure dh. The left coset
space G/ H is considered as a compact homogeneous space that G acts on it from the left
and q: G — G/H given by x+ q(x):=xH is the surjective canonical map. The classical
aspects of abstract harmonic analysis on locally compact homogeneous spaces are quite
well studied by several authors, see [5,8,10,11,22] and references therein. If G is compact,
each transitive G-space can be considered as a left coset space G/H for some closed sub-
group H of G. The function space C(G/H) consists of all functions Ty/( f), where f€C(G)
and

To(F)(xH) = [ f(xh)an 2.3)

Let 1 be a Radon measure on G/H and x € G. The translation y, of y is defined by
tx(E) = u(xE), for all Borel subsets E of G/H. The measure y is called G-invariant if
iy =, for all x€ G. The homogeneous space G/ H has a normalized G-invariant measure
i, which satisfies the following Weil’s formula [1,22]

[, Tu(f)(xH)du(xH) = [ f(x)dx forall fEL(G), (2.4)
G/H G
and also the following norm-decreasing formula

1T (Nl 6/mm <l forall feL'(G).

3 Abstract harmonic analysis of Hilbert function spaces over
homogeneous spaces of compact groups

Throughout this paper we assume that G is a compact group with the probability Haar
measure dx, H is a closed subgroup of G with the probability Haar measure dh, and also
p is the normalized G-invariant measure on the homogeneous space G/ H which satisfies
(2.4).

In this section, we present some properties of the Hilbert function space L?(G/H, 1)
in the framework of abstract harmonic analysis.

First we shall show that the linear map Ty has a unique extension to a bounded linear
map from L?(G) onto L2(G/H,u).

Theorem 3.1. Let H be a closed subgroup of a compact group G and y be the normalized G-
invariant measure on G / H associated to the Weil's formula. The linear map T;:C(G)—C(G/H)
has a unique extension to a bounded linear map from L?(G) onto L*(G/H,u).
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Proof. Let u be the normalized G-invariant measure on the homogeneous space G/H
which satisfies (2.4) and f € €(G). Then we claim that

ITa (2 a0 < I fll26)- 3.1)

To this end, using compactness of H, we have

2
T oy = [ T o) Pttty = [ sty d(at

<L If(xh)ldh>2du(xH)§ IR

Then, by the Weil’s formula, we get

/G . /H!f(xh)!zdhdu(xH): /G . /H |f 2 (xh)dhdyu(xH)
= [ Ta(fP)(eEdu(er) = [ 1) P = £z g,

G/H

which implies (3.1). Thus, we can extend Ty to a bounded linear operator from L?(G)
onto L?(G/H,u), which we still denote it by Ty and satisfies

ITe(Hllz6/mm < Iflliz) forall feL?(G).

Thus, we complete the proof. O

Let J?(G,H):={f€L?*(G):Ty(f)=0} and J*(G,H)* be the orthogonal completion of
the closed subspace 3?(G,H) in L?(G).
As an immediate consequence of Theorem 3.1 we deduce the following result.

Proposition 3.1. Let H be a closed subgroup of a compact group G and y be the normal-
ized G-invariant measure on G/H associated to the Weil’s formula. Then Ty :L?(G) —
L?*(G/H,u) is a partial isometric linear map.

Proof. Let 9 € L*(G/H, ) and ¢,:=@ogq. Then ¢, € L*(G) with
Pqllizy=l@ll2(G/m)- 3.2)

Indeed, using the Weil’s formula we can write

90l = [loae)Pdx= [ Tua(lgsf) (eH)dp(xH)

= ([ sty P ) aust,

G/H
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and since H is compact and dh is a probability measure, we get

/G/H (/H!%(xh) y%m) du(xH) =/G/H (/H!qo(th)|2dh> dyu(xH)

= [ ([ ottty e

G/H

= [ JoGtDR ([ dn)ausr)

/ o(xH lde(XH)—H(PHLz (G/H,p)’

which implies (3.2). Then T};(¢)= ¢, and Ty T};(¢) = ¢. Because using the Weil's formula
we have

<TI*{(§0>/f>L2(G):<§0/TH(f)>L2(G/H,y):/G/H(P(XH)TH(f)(XH)dV(XH)

= [, oG Ta (P (xH)du(eH) = [ T(gyF) (xH)du(xH)

—/ Pq(x dx—<(Pq/f> 12(G)/

forall f€L?(G), which implies that T};(¢)=¢,. Now a straightforward calculation shows
that Ty = Ty T};Ty. Then by Theorem 2.3.3 of [20], Ty is a partial isometric operator. [

We then can conclude the following corollaries as well.

Corollary 3.1. Let H be a closed subgroup of a compact group G. Let Py ) and
Py (g, be the orthogonal projections onto the closed subspaces 3*(G,H) and §*(G,H )t
respectively. Then, for each f € L?(G) and a.e. x €G, we have

L Ppg,mys (f) (%) =Tu(f) (xH).
2. Py6,m) (f)(x) = f(x) = Tu(f) (xH).

Corollary 3.2. Let H be a compact subgroup of a compact group G and y be the normal-
ized G-invariant measure on G/ H associated to the Weil’s formula. Then

1. P(G,H)* = {y, - peLX(G/H,u)}.
2. For f€J*(G,H)* and h € H we have R, f=f.
3. For ¢ € L*(G/H,u) we have ||¢g]l12(c) = ¥l 12(G/11,-

4. For f,g€J*(G,H)* we have (Tu(f), Tu(8)) 2 e/ = (-8 r2(c)

We finish this section by the following remark.
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Remark 3.1. Invoking Corollary 3.2 one can regard the Hilbert function space L?(G/H, 1)
as a closed linear subspace of the Hilbert function space L?(G), that is the closed linear
subspace consists of all f € L?(G) which satisfies R, f = f for all h € H. Then Theorem 3.1
and Proposition 3.1 guarantees that the bounded linear map

Ty:L*(G) —L*(G/H,u) C L*(G)

is an orthogonal projection.

4 Abstract trace formulas over homogeneous spaces of compact
groups

In this section, we present the abstract notions of dual spaces and Plancherel (trace) for-
mulas over homogeneous spaces of compact groups.
For a closed subgroup H of G, let

Ht={[]€G:n(h)=1 forallhe H}. 4.1)

Then by definition we have
H*CG. (4.2)

If G is Abelian, each closed subgroup H of G is normal and the compact group G/H is

Abelian and so G/H is precisely the set of all characters (one dimensional irreducible
representations) of G which are constant on H, that is precisely H*. If G is a non-Abelian

group and H is a closed normal subgroup of G, then the dual space G/H which is the set
of all unitary equivalence classes of unitary representations of the quotient group G/H,
has meaning and it is well-defined. Indeed, G/ H is a non-Abelian group. In this case, the
map & G/H— H* defined by o+ ®(0) :=00q is a Borel isomorphism and G/H=H",
see [1,19,23]. Thus if H is normal, H' coincides with the classic definitions of the dual
space either when G is Abelian or non-Abelian.

For a given closed subgroup H of G and also a continuous unitary representation
(71,7 ) of G, define

TS :— / 7o(h)dh, 4.3)
H
where the operator valued integral (4.3) is considered in the weak sense. In other words,
(Th2.8)= [ (x(ge)dn for (g€ (4.4)
The function h+— (7t(h)(,¢) is bounded and continuous on H. Since H is compact, the

right integral is the ordinary integral of a function in L}(H). Hence, T is a bounded
linear operator on 3, with || /|| <1.
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Definition 4.1. Let H be a compact subgroup of a compact group G. The dual space G/H
of the left coset space G/ H, is defined as the subset of G given by

G/H:={[n]eG:Tf#0} { eG/ dh;éo}. 4.5)

Then evidently we have
H*CG/H. (4.6)

First we shall present an interesting property of (4.5), when the left coset space G/H
has the canonical quotient group structure.

Next theorem shows that the reverse inclusion of (4.6) holds, if H is a normal sub-
group of G.

Theorem 4.1. Let H be a closed normal subgroup of a compact group G. Then,
G/H=H".

Proof. Let H be a closed normal subgroup of a compact group G. Invoking the inclusion

(4.6), it is sufficient to show that G/H CH*. Let[n] e G/H be given. Due to normality
of H in G the map 7,: H — H given by h+— Tx(h) :=x"'hx belongs to Aut(H) and also we
have x"'Hx=H, for all x€G. Let x€G. Then by compactness of G we have d (7, (h))=dh
and hence we can write

/H 7o(h)dh= / N 17t(rx(h))d(rx(h)): /H 7o(te(h))dh

- / (x)dh = 7(x)* ( /H n(h)dh> 7(x)
=n(x)"Thm(x),

which implies that 77(x)T]; = Tj7t(x). Since x € G was arbitrary we deduce that T[] €
€(7r). Irreducibility of 7 guarantees that T[T =aI for some constant « € C with |a| <1. By

definition of G/H we have T7 # 0 and hence we get &« #0. Now let t € H be arbitrary.
Then we can write

() =a (el = n () TE=a"" / re(th)dh =1 / w(h)dh=a TR =1,
H H

which implies [71] € H*. O
Let
={{eH:m(h){=L VheH}. 4.7)
Then, X is a closed linear subspace of H and R(T}}) =K, where
R(TH) ={TAG:{€Hx}.

It is easy to see that [77] € H' if and only if K =%,.
Then, we can also present the following results.
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Proposition 4.1. Let H be a closed subgroup of a compact group G and (71,H) be a
continuous unitary representation of G. Then,
1. The operator T} is an orthogonal projection of 3, onto K£.

2. The operator T% is unitary if and only if [1] € H.

Proof. (1) Using compactness of H, we have

(TRY* = </H7t(h)dh>*:/Hn(h)*dh:/Hn(h1)dh:T§.

As well as, we can write

TATE = ( / (h)dh> < /H (t)dt> - /H o(h) < /H n(t)dt) dh
_/ </ dt> dh:/H </H7T(ht)dt> dh:/Hngt:Tg.

(2) The operator T}; is unitary if and only if T/;=1. The operator T} is identity if and only
if r(h) =1 for all h € H. Thus, TZ is unitary if and only if [7] € HL. O

Let € LY(G/H,u) and [r] € G/H. The Fourier transform of ¢ at [7t] is defined as the
linear operator

Tp) (M)=9(m):= | p(xH)T(xH)"du(xH), @)

on the Hilbert space H,, where for each xH € G/H the notation I' ;(xH) stands for the
bounded linear operator defined on the Hilbert space H by I'r(xH) =m(x) T}, that is

(T=(xH){, &) =(m(x)TH(,¢)  for §,6 €Ty (4.9)
Then we have

(Tr(xH)Z,&) =Ty (mge) (xH)

forall {,¢ € H,. Indeed,

(Ca(eH)8, 8= (e ()T 8) = (o) [ dh)cc>

={(fyromonin)e) =((f,rnan)e2)

/H 0(xh)Z,E) dh:/Hnéé (xh)dh =Ty (2.2 (xH).
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Remark 4.1. Let H be a closed normal subgroup of a compact group G and u be the
normalized G-invariant measure over the left coset space G/H associated to the Weil’s
formula. Then it is easy to check that i is a Haar measure of the compact quotient group

G/H and by Theorem 4.1 we have G/H=H". Also, for each p<€LY(G/H,u) and [7]€H"*,
we have

p(m)= [ p(xH)m(x) dp(xH)

Thus, we deduce that the abstract Fourier transform defined by (4.8) coincides with the
classical Fourier transform over the compact quotient group G/H if H is normal in G.

The operator-valued integral (4.8) is considered in the weak sense. That is
oM = [ oEH)ETo(xH) Qdp(xH) for LEEK  (410)
In other words, for [77] € CT/?{ and (,¢ € H, we have
Coma)= [ o(xH)Tu(meg) (xH)du(xH). (4.11)
Because, we can write
ComE)= [ p(xH)(ETx(xH) Q) dp(xH)
= [, ¢ H) CalxH)E E)dp(x1)
=/ @(xH)Ty(rge) (xH)dp(xH).

G/H
If ,¢ € H,, then we have

(&, @(m)S)]

L I T (e eED)| < [ )T () ) (o)
= [ o] [ megtaman|antern < [ gern (| Imcaon)an ) (e

< [ JoGrl ([ Ixmci-leian) duit= [ oG ( [ I21-1¢lan) ducer)
—lel-tel- ( [, lotern( f an)dutern)) =1el-el-Nolls o

so we deduce that ¢(7r) is a bounded linear operator on 3, with

1o <ol 6/,

The following proposition presents the canonical connection of the abstract Fourier trans-
form defined in (4.8) with the classical Fourier transform (2.1).
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Proposition 4.2. Let H be a closed subgroup of a compact group G and y be the nor-
malized G-invariant measure on G/H associated to the Weil’s formula. Then, for ¢ €

LY(G/H,u) and [t] € G/H, we have
@(r) =pq(7). (4.12)
Proof. Using the Weil’s formula and also (4.11), for {,¢ € 3, we can write

@98 = [ Hq»(xH)TH(ngg)(xH)du(xH) [ To(oqmez) (eH)dp(xE)

—/ @q(x) 7176 (x)dx = /q)q x)C,&)dx
= [oyx) (@) = (6,53(m)2),
which implies (4.12). O

In the next theorem we show that the abstract Fourier transform defined in (4.8) sat-
isfies a generalized version of the Plancherel (trace) formula.

Theorem 4.2. Let H be a closed subgroup of a compact group G and y be the normalized G-
invariant measure on G/ H associated to the Weil's formula. Then, each ¢ € L?(G/H,u) satisfies
the following Plancherel formula;

Y. dallo(m) s =110l m,) (4.13)
[n}e(ﬁ?—]

Proof. Let e L2(G/H,u) be given. If [11] € G with [7] %G//?i, then we have T/;=0. Hence,
for 7, € 3, we have Ty (717 #) =0. Therefore, we get

@5(7m)=0. (4.14)
Indeed, using the Weil’s formula, for {,¢ € H{; we can write
€918 = [ o6 Qdx= [ gy (0) (a2 E)dx= [ (x)ms(x)ex
= G/HTH(q)q.nM)(xH)dy(xH):/G/Hgo(xH)TH(nglg)(xH)dy(xH):0.

Using Egs. (4.12), (4.14), invoking Plancherel formula (2.2), and also Corollary 3.2 we
achieve

Y, dallo(m@ls= Y dellog(m)llis

[7)eG/H (n]eG/H
Z d||9q(70) ||fis + ), A l|9q(70) |1 fis
nleG/H {[n]eG:[n]¢G/H}

Z dr H(Pq HHs—H%HLZ —HQ’H%Z(G/H,#)/

which implies (4.13). O
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Remark 4.2. Let H be a closed normal subgroup of a compact group G and u be the
normalized G-invariant measure over the left coset space G/H associated to the Weil’s

formula. Then Theorem 4.1 implies that G//TJ = H* and hence the Plancherel (trace)
formula (4.13) reads as follows;

Y. dxllo(m)lEs = llFzc

[t]eHt

forall p € L2(G/H,u), where

for all [rr] € H', see Remark 4.1.

5 Peter-Weyl theorem for homogeneous spaces of compact
groups

In this section we present a version of Peter-Weyl Theorem [21] for the Hilbert function
space L>(G/H,u).

Let (71,3(;) be a continuous unitary representation of G such that T} #0. Then the
functions ng(: :G/H — C defined by

nf=(xH):=(r(x)T{E,E) forxHeG/H (5.1)

for &,{ € 3 are called H-matrix elements of (71,3).
For xHe G/H and [, € H,, we have

7t (x| = (e () TRC, &) < () TAZ NI < T < g ]l
Also we can write
it (xH) = ((x) THE,§) = rorgg e (x)- (5.2)
Invoking definition of the linear map Ty and also T/} we have
Tu(eg) (eH) = [ g (eydh= [ ((x),2)an
= | r@) (g, = (m(x) TELE),

which implies that
TH(”Q@) = 7'[51(:. (53)

Theorem 5.1. Let H be a closed subgroup of a compact group G, y be the normalized G-invariant
measure and (7t,Hr ) be a continuous unitary representation of G such that T7 #0. Then
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1. The subspace & (G/H) depends on the unitary equivalence class of 7.
2. The subspace €,(G/H) is a closed left invariant subspace of L*(G/H,u).

Proof. (1) Let (0,7, ) be a continuous unitary representation of G such that [77] = [c]. Let
S: Hy; — H, be the unitary operator which satisfies o(x)S = S7t(x) for all x € G. Then
ST/ =T},S and also T§; #0. Thus for x € G and {,¢ € H,; we can write

nple(xH) = (m1(x) THE,€) 3, = (S~ o (x)STHL, ),
= (0(x)STEL,S&) 5, = (0(x) THST,SE) 3¢, =08 5z (xH),

which implies that £, (G/H)=¢&,(G/H).
(2) It is straightforward. O

If {,¢ belongs to an orthonormal basis {e;} for H,, H-matrix elements of [77] with
respect to an orthonormal basis {e;} changes in the form

nff(xH) = neI;I-,e,-(XH) = (7t(x)THej,e;) for xHeG/H. (5.4)

The linear span of the H-matrix elements of a continuous unitary representation (77,5 )
satisfying T/ #0, is denoted by €,(G/H) which is a subspace of C(G/H).

Definition 5.1. Let H be a closed subgroup of a compact group G and [r] € G//?—I . An or-
dered orthonormal basis B={e;:1<¢<d } of the Hilbert space H is called H-admissible,
if it is an extension of an orthonormal basis {e;:1<¢<d, y} of the closed subspace X,
which equivalently means that d, j-first elements of 8 be an orthogonal basis of K.

Let [t] € G/H and 9B ,= {e;:1<¢<d} be an H-admissible basis for the representation
space H,. Then, each 7r;y with 1 <i<d; and 1</¢<d, y, is a well-defined continuous
function over G/H. Let £4(G/H) be the subspace of €(G/H) spanned by the set B!, :=

Proposition 5.1. Let [1] € G/H , B be an H-admissible basis for the representation space J,,
and 1<l #0' <d, . Then

1. dimé&%(G/H)=d, and B!, is an orthonormal basis for £-.(G/H).
2. &L(G/H) is a closed left translation invariant subspace of €(G/H).
3. &Y(G/H)L&L(G/H).
Proof. (1) Let1<i,i’ <d,. Then by Theorem 27.19 of [11] we get
(it T0it0) 12 (G /) = {TTits Tt} 12(G) = e i

Since dim&%(G/H) <d, we achieve that B, is an orthonormal basis for £4(G/H) and
hence dimé&% (G/H) =d,.
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(2) It is straightforward.
(3) Let 1<i,i’ <d,. Applying Theorem 27.19 of [11] we get
(70, 70 ) 12(G 1) = (Tt T ) 12(G) = At BiirBeer,
which completes the proof. O

The following theorem shows that H-admissible bases lead to orthogonal decompo-
sitions of the subspace €,(G/H).

Theorem 5.2. Let H be a closed subgroup of a compact group G. Let [rt] € G/H and B, =
{ev r:1<4<dy} be an H-admissible basis for the representation space H,. Then B,(G/H):=
{\/ﬁnw :1<i<dp,1<{<dnpy} is an orthonormal basis for the Hilbert space €,(G/H) and
hence it satisfies the following direct sum decomposition

dn,H

€:(G/H)=@PeL(G/H). (5.5)
(=1

Proof. It is straightforward to check that B,(G/H) spans the subspace €,(G/H). Then
Proposition 5.1 guarantees that B,(G/H) is an orthonormal set in £;(G/H). Since
dimé,(G/H) <d, pd, we deduce that it is an orthonormal basis for €,(G/H), which
automatically implies the decomposition (5.5). O

Next proposition lists basic properties of H-matrix elements.

Proposition 5.2. Let H be a closed subgroup of a compact group G, u be the normalized G-
invariant measure on G/ H, and (71,3, ) be a continuous unitary representation of G. Then,

1. TE=0ifand only if €,(G) CJ*(G,H).
2. If T #0 then T (€7 (G))=Ex(G/H) and T};(Ex(G/H)) C &4 (G).
3. €:(G)Cd*(G,H)"* ifand only if w(h)=1 for all h€ H.

Then we can prove the following orthogonality relation concerning the functions in
E(G/H).

Theorem 5.3. Let H be a closed subgroup of a compact group G, u be a normalized G-invariant

measure on G/H and [rt] # [0] € G/H. The closed subspaces &€;(G/H) and €,(G/H) are
orthogonal to each other as subspaces of the Hilbert space L>(G/H, u).

Proof. Letypc&,(G/H) and ¢ &,(G/H). Then we have ¢, € £(G) and also ¢, € E,(G).
Using Proposition 5.2, Corollary 3.2, and Theorem 27.15 of [11], we get

(@) 2c/mp) = (g ¥q) 12(6) =0,
which completes the proof. O
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We can define

¢(G/H):=thelinear spanof |J &x(G/H). (5.6)
[n]eG/H

Next theorem presents some analytic aspects of the function space E(G/H).

Theorem 5.4. Let H be a closed subgroup of a compact group G and y be the normalized G-
invariant measure on G/ H associated to the Weil's formula. Then,

1. The linear operator Ty maps E(G) onto E(G/H).

2. &(G/H) is ||.l12(G/m,u-dense in L*(G/H, ).

3. &(G/H) is ||.||sup-dense in €(G/H).
Proof. (1) It is straightforward.

(2) Let ¢ € L*(G/H,u) and also f € L*(G) with Ty(f) =¢. Then by |- |12 (c)-density
of &(G) in L*(G) we can pick a sequence {f,} in €(G) such that f = ||-||;2(g)—lim, fu.

By Proposition 5.2 we have {Ty(f,)} C £(G/H). Then continuity of the linear map Ty :
L?*(G)— L*(G/H,u) implies

¢=Tu(f)=lll2(c/pmp M Tu(fn),

which completes the proof.
(3) Invoking uniformly boundedness of Ty, uniformly density of £(G) in €(G), and
the same argument as used in (1), we get || - ||sup-density of £(G/H) in €(G/H). O

The following theorem can be considered as an abstract extension of the Peter-Weyl
Theorem for homogeneous spaces of compact groups.

Theorem 5.5. Let H be a closed subgroup of a compact group G and y be the normalized G-
invariant measure on G/H. The Hilbert space L*(G/H,u) satisfies the following orthogonality
decomposition

L*(G/H,u)= @ &x(G/H). (5.7)
(n]eG/H
Proof. Using Peter-Weyl Theorem, Proposition 5.2, and since the bounded linear map
Ty :L%(G) — L?(G/H,u) is surjective we achieve that each ¢ € L?(G/H,u) has a decom-
position to elements of £(G/H) with [rr] € G/H, namely

o= Y cx¢n, (5.8)
(n]eG/H

with ¢, €&,(G/H) for all [rr] € G/H. Since the subspaces €,(G/H) with ] € G/H are
mutually orthogonal we conclude that decomposition (5.8) is unique for each ¢, which
guarantees (5.7). O
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We immediately deduce the following corollaries.

Corollary 5.1. Let H be a closed subgroup of a compact group G and u be the normalized

G-invariant measure on G/H. For each [rr] € CT/?{, let B={e;:1<¢<dr} be an H-
admissible basis for the representation space H ;. Then we have the following statements.

1. The Hilbert space L?(G/H,u) satisfies the following direct sum decomposition

dn,H
L*(G/Hu)= P PeL(G/H). (5.9)

[n]eG/H =1

2. The set B(G/H):={my:1<i<dp, 1<{<d,p} constitutes an orthonormal basis
for the Hilbert space L>(G/H, ).

3. Bach ¢ € L%(G/H,u) decomposes as the following:

dn,H dn—

P= Z d”zz<¢/ni€>L2(G/H,y)7ri€/ (5.10)
[neG/H  (=1i=1

where the series is converges in L?(G/H,u).

Remark 5.1. Let H be a closed normal subgroup of a compact group G. Also, let  be the
normalized G-invariant measure over G/H associated to the Weil’s formula. Then G/H
is a compact group and the normalized G-invariant measure y is a Haar measure of the

quotient compact group G/H. By Theorem 4.1, we deduce that G/H=H 1, and for each
[t] € G/H we get T; =1 and d, gy =d. Thus we obtain

L*(G/H)= @ ¢€x(G/H),

[n]eHL

which precisely coincides with the decomposition associated to applying the Peter-Weyl
Theorem to the compact quotient group G/ H.
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