A Perturbation of Jensen *-Derivations from K(H)into K(H)

H. Reisi*

Department of Mathematics, Semnan University, Semnan, Iran.

Received 6 January 2014; Accepted (in revised version) 28 July 2016

Abstract. Let's take *H* as an infinite–dimensional Hilbert space and K(H) be the set of all compact operators on *H*. Using Spectral theorem for compact self–adjoint operators, we prove the Hyers–Ulam stability of Jensen *-derivations from K(H) into K(H).

Key Words: Jensen *-derivation, *C**-algebra, Hyers–Ulam stability. **AMS Subject Classifications**: 52B10, 65D18, 68U05, 68U07

1 Introduction

In a Hilbert space H, an operator T in B(H) is called a compact operator if the image of unit ball of H under T is a compact subset of H. Note that if the operator $T: H \longrightarrow H$ is compact, then the adjoint of T is compact, too. The set of all compact operators on H is shown by K(H). It is easy to see that K(H) is a C^* -algebra [1]. Moreover, every operator on H with finite range is compact. The set of all finite range projections on Hilbert space H is denoted by P(H).

An approximate unit for a *C*^{*}-algebra \mathcal{A} is an increasing net $(u_{\lambda})_{\lambda \in \Lambda}$ of positive elements in the closed unit ball of \mathcal{A} such that $a = \lim_{\lambda} a u_{\lambda} = \lim_{\lambda} u_{\lambda} a$ for all $a \in \mathcal{A}$. Every *C*^{*}-algebra admits an approximate unit [2].

Example 1.1. Let *H* be a Hilbert space with orthonormal basis $(e_n)_{n=1}^{\infty}$. The *C**-algebra K(H) is non–unital since $dim(H) = \infty$. If P_n is a projection on $\mathbb{C}e_1 + \cdots + \mathbb{C}e_n$, then the increasing sequence $(P_n)_{n=1}^{\infty}$ is an approximate unit for K(H).

Theorem 1.1 (see [2]). Let $T: H \longrightarrow H$ be a compact self-adjoint operator on Hilbert space H. Then there is an orthonormal basis of H consisting of eigenvectors of T. The nonzero eigenvalues of T are from finite or countably infinite set $\{\lambda_k\}_{k=1}^{\infty}$ of real numbers and $T = \sum_{k=1}^{\infty} \lambda_k P_k$, where P_k is the orthogonal projection on the finite-dimensional space of eigenvectors corresponding to eigenvalues. If the number of nonzero eigenvalues is countably infinite, then the series converges to T in the operator norm.

http://www.global-sci.org/ata/

^{*}Corresponding author. *Email address:* hamidreza.reisi@gmail.com (H. Reisi)

The problem of stability of functional equations originated from a question of Ulam [5] concerning the stability of group homomorphisms: let (G1,*) be a group and let (G2,*,d) be a metric group with the metric $d(\cdot,\cdot)$. Given $\varepsilon > 0$, does there exist a $\delta(\varepsilon) > 0$ such that if a mapping $h: G_1 \longrightarrow G_2$ satisfies the inequality

$$d(h(x*y),h(x)\star h(y)) < \delta$$

for all $x, y \in G_1$, then there exists a homomorphism $H: G_1 \rightarrow G_2$ with

$$d(h(x),H(x)) < \varepsilon$$

for all $x \in G_1$? If the answer is affirmative, we would say that the equation of homomorphism H(x*y)=H(x)*H(y) is stable. Thus, the stability question of functional equations is that how the solutions of the inequality differ from those of the given functional equation.

Hyers [3] gave the first affirmative answer to the question of Ulam for Banach spaces. Let *X* and *Y* be Banach spaces. Assume that $f: X \longrightarrow Y$ satisfies

$$\|f(x+y)-f(x)-f(y)\| \le \varepsilon$$

for all $x, y \in X$ and some $\varepsilon > 0$. Then, there exists a unique additive mapping $T : X \longrightarrow Y$ such that

$$\|f(x) - T(x)\| \leq \varepsilon$$

for all $x \in X$. Also, if the function $t \mapsto f(tx)$ from \mathbb{R} to Y is continuous for each fixed $x \in X$, then T is an \mathbb{R} -linear function. This method is called the direct method or Hyers–Ulam stability of functional equations.

Note that if *f* is continuous, then the function $r \mapsto f(rx)$ from \mathbb{R} into *Y* is continuous for all $x \in X$. Therefore *T* is \mathbb{R} -linear.

Definition 1.1. Let *X* and *Y* be real linear spaces. For $n \in \{2,3,4,\dots\}$ the mapping $f:X \longrightarrow Y$ is called a Jensen mapping of *n*-variable, if *f* for each $x_1,\dots,x_n \in X$ satisfies the following equation

$$f\left(\frac{x_1+\cdots+x_n}{n}\right) = \frac{1}{n} (f(x_1)+\cdots+f(x_n)).$$

In 2003, J. M. Rassias and M. J. Rassias [4] investigated the Ulam stability of Jensen and Jensen type mappings by applying the Hyers method. In 2012, M. Eshaghi Gordji and S. Abbaszadeh [6] investigated the Hyers–Ulam stability of Jensen type and generalized *n*-variable Jensen type functional equations in fuzzy Banach spaces.

Definition 1.2. Let \mathcal{A} be a C^* -algebra. A mapping $d: \mathcal{A} \longrightarrow \mathcal{A}$ with $d(a^*) = d(a)^*$ for all $a \in \mathcal{A}$ (*-preserving property) is called a Jensen *-derivation if d satisfies

$$d(x_1x_2) = x_1d(x_2) + d(x_1)x_2$$

and

$$d\left(\frac{\lambda x_1 + \dots + \lambda x_n}{n}\right) = \frac{\lambda}{n} (d(x_1) + \dots + d(x_n))$$

for all $\lambda \in \mathbb{C}$, $x_1, \cdots, x_n \in \mathcal{A}$ and $n \in \{2, 3, 4, \cdots\}$.

Definition 1.3. Let \mathcal{A} be a C^* -algebra. A mapping $d: \mathcal{A} \longrightarrow \mathcal{A}$ with $d(a^*) = d(a)^*$ for all $a \in \mathcal{A}$ (*-preserving property) and d(0) = 0 is called a Jensen Jordan *-derivation if d satisfies

$$d(x_1x_2+x_2x_1) = x_1d(x_2) + d(x_1)x_2 + x_2d(x_1) + d(x_2)x_1$$

and

$$d\left(\frac{\lambda x_1 + \dots + \lambda x_n}{n}\right) = \frac{\lambda}{n} (d(x_1) + \dots + d(x_n))$$

for all $\lambda \in \mathbb{C}$, $x_1, \cdots, x_n \in \mathcal{A}$ and $n \in \{2, 3, 4, \cdots\}$.

B. E. Johnson [7] investigated almost algebra *-homomorphism between Banach *algebras. Recently, M. Eshaghi Gordji et al. have investigated several stability results on homomorphisms and Jordan homomorphisms on C*-algebras (see [8]).

In the present paper, using spectral theorem for compact self–adjoint operators, we prove that every almost-Jensen *-preserving map $\varphi:K(H) \longrightarrow K(H)$ satisfying $\varphi(T2^nP) = T2^n \varphi(P) + \varphi(T)2^n P$ for all $P \in P(H)$, can be Jensen *-derivation. Also, we show that every almost-Jensen *-preserving map $\varphi:K(H) \longrightarrow K(H)$ satisfying

$$\varphi(T2^nP+2^nPT) = T2^n\varphi(P) + \varphi(T)2^nP+2^nP\varphi(T) + 2^n\varphi(P)T$$

for all $P \in P(H)$, can be Jensen Jordan *-derivation.

2 Jensen *-derivations and Jensen Jordan *-derivations

From now on, we suppose that *H* is an infinite dimensional Hilbert space, K(H) is the set of all compact operators and P(H) is the set of all finite range projections on *H*.

It is easy to see that if a Jensen mapping φ satisfies the condition $\varphi(0) = 0$, then φ is additive. We use this fact in the main results of this paper.

Lemma 2.1. Assume that X and Y be linear spaces. If a mapping $f: X \longrightarrow Y$ is additive and for each fixed $x \in X$, $f(\lambda x) = \lambda f(x)$ for all $\lambda \in \mathbb{T}^1_{\theta_0} := \{e^{i\theta} : 0 \le \theta < \theta_0 \le 2\pi\}$. Then f is \mathbb{C} -linear.

Proof. If λ belongs to \mathbb{T}^1 , then there exists $\theta \in [0, 2\pi]$ such that $\lambda = e^{i\theta}$. It follows from $\frac{\theta}{n} \to 0$ as $n \to \infty$ that there exists $n_0 \in \mathbb{N}$ such that $\lambda_1 = e^{i\frac{\theta}{n_0}}$ belongs to $\mathbb{T}^1_{\theta_0}$ and $f(\lambda x) = f(\lambda_1^{n_0} x) = \lambda_1^{n_0} f(x) = \lambda f(x)$ for all $x \in X$. Let $t \in (0,1)$. Putting $t_1 = t + i(1-t^2)^{\frac{1}{2}}$, $t_2 = t - i(1-t^2)^{\frac{1}{2}}$, then we have $t = \frac{t_1+t_2}{2}$ and $t_1, t_2 \in \mathbb{T}^1$. It follows that

$$f(tx) = f(\frac{t_1 + t_2}{2}x) = \frac{t_1}{2}f(x) + \frac{t_2}{2}f(x) = tf(x).$$

If $\lambda \in B_1 := \{\lambda \in \mathbb{C}; |\lambda| \le 1\}$, then there exists $\theta \in [0, 2\pi]$ such that $\lambda = |\lambda|e^{i\theta}$. It follows that

$$f(\lambda x) = f(|\lambda|e^{i\theta}x) = |\lambda|f(e^{i\theta}x) = \lambda f(x)$$

for all $x \in X$. If $\lambda \in \mathbb{C}$ then there exist $n_0 \in \mathbb{N}$ (from $\frac{\lambda}{n} \to 0$ as $\to \infty$) such that $\lambda_0 = \frac{\lambda}{n_0} \in B_1$ and for all $x \in X$

$$f(\lambda x) = f(n_0 \lambda_0 x) = n_0 \lambda_0 f(x) = \lambda f(x).$$

Thus, we complete the proof.

Theorem 2.1. Let *H* be an infinite dimensional Hilbert space and $\varepsilon > 0$ is given; if a continuous mapping $\varphi: K(H) \longrightarrow K(H)$ with $\varphi(0) = 0$ satisfies the following conditions: (1) $\varphi(TP) = T\varphi(P) + \varphi(T)P$ for all $T \in K(H)$ and $P \in P(H)$; (2) $\|\varphi\left(\frac{\lambda T_1 + \dots + \lambda T_n}{n}\right) - \frac{\lambda}{n}(\varphi(T_1) + \dots + \varphi(T_n))\| < \varepsilon$ for all $\lambda \in \mathbb{T}^1_{\theta_0}$ with $0 < \theta_0 \le 2\pi$; (3) $\|\varphi(T^*) - \varphi(T)^*\| < \varepsilon$ for all $T \in K(H)$. Then there exists a unique Jensen *-derivation $D: K(H) \longrightarrow K(H)$ such that

$$\|D(T) - \varphi(T)\| < \varepsilon$$

for all $T \in K(H)$.

Proof. From condition (2), there exists a unique Jensen mapping $D: K(H) \longrightarrow K(H)$ with $D(T) = \lim_{n \to \infty} \frac{1}{2^n} \varphi(2^n T)$ such that

$$\|D(T) - \varphi(T)\| < \varepsilon$$

for all $T \in K(H)$ (see [4,6]). Note that D(0) = 0, thus D is additive. Now, it follows from condition (2) and Lemma 2.1 that D is \mathbb{C} -linear.

It follows from condition (1) that

$$D(TP) = \lim_{n \to \infty} \frac{1}{2^n} \varphi(2^n TP) = \lim_{n \to \infty} \frac{1}{2^n} \left[T\varphi(2^n P) + \varphi(T) 2^n P \right] = TD(P) + \varphi(T)P$$
(2.1)

for all $T \in K(H)$ and $P \in P(H)$. So, since *D* is linear we get

$$D(TP) = \frac{D((2^{n}T)P)}{2^{n}} = TD(P) + \frac{1}{2^{n}}\varphi(2^{n}T)P$$

for all $T \in K(H)$ and $P \in P(H)$. By tending *n* to infinity in the last equality above, we obtain

$$D(TP) = TD(P) + D(T)P$$
(2.2)

for all $T \in K(H)$ and $P \in P(H)$. By (2.1) and (2.2), we have $\varphi(T)P = D(T)P$ for all $T \in K(H)$ and $P \in P(H)$.

336

H. Reisi / Anal. Theory Appl., 32 (2016), pp. 333-338

Now, we show that $D \equiv \varphi$. Let $\{P_m\} \subset P(H)$ be an approximate unit of K(H), then we get

$$D(T) = \lim_{m} D(T) P_{m} = \lim_{m} \varphi(T) P_{m} = \varphi(T)$$

for all $T \in K(H)$.

Given $S,T \in K(H)$, there are compact self adjoint operators S_1 and S_2 such that $S = S_1 + iS_2$. According to Theorem 1.1 we have

$$S = S_1 + iS_2 = \sum_{i=1}^{\infty} \alpha_i P_i + i \sum_{j=1}^{\infty} \beta_j P_j,$$

where $P_k \in P(H)$ and $\alpha_k, \beta_k \in \mathbb{C}$ for all $k \in \{1, 2, 3, \dots\}$. It follows from linearity and continuity of *D* and *T* that

$$D(TS) = D\left(T\left\{\sum_{i=1}^{\infty} \alpha_i P_i + i \sum_{j=1}^{\infty} \beta_j P_j\right\}\right)$$

$$= \sum_{i=1}^{\infty} D\left(T\alpha_i P_i\right) + i \sum_{j=1}^{\infty} D\left(T\beta_j P_j\right)$$

$$= \sum_{i=1}^{\infty} \left[TD\left(\alpha_i P_i\right) + D(T)\alpha_i P_i\right] + i \sum_{j=1}^{\infty} \left[TD\left(\beta_j P_j\right) + D(T)\beta_j P_j\right]$$

$$= T\left\{\sum_{i=1}^{\infty} D\left(\alpha_i P_i\right) + i \sum_{j=1}^{\infty} D\left(\beta_j P_j\right)\right\} + D(T)\left\{\sum_{i=1}^{\infty} \alpha_i P_i + i \sum_{j=1}^{\infty} \beta_j P_j\right\}$$

$$= TD(S) + D(T)S.$$

The last equality obtained by continuity of φ . Indeed, $\sum_{i=1}^{m} P_i \rightarrow S_1$ uniformly. Hence

$$\begin{split} \sum_{i=1}^{\infty} D\left(\alpha_{i} P_{i}\right) &= \lim_{m} \sum_{i=1}^{m} D\left(\alpha_{i} P_{i}\right) = \lim_{n} D\left(\sum_{i=1}^{m} \alpha_{i} P_{i}\right) \\ &= \lim_{m} \lim_{n} \frac{1}{2^{n}} \varphi\left(2^{n} \sum_{i=1}^{m} \alpha_{i} P_{i}\right) = \lim_{n} \lim_{m} \frac{1}{2^{n}} \varphi\left(2^{n} \sum_{i=1}^{m} \alpha_{i} P_{i}\right) \\ &= \lim_{n} \frac{1}{2^{n}} \varphi\left(2^{n} \lim_{m} \sum_{i=1}^{m} \alpha_{i} P_{i}\right) = \lim_{n} \frac{1}{2^{n}} \varphi\left(2^{n} \sum_{i=1}^{\infty} \alpha_{i} P_{i}\right) \\ &= D\left(\sum_{i=1}^{\infty} \alpha_{i} P_{i}\right). \end{split}$$

From the condition (3) we conclude that

$$||D(T^*) - D(T)^*|| = \lim_{n \to \infty} \frac{1}{2^n} ||\varphi(2^n T^*) - \varphi(2^n T)^*|| \to 0.$$

Hence, *D* is *-preserving. This means that *D* is a Jensen *-derivation.

Corollary 2.1. Let *H* be an infinite dimensional Hilbert space and $\varepsilon > 0$ is given; if a mapping $\varphi: K(H) \longrightarrow K(H)$ with $\varphi(0) = 0$ satisfies the following conditions:

(1)
$$\varphi(TP+PT) = T\varphi(P) + \varphi(T)P + P\varphi(T) + \varphi(P)T$$
 for all $T \in K(H)$ and $P \in P(H)$;

(2)
$$\left\|\varphi\left(\frac{\lambda T_1+\dots+\lambda T_n}{n}\right)-\frac{\lambda}{n}\left(\varphi(T_1)+\dots+\varphi(T_n)\right)\right\|<\varepsilon$$
 for all $\lambda\in\mathbb{T}^1_{\frac{1}{n_0}}$

(3) $\|\varphi(T^*) - \varphi(T)^*\| < \varepsilon$ for all $T \in K(H)$.

Then φ is Jensen Jordan *-derivation.

References

- [1] G. Douglas, Banach Algebra Techniques in Operator Theory, Springer, New York, (1997).
- [2] G. J. Murphy, C*-Algebra and Operator Theory, Academic Press, INC. New York, (1997).
- [3] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222–224.
- [4] J. M. Rassias and M. J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl. USA, 281 (2003), 516524.
- [5] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ, New York, 1960.
- [6] M. Eshaghi-Gordji and S. Abbaszadeh, Stability of Cauchy–Jensen inequalities in Fuzzy Banach spaces, Appl. Comput. Math., 11 (2012), 27–36.
- [7] B. E. Johnson, Approximately multiplication maps between Banach algebra, J. Landen Math. Soc., 37 (1988), 294–316.
- [8] M. Eshaghi Gordji, Jordan *-homomorphisms between unital C*-Algebras: A fixed point approach, Fixed Point Theory, 12(2) (2011), 341–348.
- [9] M. Eshaghi Gordji, A. Najati and A. Ebadian, Stability and superstability of Jordan homomorphisms and Jordan derivations on Banach algebras and C*-algebras: a fixed point approach, Acta Math. Sci. Ser. B Engl. Ed., 31 (2011), 1911–1922.
- [10] M. Eshaghi Gordji and Th. M. Rassias, Ternary homomorphisms between unital ternary C*algebras, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 12 (2011), 189–196.